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Abstract
In this paper, we establish a solution to the following integral equation:

u(t) =
∫ T

0
G(t, s)f(s,u(s))ds for all t ∈ [0, T ], ()

where T > 0, f : [0, T ]×R→ R and G : [0, T ]× [0, T ]→ [0,∞) are continuous
functions. For this purpose, we also obtain some auxiliary fixed point results which
generalize, improve and unify some fixed point theorems in the literature.
MSC: 47H10; 54H25
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1 Introduction and preliminaries
Fixed point theory is one of the most efficient tools in nonlinear functional analysis to
solve the nonlinear differential and integral equations. The existence/uniqueness of a so-
lution of differential/integral equations turns into the existence/uniqueness of a (common)
fixed point of the operators which are obtained after suitable substitutions and elementary
calculations; see, e.g., [–].
In this paper, we first obtain some fixed point theorems to solve the integral equa-

tion mentioned above. For the sake of completeness, we recollect some basic defi-
nitions and elementary results. Let X be a nonempty set and T be a self-mapping
on X. Then, the set of all fixed points of T on X is denoted by Fix(T)X . Let � be
the set of all functions ψ : [,∞) × [,∞) → [,∞) satisfying the following condi-
tions:
() ψ is continuous,
() ψ(t, t) =  if and only if t = t = ,
() ψ(t, t)≤ 

 (t + t).
Cyclic mapping and cyclic contraction were introduced by Kirk-Srinavasan-Veeramani

to improve the well-known Banach fixed point theorem. Later, various types of cyclic con-
traction have been investigated by a number of authors; see, e.g., [, –].

Definition . [] Suppose that (X,d) is a metric space and T is a self-mapping on X. Let
m be a natural number and Xi, i = , . . . ,m, be nonempty sets. Then Y =

⋃m
i=Xi is called a
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cyclic representation of X with respect to T if

T(X) ⊂ X, . . . , T(Xm–) ⊂ Xm, T(Xm)⊂ Xm+,

where Xm+ = X.

Definition . [] Let T : X → X, r >  and η, ξ : X → [, +∞) be two functions. We say
that T is r-(η, ξ )-admissible if

(i) η(x)≥ r for some x ∈ X implies η(Tx)≥ r,
(ii) ξ (x)≤ r for some x ∈ X implies ξ (Tx) ≤ r.

Definition . Let (X,d) be a metric space and T : Y → Y be a self-mapping, where Y =⋃m
i=Xi is a cyclic representation of Y with respect to T . Let η, ξ : Y → [, +∞) be two

functions. An operator T : Y → Y is called:
• a cyclic weak r-(η, ξ )-C-contractive mapping of the first kind if

η(x)η(y)d(Tx,Ty)≤ ξ (x)ξ (y)
[


[
d(x,Ty) + d(y,Tx)

]
–ψ

(
d(x,Ty),d(y,Tx)

)]
()

holds for all x ∈ Xi and y ∈ Xi+, where ψ ∈ � .
• a cyclic weak r-(η, ξ )-C-contractive mapping of the second kind if

[
η(x)η(y) + r

]d(Tx,Ty) ≤ [
ξ (x)ξ (y) + r

][  [d(x,Ty)+d(y,Tx)]–ψ(d(x,Ty),d(y,Tx))] ()

such that r + r >  holds for all x ∈ Xi and y ∈ Xi+, where ψ ∈ � .

2 Auxiliary fixed point results
We state the main result of this section as follows.

Theorem . Let (X,d) be a complete metric space, m ∈ N, X,X, . . . ,Xm be nonempty
closed subsets of (X,d) and Y =

⋃m
i=Xi. Suppose that T : Y → Y is a cyclic weak r-(η, ξ )-

C-contractive mapping of the first kind such that
(i) T is r-(η, ξ )-admissible;
(ii) there exists x ∈ Y such that η(x) ≥ r and ξ (x)≤ r;
(iii) if {xn} is a sequence in Y such that η(xn) ≥ r and ξ (xn) ≤ r for all n ∈ N and xn → x

as n → ∞, then η(x)≥ r and ξ (x)≤ r.
Then T has a fixed point x ∈ ⋂n

i=Xi. Moreover, if η(x) ≥ r, η(y) ≥ r, ξ (x) ≤ r, ξ (y) ≤ r for
all x, y ∈ Fix(T)Y , then T has a unique fixed point.

