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Abstract
This paper is concerned with oscillation and asymptotic behavior of a second-order
neutral delay dynamic equation on an arbitrary time scale. We obtain two theorems
which guarantee that every solution of the studied equation oscillates or converges
to zero. These results improve and complement some known results given in the
literature.
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1 Introduction
In this paper, we study oscillation and asymptotic behavior of a second-order nonlinear
neutral delay dynamic equation

(
r(t)

((
x(t) + p(t)x

(
η(t)

))�)γ )� + f
(
t,x

(
g(t)

))
=  (.)

on an arbitrary time scale T, where γ is a quotient of odd positive integers, r and p are
positive rd-continuous functions onT,  ≤ p(t) ≤ p < . Also, we assume that η, g : T→ T

are rd-continuous, η(t) ≤ t, g(t) ≤ t, limt→∞ η(t) = limt→∞ g(t) = ∞, uf (t,u) >  for all
u �= , and there exists a positive rd-continuous function q defined onT such that |f (t,u)| ≥
q(t)|u|γ .
The theory of dynamic equations on time scales, which goes back to its founder Hilger

[], has recently attracted attention of researchers. Several authors have expounded on var-
ious aspects of this new theory; see the survey paper written by Agarwal et al. [] and the
references cited therein. The books on the subject of time scales, by Bohner and Peterson
[, ], present much of time scale calculus.
Since we are interested in oscillatory and asymptotic properties, we assume throughout

this paper that the given time scale T is unbounded above. We assume that t ∈ T, and it
is convenient to assume that t > , and define the time scale interval of the form [t,∞)T
by [t,∞)T := [t,∞)∩T. Throughout, we use the notation z := x+px◦η. By a solution of
equation (.), we mean a non-trivial real-valued function x ∈ C

rd [Tx,∞)T, Tx ∈ [t,∞)T
which has the property that z and r(z�)γ are defined and �-differentiable for t ∈ T and
satisfies equation (.) on [Tx,∞)T. The solutions vanishing in some neighborhood of
infinity will be excluded from our consideration. A solution x of equation (.) is said to be
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oscillatory if it is neither eventually positive nor eventually negative; otherwise, it is called
nonoscillatory.
In recent years, there has been much research activity concerning oscillation and

nonoscillation of solutions to neutral differential and dynamic equations on time scales,
we refer the reader to [, ] and [–], and the references cited therein. Han et al. []
studied a second-order nonlinear neutral equation

(
r(t)

∣∣u′(t)
∣∣α–u′(t)

)′ + q(t)f
(
x
(
δ(t)

))
= , (.)

where u := x + px ◦ τ , and established two results which guarantee that every solution of
equation (.) is oscillatory under the assumptions that

p′(t)≥ , σ (t)≤ τ (t) = t – τ ≤ t, (.)

and
∫ ∞

t

dt
r/γ (t)

< ∞.

Agarwal et al. [], Erbe et al. [], Şahiner [], Saker [], Saker et al. [], Saker andO’Regan
[], Chen [], Zhang andWang [], Wu et al. [], Candan [], and Li et al. [] inves-
tigated equation (.) and obtained some oscillation criteria in the case

∫ ∞

t

�t
r/γ (t)

=∞. (.)

As yet, there are few results regarding the study of asymptotic behavior of equation (.)
under the assumption that

∫ ∞

t

�t
r/γ (t)

< ∞. (.)

In , Saker et al. [] posed an open problem as follows: How to establish oscillation
criteria for equation (.) when condition (.) holds? Assuming (.), Zhang et al. [, ]
obtained some sufficient conditions which insure that all solutions of equation (.) are
oscillatory.
The purpose of this paper is to present some asymptotic tests for equation (.) in the

case where (.) holds. This paper is organized as follows: In the next section, we shall
establish the main results. In Section , two examples are provided to illustrate the results
obtained.
In the sequel, when we write a functional inequality without specifying its domain of

validity, we assume that it holds for all sufficiently large t.

2 Main results
In what follows, we use the notation

δ�
+ (t) :=max

{
, δ�(t)

}
, Q(t) := q(t)

(
 – p

(
g(t)

))γ , θ (t,u) :=
∫ g(t)
u �s/r/γ (s)∫ t
u �s/r/γ (s)

,

and, for sufficiently large T*, β(t,T*) := θγ (t,T*).
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In order to prove our main results, we will use the following result; see [, Theorem .].

Theorem . Let (.) hold. Suppose that there exists a positive �-differentiable function
δ such that for all sufficiently large T* and for g(T) > T*,

lim sup
t→∞

∫ t

T

(
β(s,T*)δ(s)Q(s) –

r(s)(δ�
+ (s))γ+

(γ + )γ+δγ (s)

)
�s =∞. (.)

