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Abstract
A remarkably large number of integral formulas for the Euler-Mascheroni constant γ
have been presented. The Stieltjes constants (or generalized Euler-Mascheroni
constants) γn and γ0 = γ , which arise from the coefficients of the Laurent series
expansion of the Riemann zeta function ζ (s) at s = 1, have been investigated in
various ways, especially for their integral representations. Here we aim at presenting
certain integral representations for γn by choosing to use three known integral
representations for the Riemann zeta function ζ (s). Our method used here is similar to
those in some earlier works, but our results seem a little simpler. Some relevant
connections of some special cases of our results presented here with those in earlier
works are also pointed out.
MSC: Primary 11M06; 11M35; secondary 11Y60; 33B15
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1 Introduction and preliminaries
The Riemann zeta function ζ (s) is defined by (see, e.g., [, Section .])

ζ (s) :=

⎧⎨
⎩

∑∞
n=


ns =


––s

∑∞
n=


(n–)s (�(s) > ),


––s

∑∞
n=

(–)n–
ns (�(s) > ; s �= ),

(.)

which is an obvious special case of the Hurwitz (or generalized) zeta function ζ (s,a) de-
fined by

ζ (s,a) :=
∞∑
k=

(k + a)–s
(�(s) > ;a ∈C \Z–


)
, (.)

where C and Z
–
 denote the sets of complex numbers and nonpositive integers, respec-

tively. Both the Riemann zeta function ζ (s) and the Hurwitz zeta function ζ (s,a) can be
continued meromorphically to the whole complex s-plane, except for a simple pole only
at s = , with their respective residue , in many different ways. The Stieltjes constants γn

for n ∈ N := N ∪ {}, N := {, , , . . .}, arise from the following Laurent expansion of the
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Riemann zeta function ζ (s) about s =  (see, e.g., [, pp.-], [, p.] and [, p.]):

ζ (s) =


s – 
+

∞∑
n=

(–)n

n!
γn(s – )n, (.)

where

γn = lim
m→∞

{ m∑
k=

(logk)n

k
–

∫ m



(logx)n

x
dx

}

= lim
m→∞

{ m∑
k=

(logk)n

k
–
(logm)n+

n + 

}
(n ∈N) (.)

and, in particular, γ (denoted by γ ) is the Euler-Mascheroni constant (see, for details, [,
Section .] and [, Section .]):

γ := lim
m→∞

( m∑
k=


k
– logm

)
∼= . · · · . (.)

The Stieltjes constants γn are named after Thomas Jan Stieltjes and often referred to as
generalized Euler-Mascheroni constants. Liang and Todd [] computed numerical ap-
proximations of the first  Stieltjes constants in . In , using contour integration,
Ainsworth and Howell [] showed that

γn = �
{∫ ∞



(x – i)(log( – ix))n

( + x)(eπx – )
dx

}
(n ∈N) (.)

and

γ = γ =


+ �

{∫ ∞



(x – i)
( + x)(eπx – )

dx
}

=


+ 

∫ ∞



x
( + x)(eπx – )

dx. (.)

By using binomial theorem, we have

(
log( – ix)

)m =
{


log

(
 + x

)
– i arctanx

}m

=Am(x) + iBm(x) (m ∈N), (.)

where, for convenience and simplicity,

Am(x) :=
m∑
k=

(–)k

m–k

(
m
k

)
(arctanx)k

(
ln

(
 + x

))m–k

and

Bm(x) :=
m–∑
k=

(–)k+

m–k–

(
m

k + 

)
(arctanx)k+

(
ln

(
 + x

))m–k–.
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From (.) and (.), we obtain a more explicit integral representation for the Stieltjes
constants γm:

γm = 
∫ ∞



xAm(x) +Bm(x)
( + x)(eπx – )

dx (m ∈N), (.)

where Am(x) and Bm(x) are given in (.). Similarly, we have

(
log( – ix)

)m+ = Cm(x) + iDm(x) (m ∈N), (.)

where, for convenience and simplicity,

Cm(x) :=
m∑
k=

(–)k

m+–k

(
m + 
k

)
(arctanx)k

(
ln

(
 + x

))m+–k

and

Dm(x) :=
m∑
k=

(–)k+

m–k

(
m + 
k + 

)
(arctanx)k+

(
ln

(
 + x

))m–k .