Proof Let there exist x ∈ Y such that η(x) ≥ r and ξ (x) ≤ r. Since T is r-(η, ξ )-
admissible, then η(Tx) ≥ r and ξ (Tx) ≤ r. Again, since T is r-(η, ξ )-admissible, then
η(Tx) ≥ r and ξ (Tx) ≤ r. By continuing this process, we get

η
(
Tnx

) ≥ r and ξ
(
Tnx

) ≤ r for all n ∈N. ()

On the other hand, since x ∈ Y , there exists some i such that x ∈ Xi . Now T(Xi ) ⊆
Xi+ implies that Tx ∈ Xi+. Thus there exists x in Xi+ such that Tx = x. Similarly,
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Txn = xn+, where xn ∈ Xin . Hence, for n≥ , there exists in ∈ {, , . . . ,m} such that xn ∈ Xin

and xn+ ∈ Xin+. In case xn = xn+ for some n = , , , . . . , then it is clear that xn is a fixed
point of T . Now assume that xn 	= xn+ for all n. Hence, we have d(xn–,xn) >  for all n. Set
dn := d(xn,xn+). We shall show that the sequence {dn} is non-increasing. Due to () with
x = xn– and y = xn, we get

rd(xn,xn+)

= rd(Txn–,Txn)≤ η(xn–)η(xn)d(Txn–,Txn)

≤ ξ (xn–)ξ (xn)
[


[
d(xn–,Txn) + d(xn,Txn–)

]
–ψ

(
d(xn–,Txn),d(xn,Txn–)

)]

= ξ (xn–)ξ (xn)
[


d(xn–,xn+) –ψ

(
d(xn–,xn+), 

)]

≤ r
[


d(xn–,xn+) –ψ

(
d(xn–,xn+), 

)]
,

which implies

d(xn,xn+) ≤ 

d(xn–,xn+) –ψ

(
d(xn–,xn+), 

)
≤ 


d(xn–,xn+)

≤ 

[
d(xn–,xn) + d(xn,xn+)

]
, ()

and so dn ≤ dn– for all n ∈ N. Then there exist d ≥  such that limn→∞ dn = d. Suppose,
on the contrary, that d > . Also, taking limit as n → ∞ in (), we deduce

d ≤ 


lim
n→∞d(xn–,xn+) ≤ 


(d + d) = d,

that is,

lim
n→∞d(xn–,xn+) = d. ()

Taking limit as n→ ∞ in () and using (), we get

d ≤ 

[d] –ψ(d, ).

Consequently, we have ψ(d, ) = , which yields d = . Hence

lim
n→∞d(xn,xn+) = . ()

We shall show that {xn} is a Cauchy sequence. To reach this goal, first we prove the fol-
lowing claim:
(K) For every ε > , there exists n ∈N such that if r,q ≥ n with r – q ≡ (m), then

d(xr ,xq) < ε.

http://www.journalofinequalitiesandapplications.com/content/2013/1/529
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Suppose, to the contrary, that there exists ε >  such that for any n ∈ N, we can find
rn > qn ≥ n with rn – qn ≡ (m) satisfying

d(xqn ,xrn ) ≥ ε. ()

Now, we take n > m. Then, corresponding to qn ≥ n, one can choose rn in such a way that
it is the smallest integer with rn > qn satisfying rn–qn ≡ (m) and d(xqn ,xrn ) ≥ ε. Therefore,
d(xqn ,xrn–m) < ε. By using the triangular inequality,

ε ≤ d(xqn ,xrn )≤ d(xqn ,xrn–m) +
m∑
i=

d(xrn–i,xrn–i–) < ε +
m∑
i=

d(xrn–i,xrn–i–).

Letting n → ∞ in the last inequality, keeping () in mind, we derive that

lim
n→∞d(xqn ,xrn ) = ε. ()

Again,

ε ≤ d(xqn ,xrn )

≤ d(xqn ,xqn+) + d(xqn+,xrn+) + d(xrn+,xrn )

≤ d(xqn ,xqn+) + d(xqn+,xqn ) + d(xqn ,xrn ) + d(xrn ,xrn+) + d(xrn+,xrn ).

