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1 Introduction
Throughout this paper, R denotes the set of real numbers, x = (x,x, . . . ,xn) denotes n-
tuple (n-dimensional real vectors), the set of vectors can be written as

R
n =

{
x = (x, . . . ,xn) : xi ∈R, i = , . . . ,n

}
,

R
n
+ =

{
x = (x, . . . ,xn) : xi > , i = , . . . ,n

}
.

In particular, the notations R and R+ denote R and R

+, respectively.

Let π = (π (), . . . ,π (n)) be a permutation of (, . . . ,n), all permutations are totally n!. The
following conclusion is proved in [, pp.-].

Theorem A Let A ⊂ R
k be a symmetric convex set, and let ϕ be a Schur-convex function

defined on A with the property that for each fixed x, . . . ,xk , ϕ(z,x, . . . ,xk) is convex in z on
{z : (z,x, . . . ,xk) ∈ A}. Then, for any n > k,

ψ(x, . . . ,xn) =
∑
π

ϕ(xπ (), . . . ,xπ (k)) ()

is Schur-convex on

B =
{
(x, . . . ,xn) : (xπ (), . . . ,xπ (k)) ∈ A for all permutations π

}
.

Furthermore, the symmetric function

ψ(x) =
∑

≤i<···<ik≤n

ϕ(xi , . . . ,xik ) ()

is also Schur-convex on B.
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TheoremA is very effective for judgement of the Schur-convexity of the symmetric func-
tions of the form (), see the references [] and [].
The Schur geometrically convex functions were proposed by Zhang [] in . Further,

the Schur harmonically convex functions were proposed by Chu and Lü [] in . The
theory of majorization was enriched and expanded by using these concepts [–]. Re-
garding Schur geometrically convex functions and Schur harmonically convex functions,
the aim of this paper is to establish the following judgement theorems which are similar
to Theorem A.

Theorem  Let A ⊂ R
k be a symmetric geometrically convex set, and let ϕ be a Schur

geometrically convex (concave) function defined on A with the property that for each fixed
x, . . . ,xk , ϕ(z,x, . . . ,xk) is GA convex (concave) in z on {z : (z,x, . . . ,xk) ∈ A}.Then, for any
n > k,

ψ(x, . . . ,xn) =
∑
π

ϕ(xπ (), . . . ,xπ (k))

is Schur geometrically convex (concave) on

B =
{
(x, . . . ,xn) : (xπ (), . . . ,xπ (k)) ∈ A for all permutations π

}
.

Furthermore, the symmetric function

ψ(x) =
∑

≤i<···<ik≤n

ϕ(xi , . . . ,xik )

is also Schur geometrically convex (concave) on B.

Theorem  Let A ⊂ R
k be a symmetric harmonically convex set, and let ϕ be a Schur

harmonically convex (concave) function defined on A with the property that for each fixed
x, . . . ,xk , ϕ(z,x, . . . ,xk) is HA convex (concave) in z on {z : (z,x, . . . ,xk) ∈ A}.Then, for any
n > k,

ψ(x, . . . ,xn) =
∑
π

ϕ(xπ (), . . . ,xπ (k))

is Schur harmonically convex (concave) on

B =
{
(x, . . . ,xn) : (xπ (), . . . ,xπ (k)) ∈ A for all permutations π

}
.

Furthermore, the symmetric function

ψ(x) =
∑

≤i<···<ik≤n

ϕ(xi , . . . ,xik )

is also Schur harmonically convex (concave) on B.
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2 Definitions and lemmas
In order to prove some further results, in this section we recall useful definitions and lem-
mas.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n.

(i) We say y majorizes x (x is said to be majorized by y), denoted by x ≺ y, if∑k
i= x[i] ≤

∑k
i= y[i] for k = , , . . . ,n –  and

∑n
i= xi =

∑n
i= yi, where x[] ≥ · · · ≥ x[n]

and y[] ≥ · · · ≥ y[n] are rearrangements of x and y in a descending order.
(ii) Let � ⊂R

n, a function ϕ :� →R is said to be a Schur-convex function on � if
x ≺ y on � implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur-concave function
on � if and only if –ϕ is Schur-convex function on �.

Definition  [, ] Let x = (x, . . . ,xn) and y = (y, . . . , yn) ∈R
n,  ≤ α ≤ . A set � ⊂R

n is
said to be a convex set if x,y ∈ � implies αx+(–α)y = (αx +(–α)y, . . . ,αxn+(–α)yn) ∈
�.

