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Abstract
This paper addresses a mean square exponential stability problem for a class of
switched stochastic systems with time-varying delay. The time delay is any
continuous function belonging to a given interval, but not necessary differentiable.
By constructing a suitable augmented Lyapunov-Krasovskii functional combined with
Leibniz-Newton’s formula, new delay-dependent sufficient conditions for the mean
square exponential stability of switched stochastic systems with time-varying delay
are first established in terms of LMIs. Numerical example is given to show the
effectiveness of the obtained result.
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1 Introduction
In the past decades, the problem of stability for neutral differential systems, which have
delays in both their state and the derivatives of their states, has been widely investigated
by many researchers. Such systems are often encountered in engineering, biology, and
economics. The existence of time delay is frequently a source of instability or poor per-
formance in the systems. Recently, some stability criteria for a neutral system with time
delay have been given [–]. Stability analysis of linear systems with time-varying delays
ẋ(t) = Ax(t) + Dx(t – h(t)) is fundamental to many practical problems and has received
considerable attention [–]. In [–], which are not based on the method of Lyapunov
functional, one of them uses the diagonal equations for reducing systems of delay differ-
ential equations to ones of integral equations and estimates the norms or spectral radii of
corresponding integral operators obtained on the basis of the results in the book. Most
of the known results on this problem are derived assuming only that the time-varying de-
lay h(t) is a continuously differentiable function, satisfying some boundedness condition
on its derivative: ḣ(t) ≤ δ < . In delay-dependent stability criteria, the main concern is
to enlarge the feasible region of stability criteria in a given time-delay interval. Interval
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time-varying delay means that a time delay varies in an interval in which the lower bound
is not restricted to be zero. By constructing a suitable argument, Lyapunov functional and
utilizing free weight matrices, some less conservative conditions for asymptotic stabil-
ity are derived in [–] for systems with time delay varying in an interval. However,
the shortcoming of the method used in these works is that the delay function is assumed
to be differential and its derivative is still bounded: ḣ(t) ≤ δ. To the best of our knowl-
edge, a constructive way to design a switching rule, switching regions, and mean square
exponential stability of switched stochastic systems with interval time-varying delay, non-
differentiable time-varying delays, which are important in both theory and applications,
have not been fully studied yet (see, e.g., [–] and the references therein). This moti-
vates our research.
This paper gives the improved results for the mean square exponential stability of

switched stochastic systems with interval time-varying delay. The time delay is assumed
to be a time-varying continuous function belonging to a given interval, but not necessary
differentiable. Specifically, our goal is to develop a constructive way to design a switch-
ing rule to exponential stability of switched stochastic systems with interval time-varying
delay. By constructing a Lyapunov functional combined with the LMI technique, we pro-
pose new criteria for the mean square exponential stability of switched stochastic systems
with interval time-varying delay. The delay-dependent mean square exponential stability
conditions are formulated in terms of LMIs, being thus solvable by utilizing Matlab’s LMI
control toolbox available in the literature to date.
The paper is organized as follows. Section  presents definitions and some well-known

technical propositions needed for the proof of the main results. Delay-dependent mean
square exponential stability conditions of switched stochastic systems with interval time-
varying delay are presented in Section . Numerical example is provided to illustrate the
theoretical results in Section , and the conclusions are drawn in Section .

2 Preliminaries
The following notations will be used in this paper. R+ denotes the set of all real non-
negative numbers; Rn denotes the n-dimensional space with the scalar product 〈·, ·〉 and
the vector norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)-dimensions; AT

denotes the transpose of matrix A; A is symmetric if A = AT ; I denotes the identity ma-
trix; λ(A) denotes the set of all eigenvalues of A; λmin/max(A) = min /max{Reλ;λ ∈ λ(A)};
xt := {x(t + s) : s ∈ [–h, ]}, ‖xt‖ = sups∈[–h,] ‖x(t + s)‖; C([, t],Rn) denotes the set of all
Rn-valued continuous functions on [, t]; matrix A is called semi-positive definite (A≥ )
if 〈Ax,x〉 ≥  for all x ∈ Rn; A is positive definite (A > ) if 〈Ax,x〉 >  for all x �= ; A > B
means A – B > . ∗ denotes the symmetric term in a matrix.
Consider a switched stochastic system with interval time-varying delay of the form