Taking () and () into account, we get

lim
n→∞d(xqn+,xrn+) = ε ()

as n→ ∞ in ().
Also we have the following inequalities:

d(xqn ,xrn+) ≤ d(xqn ,xrn ) + d(xrn ,xrn+) ()

and

d(xqn ,xrn ) ≤ d(xqn ,xrn+) + d(xrn ,xrn+). ()

Letting n → ∞ in () and (), we derive that

lim
n→∞d(xqn ,xrn+) = ε. ()

Again, we have

d(xrn ,xqn+) ≤ d(xrn ,xrn+) + d(xrn+,xqn+) ()

and

d(xrn+,xqn+) ≤ d(xrn+,xrn ) + d(xrn ,xqn+). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/529
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Letting n→ ∞ in () and (), we conclude that

lim
n→∞d(xrn ,xqn+) = ε. ()

Since xqn and xrn lie in different adjacently labeled sets Xi and Xi+ for certain  ≤ i ≤m,
using the fact that T is a cyclic weak r-(η, ξ )-C-contractive mapping of the first kind, we
have

rd(xrn+,xqn+)

= rd(Txrn ,Txqn ) ≤ η(xrn )η(xqn )d(Txrn ,Txqn )

≤ ξ (xrn )ξ (xqn )
[


[
d(xrn ,Txqn ) + d(xqn ,Txrn )

]
–ψ

(
d(xrn ,Txqn ),d(xqn ,Txrn )

)]

≤ r
[


[
d(xrn ,xqn+) + d(xqn ,xrn+)

]
–ψ

(
d(xrn ,xqn+),d(xqn ,xrn+)

)]
, ()

which implies

d(xrn+,xqn+) ≤


[
d(xrn ,xqn+) + d(xqn ,xrn+)

]
–ψ

(
d(xrn ,xqn+),d(xqn ,xrn+)

)
.

Letting n→ ∞ in the inequality above and keeping the expressions (), (), (), (), ()
in mind, we conclude that

ε ≤ ε –ψ(ε, ε).

Thus, we have ψ(ε, ε) = , which yields that ε = . Hence, (K) is satisfied.
We shall show that the sequence {xn} is Cauchy. Fix ε > . By the claim, we find n ∈ N

such that if r,q ≥ n with r – q ≡ (m), then

d(xr ,xq) ≤ ε


. ()

Since limn→∞ d(xn,xn+) = , we also find n ∈N such that

d(xn,xn+) ≤ ε

m
()

for any n≥ n. Suppose that r, s≥max{n,n} and s > r. Then, there exists k ∈ {, , . . . ,m}
such that s – r ≡ k(m). Therefore, s – r + ϕ ≡ (m) for ϕ = m – k + . So, we have, for
j ∈ {, . . . ,m}, s + j – r ≡ (m)

d(xr ,xs) ≤ d(xr ,xs+j) + d(xs+j,xs+j–) + · · · + d(xs+,xs).

By () and () and from the last inequality, we get

d(xr ,xs) ≤ ε


+ j× ε

m
≤ ε


+m× ε

m
= ε.

This proves that {xn} is a Cauchy sequence. Since Y is closed in (X,d), then (Y ,d) is also
complete, there exists x ∈ Y =

⋃m
i=Xi such that limn→∞ xn = x in (Y ,d). In what follows,

http://www.journalofinequalitiesandapplications.com/content/2013/1/529
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we prove that x is a fixed point of T . In fact, since limn→∞ xn = x and, as Y =
⋃m

i=Xi is a
cyclic representation of Y with respect to T , the sequence {xn} has infinite terms in each
Xi for i ∈ {, , . . . ,m}. Suppose that x ∈ Xi, Tx ∈ Xi+ and we take a subsequence xnk of
{xn} with xnk ∈ Xi–. Now from (iii) we have η(x)≥ r and ξ (x)≤ r. By using the contractive
condition, we can obtain

rd(Tx,Txnk ) ≤ η(x)η(xnk )d(Tx,Txnk )

≤ ξ (x)ξ (xnk )
[


[
d(x,Txnk ) + d(xnk ,Tx)

]
–ψ

(
d(x,Txnk ),d(xnk ,Tx)

)]

≤ r
[


[
d(x,Txnk ) + d(xnk ,Tx)

]
–ψ

(
d(x,Txnk ),d(xnk ,Tx)

)]
, ()

which implies

d(Tx,xnk+)≤


[
d(x,xnk+) + d(xnk ,Tx)

]
–ψ

(
d(x,xnk+),d(xnk ,Tx)

)
.