Definition  [, ]
(i) A set � ⊂R

n is called a symmetric set if x ∈ � implies xP ∈ � for every n× n
permutation matrix P.

(ii) A function ϕ :� →R is called symmetric if for every permutation matrix P,
ϕ(xP) = ϕ(x) for all x ∈ �.

Definition  Let � ⊂R
n
+, x = (x, . . . ,xn) ∈ � and y = (y, . . . , yn) ∈ �.

(i) [, p.] A set � is called a geometrically convex set if (xα
 y

β
 , . . . ,xα

ny
β
n ) ∈ � for all

x,y ∈ � and α,β ∈ [, ] such that α + β = .
(ii) [, p.] A function ϕ :� →R+ is said to be a Schur geometrically convex function

on � if (logx, . . . , logxn) ≺ (log y, . . . , log yn) on � implies ϕ(x) ≤ ϕ(y). A function
ϕ is said to be a Schur geometrically concave function on � if and only if –ϕ is a
Schur geometrically convex function.

Definition  [] Let � ⊂ R
n
+.

(i) A set � is said to be a harmonically convex set if xy
λx+(–λ)y ∈ � for every x,y ∈ � and

λ ∈ [, ], where xy =
∑n

i= xiyi and

x = ( 

x
, . . . , 

xn ).
(ii) A function ϕ :� →R+ is said to be a Schur harmonically convex function on � if


x ≺ 

y implies ϕ(x) ≤ ϕ(y). A function ϕ is said to be a Schur harmonically concave
function on � if and only if –ϕ is a Schur harmonically convex function.

Definition  [] Let I ⊂ R+, ϕ : I → R+ be continuous.
(i) A function ϕ is said to be a GA convex (concave) function on I if

ϕ(
√
xy) ≤ (≥)

ϕ(x) + ϕ(y)


for all x, y ∈ I .
(ii) A function ϕ is said to be a HA convex (concave) function on I if

ϕ

(
xy
x + y

)
≤ (≥)

ϕ(x) + ϕ(y)


for all x, y ∈ I .
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Lemma  [, p.] Let � ⊂ R
n be a symmetric convex set with a nonempty interior �.

ϕ : � → R is continuous on � and differentiable on �. Then ϕ is a Schur-convex (Schur-
concave) function if and only if ϕ is symmetric on � and

(x – x)
(

∂ϕ

∂x
–

∂ϕ

∂x

)
≥  (≤ ) ()

holds for any x = (x, . . . ,xn) ∈ �.

Lemma  [, p.] Let � ⊂R
n
+ be a symmetric geometrically convex set with a nonempty

interior�. Let ϕ : � →R+ be continuous on� and differentiable on�.Then ϕ is a Schur
geometrically convex (Schur geometrically concave) function if and only if ϕ is symmetric
on � and

(x – x)
(
x

∂ϕ

∂x
– x

∂ϕ

∂x

)
≥  (≤ ) ()

holds for any x = (x, . . . ,xn) ∈ �.

Lemma  [, ] Let � ⊂ R
n
+ be a symmetric harmonically convex set with a nonempty

interior�. Let ϕ : � →R+ be continuous on� and differentiable on�.Then ϕ is a Schur
harmonically convex (Schur harmonically concave) function if and only if ϕ is symmetric
on � and

(x – x)
(
x

∂ϕ

∂x
– x

∂ϕ

∂x

)
≥  (≤ ) ()

holds for any x = (x, . . . ,xn) ∈ �.

Lemma  [] Let I ⊂R+ be an open subinterval, and let ϕ : I →R+ be differentiable.
(i) ϕ is GA-convex (concave) if and only if xϕ′(x) is increasing (decreasing).
(ii) ϕ is HA-convex (concave) if and only if xϕ′(x) is increasing (decreasing).

3 Proofs of main results

Proof of Theorem  To verify condition () of Lemma , denote by
∑

π (i,j) the summation
over all permutations π such that π (i) = , π (j) = . Because ϕ is symmetric,

ψ(x, . . . ,xn)

=
∑
i,j≤k
i
=j

∑
π (i,j)

ϕ(x,x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (j–),xπ (j+), . . . ,xπ (k))

+
∑
i≤k<j

∑
π (i,j)

ϕ(x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (k))

+
∑
j≤k<i

∑
π (i,j)

ϕ(x,xπ (), . . . ,xπ (j–),xπ (j+), . . . ,xπ (k))

+
∑
k<i,j
i
=j

∑
π (i,j)

ϕ(xπ (), . . . ,xπ (k)).

http://www.journalofinequalitiesandapplications.com/content/2013/1/527
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Then


 :=
(
x

∂ψ

∂x
– x

∂ψ

∂x

)
(x – x)

=
∑
i,j≤k
i
=j

∑
π (i,j)

[
xϕ()(x,x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (j–),xπ (j+), . . . ,xπ (k))

– xϕ()(x,x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (j–),xπ (j+), . . . ,xπ (k))
]
(x – x)

+
∑
i≤k<j

∑
π (i,j)

[
xϕ()(x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (k))

– xϕ()(x,xπ (), . . . ,xπ (i–),xπ (i+), . . . ,xπ (k))
]
(x – x).