From (.) and (.), we get a more explicit integral representation for the Stieltjes con-
stants γm+:

γm+ = 
∫ ∞



xCm(x) +Dm(x)
( + x)(eπx – )

dx (m ∈N), (.)

where Cm(x) and Dm(x) are given in (.). Connon (see, e.g., cf., [, Eq. (.)]; see also [,
Eq. (.)]) presented an integral representation of the Stieltjes constants γn of a similar
nature in (.):

γn = i
∫ ∞



( – ix)(log( + ix))n – ( + ix)(log( – ix))n

( + x)(eπx – )
dx (n ∈N). (.)

We recall the polygamma functions ψ (n)(s) (n ∈ N) defined by

ψ (n)(s) :=
dn+

dzn+
log�(s) =

dn

dsn
ψ(s)

(
n ∈N; s ∈C \Z–


)
, (.)

where ψ(s) denotes the psi (or digamma) function defined by

ψ(s) :=
d
ds

log�(s) and ψ ()(s) = ψ(s)
(
s ∈ C \Z–


)
. (.)

Connon [, Eq. (.)] also obtained an integral representation of the Stieltjes constants
γn:

γn = (–)n
n∑

k=

(
n
k

)
Yk

(
–ψ(), –ψ ()(), . . . , –ψ (k–)()

)

·
∫ ∞


(log t)n–k ·

(


et – 
–

t

)
e–t dt (n ∈ N), (.)
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where Yn(x, . . . ,xn) are the complete Bell polynomials defined by Y =  and

Yn(x, . . . ,xn) =
∑
π (n)

n!
k!k! · · · kn!

(
x
!

)k(x
!

)k
· · ·

(
xn
n!

)kn
(n ∈N), (.)

the sum being taken over all partitions π (n) of n, i.e., over all sets of kj ∈N such that

k + k + · · · + nkn = n.

Connon [, Eq. (.)] presented an integral representation of γ which may be a special
case of (.):

γ = γ – γ  –
∫ ∞


log t ·

(


et – 
–

t

)
e–t dt. (.)

A remarkably large number of integral formulas for the Euler-Mascheroni constant γ

have been presented (see, e.g., [, ], and [, Section .]). The Stieltjes constants γn

(n ∈ N) have been investigated in various ways, especially for their integral representa-
tions (see, e.g., [–]; see also [, Section .] and the references cited therein). Here we
aim at presenting certain integral representations for γn by choosing to use three known
integral representations for the Riemann zeta function ζ (s). Ourmethod used here is sim-
ilar to those in some earlier works, but our results seem a little simpler. Some relevant con-
nections of some special cases of our results presented here with those in earlier works are
also pointed out.
To do this, we first observe a simple property asserted in the following lemma.

Lemma  If some representations of the Riemann zeta function ζ (s) are analytic in a
deleted neighborhood of s = , except for a simple pole at s =  with its residue , then the
following function Z(s) defined by

Z(s) := ζ (s) –


s – 
(.)

is analytic at s =  if we define

Z() := γ = lim
s→

ζ (s) –


s – 
. (.)

Furthermore, we have

Z(n)() = (–)nγn (n ∈N). (.)

Proof We prove only (.). If the above-defined Z(s) is analytic at s = , then the Taylor
series expansion of Z(s) is given as follows:

Z(s) =
∞∑
n=

Z(n)()
n!

(s – )n
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in a neighborhood of s = . In view of (.), by uniqueness of Taylor (or Laurent) series ex-
pansion of a function, (.) is proved. The other argument is obvious from a well-known
property of the Riemann zeta function ζ (s). �

A well-known (and potentially useful) relationship between the polygamma functions
ψ (n)(s) and the generalized zeta function ζ (s,a) is also given by

ψ (n)(s) = (–)n+n!
∞∑
k=


(k + s)n+

= (–)n+n!ζ (n + , s)
(
n ∈ N; s ∈ C \Z–


)
. (.)