Passing to the limit as k → ∞ in the last inequality, we get

d(x,Tx)≤ 

d(x,Tx) –ψ

(
,d(x,Tx)

)
≤ 


d(x,Tx),

which implies d(x,Tx) = , i.e., x = Tx. Finally, to prove the uniqueness of the fixed point,
suppose that x, y ∈ Fix(T)Y such that η(x)≥ r, η(y) ≥ r, ξ (x)≤ r, ξ (y) ≤ r, where x 	= y. The
cyclic character ofT and the fact that x, y ∈ X are fixed points ofT imply that x, y ∈ ⋂m

i=Xi.
Suppose that x 	= y. That is, d(x, y) > . Using the contractive condition, we obtain

rd(Tx,Ty) ≤ η(x)η(y)d(Tx,Ty)

≤ ξ (x)ξ (y)
[


[
d(x,Ty) + d(y,Tx)

]
–ψ

(
d(x,Ty),d(y,Tx)

)]

≤ r
[


[
d(x,Ty) + d(y,Tx)

]
–ψ

(
d(x,Ty),d(y,Tx)

)]
,

which implies

d(x, y) ≤ d(x, y) –ψ
(
d(x, y),d(x, y)

)
.

Then ψ(d(x, y),d(x, y)) =  and so d(x, y) = , i.e., x = y, which is a contradiction. This
finishes the proof. �
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Example . Let X = R with the metric d(x, y) = |x – y| for all x, y ∈ X. Suppose A =
(–∞, ] and A = [,∞) and Y =

⋃
i=Ai. Define T : Y → Y and η, ξ : Y → [,∞) by

Tx =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x+√
x+

if x ∈ (–∞, –],
sin x
x if x ∈ [–,–),

–x if x ∈ [–,–),
 if x ∈ [–, ],
– lnx if x ∈ (, ),

–x
(–x)(–x) if x ∈ [, ),
√ – x if x ∈ [,∞),

η(x) =

{
 if x ∈ [–, ],
 otherwise,

ξ (x) =

{
 if x ∈ [–, ],
 otherwise.

Also, define ψ : [,∞)  → [,∞) by ψ(t, s) = 
 (t + s). Clearly, TA ⊆ A, TA ⊆ A and

η()≥  and ξ ()≤ . Let η(x)≥ , then x ∈ [–, ]. On the other hand, Tw ∈ [–, ] for all
w ∈ [–, ], i.e., η(Tx)≥ . Similarly, ξ (x)≤  implies ξ (Tx)≤ . Therefore, T is an r-(η, ξ )-
admissible mapping. Let {xn} be a sequence in X such that η(xn) ≥ , ξ (xn) ≤  and xn → x
as n→ ∞. Then xn ∈ [–, ]. So, x ∈ [–, ], i.e., η(x)≥  and ξ (x)≤ .
Let x ∈ A and y ∈ A. Now, if x /∈ [–, ] or y /∈ [, ], then η(x)η(y) = . Also, if x ∈ [–, ]

and y ∈ [, ], then d(Tx,Ty) = . That is, η(x)η(y)d(Tx,Ty) =  for all x ∈ A and all y ∈ A.
Hence,

η(x)η(y)d(Tx,Ty) =  ≤ ξ (x)ξ (y)
[


[
d(x,Ty) + d(y,Tx)

]
–ψ

(
d(x,Ty),d(y,Tx)

)]

for all x ∈ A and y ∈ A. ThenT is a cyclic weak r-(η, ξ )-C-contractivemapping of the first
kind. Therefore all the conditions of Theorem . hold and T has a fixed point in A ∩A.
Here, x =  is a fixed point of T .

Theorem . Let (X,d) be a complete metric space, m ∈ N, X,X, . . . ,Xm be nonempty
closed subsets of (X,p) and Y =

⋃m
i=Xi. Suppose that T : Y → Y is a cyclic weak r-(η, ξ )-

C-contractive mapping of the second kind such that
(i) T is r-(η, ξ )-admissible;
(ii) there exists x ∈ Y such that η(x) ≥ r and ξ (x)≤ r;
(iii) if {xn} is a sequence in Y such that η(xn) ≥ r and ξ (xn) ≤ r for all n ∈ N and xn → x

as n → ∞, then η(x)≥ r and ξ (x)≤ r.
Then T has a fixed point x ∈ ⋂n

i=Xi.Moreover, if η(x)≥ r, η(y) ≥ r, ξ (x)≤ r, ξ (y) ≤ r for
all x, y ∈ Fix(T)Y , then T has a unique fixed point.