Here,

(xϕ() – xϕ())(x – x) ≥  (≤ )

because ϕ is Schur geometrically convex (concave), and

[
xϕ()(x, z) – xϕ()(x, z)

]
(x – x) ≥  (≤ )

because ϕ(z,x, . . . ,xk) is GA convex (concave) in its first argument on {z : (z,x, . . . ,xk) ∈
A}. Accordingly, 
 ≥  (≤ ). This shows that ψ is Schur geometrically convex (concave)
on

B =
{
(x, . . . ,xn) : (xπ (), . . . ,xπ (k)) ∈ A for all permutations π

}
.

Notice that

ψ(x) =ψ(x)/k!(n – k)!.

Of course, ψ is Schur geometrically convex (concave) whenever ψ is Schur geometrically
convex (concave).
The proof of Theorem  is completed. �

Proof of Theorem  We only need to verify condition () of Lemma , the proof is similar
to that of Theorem  and is omitted. �

Remark  In most applications, A has the form Ik for some interval I ⊂ R and in this case
B = In. Notice that the convexity of ϕ in its first argument also implies that ϕ is convex in
each argument, the other arguments being fixed, because ϕ is symmetric.

4 Applications
Let

Ek

(
x

 – x

)
=

∑
≤i<···<ik≤n

k∏
j=

xij
 – xij

. ()

In , Guan and Guan [] proved the following theorem through Lemma .

http://www.journalofinequalitiesandapplications.com/content/2013/1/527
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Theorem  The symmetric function Ek( x
–x ), k = , . . . ,n, is Schur geometrically convex on

(, )n.

Now, we give a new proof of Theorem  by using Theorem . Furthermore, we prove the
following theorem through Theorem .

Theorem  The symmetric function Ek( x
–x ), k = , . . . ,n, is Schur harmonically convex on

(, )n.

Proof of Theorem  Let ϕ(z) =
∏k

i= [zi/( – zi)]. Then

logϕ(z) =
k∑
i=

[
log zi – log( – zi)

]

and

∂ϕ(z)
∂z

= ϕ(z)
(

z

+


 – z

)
,

∂ϕ(z)
∂z

= ϕ(z)
(


z

+


 – z

)
, ()


 := (z – z)
(
z

∂ϕ(z)
∂z

– z
∂ϕ(z)
∂z

)

= (z – z)ϕ(z)
(

z
 – z

–
z

 – z

)

= (z – z)ϕ(z)


( – z)( – z)
.

This shows that 
 ≥  when  < zi < , i = , . . . ,k. According to Lemma , ϕ is Schur ge-
ometrically convex on A = {z : z ∈(, )k}. Let g(t) = t

–t , then h(t) := tg ′(t) = t
(–t) . From

t ∈ (, ), it follows that h′(t) = +t
(–t) ≥ . According to Lemma (i), ϕ is GA convex in its

single variable on (, ). So Ek( x
–x ) is Schur geometrically convex on (, )n from Theo-

rem . The proof of Theorem  is completed. �

Proof of Theorem  Let ϕ(z) =
∏k

i= (zi/ – zi), then

logϕ(z) =
k∑
i=

[
log zi – log( – zi)

]
.

From (), we get


 := (z – z)
(
z

∂ϕ(z)
∂z

– z
∂ϕ(z)
∂z

)

= (z – z)ϕ(z)
(
z – z +

z
 – z

–
z

 – z

)

= (z – z)ϕ(z)
[
 +

z + z – zz
( – z)( – z)

]
.