In particular, we have

ψ (n)() = (–)n+n!ζ (n + ) (n ∈N). (.)

2 Integral representations for γn

We begin by presenting an integral representation for the Stieltjes constants γn given in
the following theorem.

Theorem  The following integral representation for γn holds true:

γn = (–)n
∫ ∞



(
ψ ′( + t) –


 + t

)

·
{ n∑

k=

(
n
k

)
(–)[k/]+

 – (–)k+


πk

k + 
(log t)n–k

}
dt (n ∈N). (.)

We note that Z(s) in (.) below is analytic in a neighborhood of s = . So we can use the
relation (.) for the integral representation of Z(s). In this regard, we first try to get the
following formulas asserted by Lemma  below.

Lemma  Each of the following formulas holds true:

lim
s→

(
dn

dsn

t–s

)
= (log t)n (n ∈N) (.)

and

lim
s→

{
dn

dsn

(
sin(πs)
π (s – )

)}
= (–)[n/]+

 – (–)n+


πn

n + 
(n ∈N), (.)

where [x] denotes the greatest integer less than or equal to a real number x.

Proof The formula (.) is obvious. For (.), we recall the Maclaurin series expansion of
sin t:

sin t =
∞∑
k=

(–)k

(k + )!
tk+

(|t| < ∞)
. (.)
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By using (.), we have

lim
s→

{
dn

dsn

(
sin(πs)
π (s – )

)}

= – lim
t→

{
dn

dtn

(
sin(π t)

π t

)}

=
(–)n+

(n + )!
lim
t→

dn

dtn
(π t)n = (–)n+

πn

n + 
(n ∈N). (.)

Similarly, we obtain

lim
s→

{
dn–

dsn–

(
sin(πs)
π (s – )

)}
=  (n ∈N). (.)

Now it is not difficult to combine the two formulas (.) and (.) to see the unified formula
(.). �

Proof of Theorem  We choose to recall the following integral representation of ζ (s) (see,
e.g., [, p., Eq. ()]):

Z(s) = ζ (s) –


s – 
=

sin(πs)
π (s – )

∫ ∞



(
ψ ′( + t) –


 + t

)
dt
t–s

(
 < �(s) < 

)
. (.)

To get the nth derivative of a product of the two involved functions in (.),

sin(πs)
π (s – )

· 
t–s

,

we apply Leibniz’s generalization of the product rule for differentiation and use the results
in Lemma , in view of (.), to yield (.). �

Recall an integral representation for ζ (s) (see, e.g., [, p., Eq. ()]):

Z(s) = ζ (s) –


s – 
=


+


�(s)

∫ ∞



(


et – 
–

t
+



)
e–tts– dt

(�(s) > –
)
. (.)

In order to use (.) to get an integral representation for γn, we first find the following
formula given in Lemma .

Lemma  If we define αj by

αj := lim
s→

(


�(s)

)(j)

(j ∈N), (.)

then we have a recurrence formula for αj

αk+ =
k–∑
j=

(–)k–j
k!
j!

ζ (k +  – j)αj + γαk (k ∈ N), (.)
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where

α =  and α = –ψ() = γ , (.)

and an empty sum (as usual) is understood to be nil throughout this paper.

In addition to the formulas in (.), the next several αj are given as follows:

α = γ  – ζ (), α = γ  – γ ζ () + ζ (),

α = γ  – γ ζ () + γ ζ () + 
(
ζ ()

) – ζ (),

α = γ  – γ ζ () + γ ζ () – ζ ()ζ ()

+ γ
(
ζ ()

) – γ ζ () + ζ ().

(.)

Proof of Lemma  Taking the logarithmic derivative of /�(s), we have

(


�(s)

)′
= –


�(s)

· ψ(s).

Using Leibniz’s generalization of the product rule for differentiation when we differentiate
the last formula k times and taking the limit s →  on the resulting identity, and applying
(.) to the last resulting formula, we obtain

αk+ = –
k–∑
j=

(
k
j

)
ψ (k–j)() + γαk

=
k–∑
j=

(–)k–j
k!
j!