Proof By a similar method as in the proof of Theorem ., we have

xn+ = Txn, η(xn) ≥ r and ξ (xn) ≤ r for all n ∈ N. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/529


Gülyaz et al. Journal of Inequalities and Applications 2013, 2013:529 Page 8 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/529

We shall show that the sequence {dn := d(xn,xn+)} is non-increasing. Due to () with x =
xn– and y = xn, we get

(
r + r

)d(xn ,xn+) = (
r + r

)d(Txn–,Txn) ≤ (
η(xn–)η(xn) + r

)d(Txn–,Txn)
≤ (

ξ (xn–)ξ (xn) + r
)[  [d(xn–,Txn)+d(xn ,Txn–)]–ψ(d(xn–,Txn),d(xn ,Txn–))]

=
(
ξ (xn–)ξ (xn) + r

)[  d(xn–,xn+)–ψ(d(xn–,xn+),)]

≤ (
r + r

)[  d(xn–,xn+)–ψ(d(xn–,xn+),)],

which implies

d(xn,xn+) ≤ 

d(xn–,xn+) –ψ

(
d(xn–,xn+), 

)
≤ 


d(xn–,xn+)

≤ 

[
d(xn–,xn) + d(xn,xn+)

]
, ()

and so dn ≤ dn– for all n ∈ N. Then there exists d ≥  such that limn→∞ dn = d. We shall
show that d =  by the method of reductio ad absurdum. Suppose that d > . By letting
n→ ∞ in (), we deduce

d ≤ 


lim
n→∞d(xn–,xn+) ≤ 


(d + d) = d,

that is,

lim
n→∞d(xn–,xn+) = d. ()

Taking limit as n→ ∞ in () and using (), we get

d ≤ 

[d] –ψ(d, ).

Thus, we have ψ(d, ) =  and hence d = , which is a contradiction. Consequently, we
have

lim
n→∞dn = lim

n→∞d(xn,xn+) = . ()

We shall show that {xn} is a Cauchy sequence. To reach this goal, first we prove the fol-
lowing claim:
(K) For every ε > , there exists n ∈N such that if r,q ≥ n with r – q ≡ (m), then

d(xr ,xq) < ε.
Suppose, to the contrary, that there exists ε >  such that for any n ∈ N we can find

rn > qn ≥ n with rn – qn ≡ (m) satisfying

d(xqn ,xrn ) ≥ ε. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/529
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Following the related lines in Theorem ., we deduce

lim
n→∞d(xqn ,xrn ) = ε, ()

lim
n→∞d(xqn+,xrn+) = ε, ()

lim
n→∞d(xqn ,xrn+) = ε ()

and

lim
n→∞d(xrn ,xqn+) = ε. ()

Since xqn and xrn lie in different adjacently labeled sets Xi and Xi+ for certain  ≤ i ≤ m,
using the fact that a cyclic weak r-(η, ξ )-C-contractive mapping of the second kind, we
have

(
r + r

)d(xrn+,xqn+) = (
r + r

)d(Txrn ,Txqn ) ≤ (
η(xrn )η(xqn ) + r

)d(Txrn ,Txqn )
≤ (

ξ (xrn )ξ (xqn ) + r
)[  [d(xrn ,Txqn )+d(xqn ,Txrn )]–ψ(d(xrn ,Txqn ),d(xqn ,Txrn ))]

≤ (
r + r

)[  [d(xrn ,xqn+)+d(xqn ,xrn+)]–ψ(d(xrn ,xqn+),d(xqn ,Txrn+))],

which implies

d(xrn+,xqn+) ≤


[
d(xrn ,xqn+) + d(xqn ,xrn+)

]
–ψ

(
d(xrn ,xqn+),d(xqn ,Txrn+)

)
.

Letting n → ∞ in the inequality above and by applying () (), (), (), (), we de-
duce that

ε ≤ ε –ψ(ε, ε).