This shows that 
 ≥  when  < zi < , i = , . . . ,k. According to Lemma , ϕ is Schur
harmonically convex on A = {z : z ∈(, )k}. Let g(t) = t

–t , then p(t) := tg ′(t) = t
(–t) . From

http://www.journalofinequalitiesandapplications.com/content/2013/1/527
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t ∈ (, ), it follows that p′(t) = t
(–t) ≥ . According to Lemma (ii), ϕ is HA convex in

its single variable on (, ). So Ek( x
–x ) is Schur harmonically convex on (, )n from Theo-

rem . The proof of Theorem  is completed. �

By using Theorem A, the following conclusion is proved in [, p.].
The symmetric function

ψ(x) =
∑

≤i<···<ik≤n

xi + · · · + xik
xi · · ·xik

()

is Schur-convex on R
n
+.

Nowwe useTheorem  andTheorem, respectively, to study Schur geometric convexity
and Schur harmonic convexity of ψ(x).

Theorem  The symmetric function ψ(x) is Schur geometrically convex and Schur har-
monically concave on R

n
+.

Proof Let ϕ(y) =
∑k

i= yi/
∏k

i= yi, then logϕ(y) = log(
∑k

i= yi) –
∑k

i= log yi. Thus,

∂ϕ(y)
∂y

= ϕ(y)
(

∑k
i= yi

–

y

)
,

∂ϕ(y)
∂y

= ϕ(y)
(

∑k
i= yi

–

y

)
,


 := (y – y)
(
y

∂ϕ(y)
∂y

– y
∂ϕ(y)
∂y

)

= (y – y)ϕ(y)
(
y – y∑k

i= yi

)

=
(y – y)∏k

i= yi
≥ .

According to Lemma , ϕ(y) is Schur geometrically convex on R
k
+. Let g(z) = ϕ(z,x, . . . ,

xk) = z+a
bz = 

b +
a
bz , where a =

∑k
i= xi, b =

∏k
i= xi, then h(z) := zg ′(z) = – a

bz . From z ∈ R+, it
follows that h′(z) = a

bz ≥ . According to Lemma (i), ϕ is GA convex in its single variable
on R+. So ψ(x) is Schur geometrically convex on R+ from Theorem .
It is easy to check that


 := (y – y)
(
y

∂ϕ(y)
∂y

– y
∂ϕ(y)
∂y

)

=
(y – y)(y + y –

∑k
i= yi)∏k

i= yi
≤ .

According to Lemma , ϕ(y) is Schur harmonically concave onRk
+. Let h(z) := zg ′(z) = – a

b .
h′(z) =  when z ∈R+. According to Lemma (ii), ϕ is HA concave in its single variable on
R+. So ψ(x) is Schur harmonically concave on R

n
+ from Theorem . �

Remark  Let

H =
n∑n
i=


xi

, G =

( n∏
i=

xi

) 
n

,

http://www.journalofinequalitiesandapplications.com/content/2013/1/527


Shi and Zhang Journal of Inequalities and Applications 2013, 2013:527 Page 8 of 9
http://www.journalofinequalitiesandapplications.com/content/2013/1/527

where xi > , i = , . . . ,n. Then

(logG, . . . , logG) ≺ (logx, . . . , logxn), ()(

H
, . . . ,


H

)
≺

(

x
, . . . ,


xn

)
. ()

From Theorem , it follows that

kCk
n

Hk– ≥
∑

≤i<···<ik≤n

xi + · · · + xik
xi · · ·xik

≥ kCk
n

Gk– . ()

By using Theorem A, the following conclusion is proved in [, p.].
The symmetric function

ψ(x) =
∑

≤i<···<ik≤n

xi · · ·xik
xi + · · · + xik

is Schur-concave on R
n
+.

By applying Theorem , we further obtain the following result.

Theorem  The symmetric function ψ(x) is Schur harmonically convex on R
n
+.

Proof Let λ(y) =
∏k

i= yi/
∑k

i= yi. According to the proof of Theorem , ϕ(y) is Schur har-
monically concave on R

k
+. Let λ(y) = 

ϕ(y) . From the definition of Schur harmonically con-
vex, it follows that λ(y) is Schur harmonically convex onRk

+. Let g(z) = λ(z,x, . . . ,xk) = bz
z+a ,

where a =
∑k

i= xi, b =
∏k

i= xi. Then h(z) := zg ′(z) = zab
(z+a) . With the fact that h′(z) =

zab
(z+a) ≥  for z ∈ R+, it follows that ϕ is HA convex in its single variable on R+. So, from
Theorem , ψ(x) is Schur harmonically convex on R

n
+. �

Remark  From Theorem  and (), it follows that

∑
≤i<···<ik≤n

xi · · ·xik
xi + · · · + xik

≥ Hk–Ck
n

k
, ()

where xi > , i = , . . . ,n.

Remark  It needs further discussion that ψ(x) is Schur geometrically convex on R
n
+.
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