Then every solution x of equation (.) is oscillatory.

Theorem . Let (.) hold. Assume that there exists a positive �-differentiable function
δ such that for all sufficiently large T* and for g(T) > T*, one has (.). If

∫ ∞

t


r/γ (s)

(∫ s

t
q(u)

(∫ ∞

g(u)

�v
r/γ (v)

)γ

�u
)/γ

�s =∞, (.)

then every solution x of equation (.) is oscillatory or limt→∞ x(t) = .

Proof Let x be a nonoscillatory solution of equation (.). Without loss of generality, we
assume that x(t) > , x(η(t)) > , and x(g(t)) >  for t ∈ [t,∞)T. Then z(t) >  for t ∈
[t,∞)T. In view of (.), we get

(
r(t)

(
z�(t)

)γ )� ≤ –q(t)xγ
(
g(t)

)
< , t ∈ [t,∞)T . (.)

Therefore, r(z�)γ is strictly decreasing, and there exists a t ∈ [t,∞)T such that z�(t) > 
or z�(t) <  for t ∈ [t,∞)T. We consider each of two cases separately.
Case . Assume that z�(t) >  for t ∈ [t,∞)T. As in the proof of [, Theorem .], we

can obtain a contradiction to (.).
Case . Assume that z�(t) <  for t ∈ [t,∞)T. Then, there exists a finite limit

lim
t→∞ z(t) = l,

where l ≥ . Now, we claim that l = . If not, then for any ε > , we have l < z(t) < l + ε,
eventually. Take  < ε < l( – p)/p. We calculate

x(t) = z(t) – p(t)x
(
η(t)

)
> l – pz

(
η(t)

)
> l – p(l + ε) =m(l + ε) >mz(t), (.)

where

m :=
l

l + ε
– p =

l( – p) – εp
l + ε

> .

Since r(z�)γ is strictly decreasing,

z�(s) ≤ r/γ (t)z�(t)
r/γ (s)

, s ∈ [t,∞)T .

Integrating the inequality above from t to l and letting l → ∞, we have by (.) that

z(t) ≥ –r/γ (t)z�(t)
∫ ∞

t

�s
r/γ (s)

≥ –r/γ (t)z�(t)
∫ ∞

t

�s
r/γ (s)

= k
∫ ∞

t

�s
r/γ (s)

, (.)
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where k := –r/γ (t)z�(t) > . Combining (.) and (.), we get

x
(
g(t)

) ≥mz
(
g(t)

) ≥mk
∫ ∞

g(t)

�s
r/γ (s)

.

Then by (.), we obtain

(
r(t)

(
–z�(t)

)γ )� ≥ (mk)γ q(t)
(∫ ∞

g(t)

�s
r/γ (s)

)γ

.

Integrating the inequality above from t (t ∈ [t,∞)T) to t, we have

r(t)
(
–z�(t)

)γ ≥ r(t)
(
–z�(t)

)γ + (mk)γ
∫ t

t
q(s)

(∫ ∞

g(s)

�u
r/γ (u)

)γ

�s

≥ (mk)γ
∫ t

t
q(s)

(∫ ∞

g(s)

�u
r/γ (u)

)γ

�s,

which implies that

z�(t) ≤ –
mk

r/γ (t)

(∫ t

t
q(s)

(∫ ∞

g(s)

�u
r/γ (u)

)γ

�s
)/γ

.

Integrating the latter inequality from t to t, we get

z(t) ≤ z(t) –mk
∫ t

t


r/γ (s)

(∫ s

t
q(u)

(∫ ∞

g(u)

�v
r/γ (v)

)γ

�u
)/γ

�s,

which yields limt→∞ z(t) = –∞, this is a contradiction. Hence, limt→∞ z(t) = . By virtue
of  < x(t)≤ z(t), limt→∞ x(t) = . The proof is complete. �

Next, we establish another criterion which improves Theorem ..

Theorem . Let (.) hold. Suppose that there exists a positive �-differentiable function
δ such that for all sufficiently large T* and for g(T) > T*, one has (.). If

∫ ∞

t

(

r(s)

∫ s

t
q(u)�u

)/γ

�s =∞, (.)

then every solution x of equation (.) is oscillatory or limt→∞ x(t) = .