Consequently, we have ψ(ε, ε) = , and hence ε = . As a result, we conclude that (K) is
satisfied.We assert that the sequence {xn} is Cauchy. Fix ε > . By the claim, we find n ∈N

such that if r,q ≥ n with r – q ≡ (m), then

d(xr ,xq) ≤ ε


. ()

Since limn→∞ d(xn,xn+) = , we also find n ∈N such that

d(xn,xn+) ≤ ε

m
()

for any n≥ n. Suppose that r, s ≥ max{n,n} and s > r. Then there exists k ∈ {, , . . . ,m}
such that s – r ≡ k(m). Therefore, s – r + ϕ ≡ (m) for ϕ = m – k + . So, we have, for
j ∈ {, . . . ,m}, s + j – r ≡ (m),

d(xr ,xs) ≤ d(xr ,xs+j) + d(xs+j,xs+j–) + · · · + d(xs+,xs).

http://www.journalofinequalitiesandapplications.com/content/2013/1/529
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By () and () and from the last inequality, we get

d(xr ,xs) ≤ ε


+ j× ε

m

≤ ε


+m× ε

m
= ε.

This proves that {xn} is a Cauchy sequence. Since Y is closed in (X,d), then (Y ,d) is also
complete, there exists x ∈ Y =

⋃m
i=Xi such that limn→∞ xn = x in (Y ,d). In what follows,

we prove that x is a fixed point of T . In fact, since limn→∞ xn = x and, as Y =
⋃m

i=Xi is a
cyclic representation of Y with respect to T , the sequence {xn} has infinite terms in each
Xi for i ∈ {, , . . . ,m}. Suppose that x ∈ Xi, Tx ∈ Xi+ and we take a subsequence xnk of
{xn} with xnk ∈ Xi–. Now from (iii) we have η(x)≥ r and ξ (x)≤ r. By using the contractive
condition, we can obtain

(
r + r

)d(Tx,Txnk ) ≤ (
η(x)η(xnk ) + r

)d(Tx,Txnk )
≤ (

ξ (x)ξ (xnk ) + r
)[  [d(x,Txnk )+d(xnk ,Tx)]–ψ(d(x,Txnk ),d(xnk ,Tx))]

≤ (
r + r

)[  [d(x,Txnk )+d(xnk ,Tx)]–ψ(d(x,Txnk ),d(xnk ,Tx))], ()

which implies

d(Tx,xnk+)≤


[
d(x,xnk+) + d(xnk ,Tx)

]
–ψ

(
d(x,xnk+),d(xnk ,Tx)

)
.

Passing to the limit as k → ∞ in the last inequality, we get

d(x,Tx)≤ 

d(x,Tx) –ψ

(
,d(x,Tx)

) ≤ 

d(x,Tx),

which implies d(x,Tx) = , i.e., x = Tx. Finally, to prove the uniqueness of the fixed point,
suppose that x, y ∈ Fix(T)Y such that η(x)≥ r, η(y) ≥ r, ξ (x)≤ r, ξ (y) ≤ r, where x 	= y. The
cyclic character ofT and the fact that x, y ∈ X are fixed points ofT imply that x, y ∈ ⋂m

i=Xi.
Suppose that x 	= y. That is, d(x, y) > . Using the contractive condition, we obtain

(
r + r

)d(Tx,Ty) ≤ (
η(x)η(y) + r

)d(Tx,Ty)
≤ (

ξ (x)ξ (y) + r
)[  [d(x,Ty)+d(y,Tx)]–ψ(d(x,Ty),d(y,Tx))]

≤ (
r + r

)[  [d(x,Ty)+d(y,Tx)]–ψ(d(x,Ty),d(y,Tx))],

which implies

d(x, y) ≤ d(x, y) –ψ
(
d(x, y),d(x, y)

)
.

Hence, we obtain ψ(d(x, y),d(x, y)) = , which implies d(x, y) = , that is, x = y a contra-
diction. �
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3 Existence of solutions of an integral equation
For T > , we denote by X = C([,T]) the set of real continuous functions on [,T]. We
endow X with the metric

d∞(u, v) = ‖u – v‖∞ for all u, v ∈ X.