ζ (k +  – j)αj + γαk .

This completes the proof of Lemma . �

Using Leibniz’s generalization of the product rule for differentiation to differentiate both
sides ofZ(s) in (.)with respect to s, n times, and taking the limit s → ,Z(s) being analytic
at s =  on the resulting identity, and finally using the αj in (.) and the relation (.), we
obtain an integral formula for γn asserted by Theorem  below.

Theorem  The following integral representation for γn holds true:

γ = γ =  +
∫ ∞



(


et – 
–

t

)
e–t dt

=
∫ ∞



(


 – e–t
–

t

)
e–t dt (.)

and

γn =
∫ ∞



(


et – 
–

t
+



)
e–t

( n∑
k=

(
n
k

)
αk(log t)n–k

)
dt (n ∈N), (.)

where αk are given in Lemma .
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The first three of γn in (.) are given in Corollary  below.

Corollary  Each of the following integral formulas holds true:

γ = γ – γ  –
∫ ∞



(


et – 
–

t

)
e–t log t dt; (.)

γ = γ  – γ  – γ ζ () + ζ ()

+
∫ ∞



(


et – 
–

t

)
e–t

{
γ log t + (log t)

}
dt; (.)

γ = γ  – γ  + γ ζ () – γ ζ () – γ ζ () + ζ ()

–
∫ ∞



(


et – 
–

t

)
e–t

{

(
γ  – ζ ()

)
log t + γ (log t) + (log t)

}
dt. (.)

Proof It is enough to apply (.) and a known recurrence formula (see, e.g., [, pp.-
]) for

�(n)() =
∫ ∞


e–t(log t)n dt (n ∈N) (.)

to the first three of γn in (.). For easy reference, we record here the first three of �(n)():

�′() = –γ ; �()() = γ  + ζ (); �()() = –γ  – γ ζ () – ζ (). (.)
�

We recall Hermite’s integral formula for ζ (s) (see, e.g., [, p., Eq. ()]):

Z(s) = ζ (s) –


s – 
=


+ 

∫ ∞



sin(s arctan t)
( + t)  s

dt
eπ t – 

. (.)

Applying Leiniz’s generalization of the product rule for differentiation to (.), similarly
as in Theorems  and , we get an integral representation for γn given in Theorem  below.

Theorem  The following integral representation for γn holds true:

γ = γ =


+ 

∫ ∞



t
( + t)(eπ t – )

dt (.)

and

γn = (–)n
∫ ∞



{ n∑
k=

(
n
k

)(
–



)n–k

(arctan t)k sin
(
arctan t +

kπ


)

· (log( + t))n–k√
 + t

}
dt

eπ t – 
(n ∈N), (.)

where

sin(arctan t) =
t√
 + t

and cos(arctan t) =
√
 + t

. (.)
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The first three of γn in (.) are given in Corollary  below.

Corollary  Each of the following integral formulas holds true:

γ = –
∫ ∞



 arctan t – t log( + t)
 + t

dt
eπ t – 

; (.)

γ =
∫ ∞



–t arctan t –  arctan t log( + t) + t(log( + t))

( + t)
dt

eπ t – 
; (.)

γ =
∫ ∞



{
 arctan t – t arctan t log

(
 + t

)

–  arctan t
(
log

(
 + t

)) + t
(
log

(
 + t

))} 
( + t)

dt
eπ t – 

. (.)

Remark Setting n =  in (.), in view of relation (.), we obtain an integral representa-
tion for γ :

γ = γ =
∫ ∞



(


 + t
–ψ ′( + t)

)
dt

=
∫ ∞



(


 + t
– ζ (,  + t)

)
dt, (.)

which is a known formula (see, e.g., [, Eq. (.)]). Equation (.) is equal to Equation
(.), which is recorded, for example, in [, p., Eq. ()]. Equation (.) is a known
result (see, e.g., [, p., Entry .-]). The result (.) is equal to the special case
of (.) when m = . Connon’s result (.) is equal to the integral representation (.)
for γ. It is also interesting to compare Connon’s result with our one (.).
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