Proof Let x be a nonoscillatory solution of equation (.). Without loss of generality, we
assume that x(t) > , x(η(t)) > , and x(g(t)) >  for t ∈ [t,∞)T. Then z(t) >  for t ∈
[t,∞)T. In view of (.), we get (.). Thus, r(z�)γ is strictly decreasing, and there exists
a t ∈ [t,∞)T such that z�(t) >  or z�(t) <  for t ∈ [t,∞)T. We consider each of two
cases separately.
Case . Assume that z�(t) >  for t ∈ [t,∞)T. Similarly to the proof of [, Theorem .],

we can obtain a contradiction to (.).
Case . Assume that z�(t) <  for t ∈ [t,∞)T. Then there exists a finite limit

lim
t→∞ z(t) = l,
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where l ≥ . Next, we claim that l = . If not, then for any ε > , we have l < z(t) < l + ε,
eventually. Take  < ε < l( – p)/p. Then we have (.). It follows from (.), (.), and
z(g(t)) > l that

(
r(t)

(
z�(t)

)γ )� ≤ –q(t)xγ
(
g(t)

) ≤ –mγ q(t)zγ
(
g(t)

) ≤ –(ml)γ q(t).

Integrating the inequality above from t (t ∈ [t,∞)T) to t, we get

r(t)
(
z�(t)

)γ – r(t)
(
z�(t)

)γ ≤ –(ml)γ
∫ t

t
q(s)�s,

which yields

z�(t) ≤ –ml
(


r(t)

∫ t

t
q(s)�s

)/γ

.

Integrating the latter inequality from t to t, we have

z(t) ≤ z(t) –ml
∫ t

t

(

r(s)

∫ s

t
q(u)�u

)/γ

�s,

which implies that limt→∞ z(t) = –∞, this is a contradiction. Hence, limt→∞ z(t) = . By
 < x(t)≤ z(t), limt→∞ x(t) = . This completes the proof. �

Remark . When T = R, Theorems . and . improve results of Han et al. [, Theo-
rems . and .] since our results do not require condition (.).

Remark . The results obtained in this paper complement the recent results given in
[–] in the sense that these results can be applied to case (.).

3 Applications
In this section, we give two examples to illustrate applications of results in the previous
section.

Example . For t ∈ [,∞)T, consider a second-order neutral delay dynamic equation

(


tσ (t)

(
x(t) +



x
(
η(t)

))�)�

+ q(t)x
(
g(t)

)
= , (.)

where q(t) ≥ β >  satisfying
∫ t
 (q(u)/g(u))�u ≥ σ (t), η(t) ≤ t, g(t) ≤ t, and limt→∞ η(t) =

limt→∞ g(t) = ∞. Let γ =  and r(t) = /(tσ (t)). Then, we have

∫ ∞

t

�t
r/γ (t)

=
∫ ∞



�t
tσ (t)

= ,

that is, (.) holds. Note that Q(t) = q(t)/, and for every constant k ∈ (, ) and for t ∈
[tk ,∞)T,

β(t,T*) =
( 

T*
– 

g(t)

T*

– 
t

)γ

=
t

g(t)
g(t) – T*

t – T*
≥ k > .
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Choose δ(t) = . It is not difficult to verify that (.) holds. On the other hand,

∫ ∞

t


r/γ (s)

(∫ s

t
q(u)

(∫ ∞

g(u)

�v
r/γ (v)

)γ

�u
)/γ

�s ≥
∫ ∞



�s
s

=∞.

Thus, we have by Theorem . that every solution x of (.) is oscillatory or limt→∞ x(t) =
.

Example . For t ∈ [,∞)T, consider a second-order neutral delay dynamic equation

(


(tσ (t))γ

((
x(t) +



x
(
η(t)

))�)γ )�

+ q(t)xγ
(
g(t)

)
= , (.)

where q(t) ≥ β >  satisfying
∫ t
 q(u)�u ≥ σγ (t), η(t) ≤ t, g(t) ≤ t, and limt→∞ η(t) =

limt→∞ g(t) = ∞. Let r(t) = /(tσ (t))γ . Then we have

∫ ∞

t

�t
r/γ (t)

=
∫ ∞



�t
tσ (t)

= ,

that is, (.) holds. Note that Q(t) = q(t)/γ , and for every constant k ∈ (, ) and for t ∈
[tk ,∞)T,

β(t,T*) =
( 

T*
– 

g(t)

T*

– 
t

)γ

=
(

t
g(t)

g(t) – T*

t – T*

)γ

≥ k > .

Choose δ(t) = . It is easy to verify that (.) holds. On the other hand,

∫ ∞

t

(

r(s)

∫ s

t
q(u)�u

)/γ

�s ≥
∫ ∞



�s
s

=∞.

Hence, by Theorem ., every solution x of (.) is oscillatory or limt→∞ x(t) = .
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