It is evident that (X,d∞) is a complete metric space.
Consider the integral equation

u(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds for all t ∈ [,T], ()

() f : [,T]×R →R and G : [,T]× [,T] → [,∞) are continuous functions.
() Let (α,β) ∈ X, (α,β) ∈R

 such that

α ≤ α(t)≤ β(t) ≤ β for all t ∈ [,T]. ()

Assume that for all t ∈ [,T], we have

α(t)≤
∫ T


G(t, s)f

(
s,β(s)

)
ds ()

and

β(t)≥
∫ T


G(t, s)f

(
s,α(s)

)
ds. ()

Let for all s ∈ [,T], f (s, ·) be a decreasing function, that is,

x, y ∈R, x ≥ y �⇒ f (s,x)≤ f (s, y). ()

Let Z := {u ∈ X : u≤ β} ∪ {u ∈ X : u≥ α}. There exist  ≤ r <  and θ ,π : Z →R

such that if θ (x)≥  and θ (y)≥  with (x≤ β and y≥ α) or (x≥ α and y≤ β),
then for every s ∈ [,T], we have

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ ≤ r|π (y)|


(∣∣x(s) – Ty(s)
∣∣ + ∣∣y(s) – Tx(s)

∣∣). ()

() Assume that

∥∥∥∥
∫ T



∣∣π (y)∣∣G(t, s)ds∥∥∥∥∞
≤  ()

for all x ∈ Z, where θ (x)≥ . Suppose that

θ (x)≥  �⇒ θ (Tx)≥  for x ∈ {u ∈ X : u≤ β} ∪ {u ∈ X : u≥ α}. ()

() If {xn} is a sequence in {u ∈ X : u ≤ β} ∪ {u ∈ X : u≥ α} such that θ (xn) ≥  for all
n ∈N and xn → x as n→ ∞, then θ (x)≥ .

() There exists x ∈ {u ∈ X : u ≤ β} ∪ {u ∈ X : u≥ α} such that θ (x) ≥ .
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Theorem . Under assumptions ()-(), integral equation () has a solution in {u ∈
C([,T]) : α(t)≤ u(t)≤ β(t) for all t ∈ [,T]}.

Proof Define the closed subsets of X, A and A by

A = {u ∈ X : u≤ β}

and

A = {u ∈ X : u ≥ α}.

Also define the mapping T : X → X by

Tu(t) =
∫ T


G(t, s)f

(
s,u(s)

)
ds for all t ∈ [,T].

Let us prove that

T(A) ⊆ A and T(A) ⊆ A. ()

Suppose u ∈ A, that is,

u(s) ≤ β(s) for all s ∈ [,T].

Applying condition (), since G(t, s)≥  for all t, s ∈ [,T], we obtain that

G(t, s)f
(
s,u(s)

) ≥G(t, s)f
(
s,β(s)

)
for all t, s ∈ [,T].

The above inequality with condition () imply that

∫ T


G(t, s)f

(
s,u(s)

)
ds≥

∫ T


G(t, s)f

(
s,β(s)

)
ds≥ α(t)

for all t ∈ [,T]. Then we have Tu ∈ A.
Similarly, let u ∈ A, that is,

u(s) ≥ α(s) for all s ∈ [,T].

Using condition (), since G(t, s) ≥  for all t, s ∈ [,T], we obtain that

G(t, s)f
(
s,u(s)

) ≤G(t, s)f
(
s,α(s)

)
for all t, s ∈ [,T].

The above inequality with condition () imply that

∫ T


G(t, s)f

(
s,u(s)

)
ds≤

∫ T


G(t, s)f

(
s,α(s)

)
ds≤ β(t)

for all t ∈ [,T]. Then we have Tu ∈ A. Also, we deduce that () holds.
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Now, let (u, v) ∈ A ×A, that is, for all t ∈ [,T],

u(t) ≤ β(t), v(t)≥ α(t).

This implies from condition () that for all t ∈ [,T],

u(t) ≤ β, v(t) ≥ α.

Now, by conditions () and (), we have, for all s ∈ [,T],

∣∣Tu(t) – Tv(t)
∣∣ = ∣∣∣∣

∫ T


G(t, s)

[
f
(
s,u(s)

)
– f

(
s, v(s)

)]
ds

∣∣∣∣
≤

∫ T


G(t, s)

∣∣f (s,u(s)) – f
(
s, v(s)

)∣∣ds
≤

∫ T


G(t, s)

r|π (y)|


(∣∣u(s) – Tv(s)
∣∣ + ∣∣v(s) – Tu(s)

∣∣)ds
≤ r


(‖u – Tv‖∞ + ‖v – Tu‖∞

)∥∥∥∥
∫ T



∣∣π (v)∣∣G(t, s)ds∥∥∥∥∞

≤ r

(‖u – Tv‖∞ + ‖v – Tu‖∞

)
,

which implies

‖Tu – Tv‖∞ ≤ r

(‖u – Tv‖∞ + ‖v – Tu‖∞

)
.

Define η, ξ : Z → [,∞) by η(u) =
{ , θ (u) ≥ ,
, otherwise and ξ (u) = . Further,ψ(t, t) = (–r)

 (t + t).
Hence,

η(u)η(v)d∞(Tu,Tv) ≤ r

(
d∞(u,Tv) + d∞(v,Tu)

)

for all (u, v) ∈ A × A. By a similar method, we can show that the above inequality holds
if (u, v) ∈ A ×A. Now, all the conditions of Theorem . hold and T has a fixed point z*

in

A ∩A =
{
u ∈ C

(
[,T]

)
: α ≤ u(t) ≤ β for all t ∈ [,T]

}
.

That is, z* ∈ A ∩A is the solution to (). �

Example . In this example, we denote by X = C([, ]) the set of real continuous func-
tions on [, ]. We endow X with the metric

d∞(u, v) = ‖u – v‖∞ for all u, v ∈ X.
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Consider the following continuous functions:

f (t,x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x if x ∈ (–∞, ),
 if x ∈ [, ],
x –  if x ∈ (, ),
 if x ∈ [,

√
e – ],

x +  – e if x ∈ (
√
e – ,∞)

for all t ∈ [, ]

and

G(t, s) =
t

 + t
es for all s, t ∈ [, ]× [, ].

Let α(t) =  and β(t) = . Then, for (α,β) = (, ) ∈R
, we have

α ≤ α(t)≤ β(t)≤ β;

α(t) =  ≤
∫ 


G(t, s)f

(
s,β(s)

)
ds = 

and

β(t) = ≥
∫ 


G(t, s)f

(
s,α(s)

)
ds = .

Also, Z := {u ∈ X : u≤ β} ∪ {u ∈ X : u≥ α} = X. Define θ ,π : Z →R by

θ
(
x(t)

)
=

{
 if ≤ x(t) ≤  for all t ∈ [, ]
–, otherwise

and π (x) =


e – 
.

Clearly, θ () ≥ . Also, if θ (x(t))≥ , then  ≤ x(t) ≤ . On the other hand,

Tu(t) =
∫ 


G(t, s)f

(
s,u(s)

)
ds = 

for all  ≤ u(t) ≤ . That is, θ (Tx(t))≥ . Hence, θ (x)≥  implies θ (Tx) ≥ .
Assume θ (x(s)) ≥  and θ (y(s)) ≥  with (x ≤ β and y ≥ α) or (x ≥ α and y ≤ β).

Thus,  ≤ x(s)≤  and ≤ y(s) ≤ , which implies f (s,x(s)) = f (s, y(s)) = . That is,

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ =  ≤ r|π (y)|


(∣∣x(s) – Ty(s)
∣∣ + ∣∣y(s) – Tx(s)

∣∣)
for all s ∈ [, ], where  ≤ r < . Further,

∫ 



∣∣π (y)∣∣G(t, s)ds = ∫ 




e – 

t
 + t

es ds =
t

 + t
≤ ,

and so

∥∥∥∥
∫ T



∣∣π (y)∣∣G(t, s)ds∥∥∥∥∞
≤ .
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Assume that {xn} is a sequence inX such that θ (xn) ≥  for all n ∈N and xn → x as n → ∞.
Then  ≤ xn ≤ . So,  ≤ x ≤ . That is, θ (x)≥ .
Therefore, all of the conditions of Theorem . are satisfied. Then the integral equation

u(t) =
t

 + t

∫ 


esf

(
s,u(s)

)
ds

has a solution in {u ∈ C([, ]) : ≤ u(t) ≤  for all t ∈ [, ]}. Here, u(t) =  is a solution.
But if we chose x(t) =  and y(t) =

√
e – , then f (s,x(s)) =  and f (s, y(s)) = . That

is,

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ = .

Also,

√
ln

(∣∣x(s) – y(s)
∣∣ + 

)
=

√
ln

(∣∣ –√
e – 

∣∣ + 
)
=

√
ln e = ,

and so

∣∣f (s,x(s)) – f
(
s, y(s)

)∣∣ =  >  =
√
ln

(∣∣x(s) – y(s)
∣∣ + 

)
.

That is, Theorem . of [] cannot be applied to this example.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally and significantly in writing this article. All authors read and approved the final manuscript.

Author details
1Department of Mathematics, Cumhuriyet University, Sivas, Turkey. 2Department of Mathematics, Atilim University, İncek,
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