ẋ(t) = Aγ (x(t))x(t) +Dγ (x(t))x
(
t – h(t)

)
+ σγ (x(t))

(
x(t),x

(
k – h(t)

)
, t
)
ω(t), t ∈ R+,

x(t) = φ(t), t ∈ [–h, ],
(.)

where x(t) ∈ Rn is the state; γ (·) : Rn → N := {, , . . . ,N} is the switching rule, which is a
function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
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γ (x(t)) = i implies that the system realization is chosen as the ith system, i = , , . . . ,N . It
is seen that system (.) can be viewed as an autonomous switched system in which the
effective subsystem changes when the state x(t) hits predefined boundaries.Ai,Di ∈Mn×n,
i = , , . . . ,N , are given constant matrices, and φ(t) ∈ C([–h, ],Rn) is the initial function
with the norm ‖φ‖ = sups∈[–h,] ‖φ(s)‖.

ω(k) is a scalar Wiener process (Brownian motion) on (�,F ,P) with

E
{
ω(t)

}
= , E

{
ω(t)

}
= , E

{
ω(i)ω(j)

}
=  (i �= j), (.)

and σi : Rn × Rn × R → Rn, i = , , . . . ,N , is the continuous function, and it is assumed to
satisfy that

σT
i
(
x(t),x

(
t – h(t)

)
, t
)
σi
(
x(t),x

(
t – h(t)

)
, t
)

≤ ρixT (t)x(t) + ρixT
(
t – h(t)

)
x
(
t – h(t)

)
,

x(t),x
(
t – h(t)

) ∈ Rn, (.)

where ρi >  and ρi > , i = , , . . . ,N , are known constant scalars. For simplicity, we
denote σi(x(t),x(t – h(t)), t) by σi, respectively.
The time-varying delay function h(t) satisfies

 ≤ h ≤ h(t)≤ h, t ∈ R+.

The mean square stability problem for switched stochastic system (.) is to construct a
switching rule that makes the system mean square exponentially stable.

Definition . Given α > . Switched stochastic system (.) is α-exponentially stable in
the mean square if there exists a switching rule γ (·) such that every solution x(t,φ) of the
system satisfies the following condition:

∃N >  : E
{∥∥x(t,φ)∥∥}≤ E

{
Ne–αt‖φ‖}, ∀t ∈ R+.

Definition . The system of matrices {Ji}, i = , , . . . ,N , is said to be strictly complete if
for every x ∈ Rn \ {}, there is i ∈ {, , . . . ,N} such that xTJix < .

It is easy to see that the system {Ji} is strictly complete if and only if

N⋃
i=

αi = Rn \ {},

where

αi =
{
x ∈ Rn : xTJix < 

}
, i = , , . . . ,N .

We end this section with the following technical well-known propositions, which will be
used in the proof of the main results.
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Proposition . [] The system {Ji}, i = , , . . . ,N , is strictly complete if there exist δi ≥ ,
i = , , . . . ,N ,

∑N
i= δi >  such that

N∑
i=

δiJi < .

If N = , then the above condition is also necessary for the strict completeness.

Proposition . (Cauchy inequality) For any symmetric positive definite matrix N ∈
Mn×n and a,b ∈ Rn, we have

±aTb≤ aTNa + bTN–b.

Proposition . [] For any symmetric positive definite matrix M ∈ Mn×n, scalar μ > 
and vector function ω : [,μ] → Rn such that the integrations concerned are well defined,
the following inequality holds:

(∫ μ


ω(s)ds

)T

M
(∫ μ


ω(s)ds

)
≤ μ

(∫ μ


ωT (s)Mω(s)ds

)
.

Proposition . [, p.-] Let E, H and F be any constant matrices of appropriate
dimensions and FTF ≤ I . For any ε > , we have

EFH +HTFTET ≤ εEET + ε–HTH .

Proposition . (Schur complement lemma []) Given constant matrices X , Y , Z with
appropriate dimensions satisfying X = XT ,Y = YT > . Then X +ZTY–Z <  if and only if

(
X ZT

Z –Y

)
<  or

(
–Y Z
ZT X

)
< .

3 Main results
In this section, we investigate the mean square exponential stability problem for a class
of switched stochastic systems (.) with time-varying delay. Before introducing the main
result, the following notations of several matrix variables are defined for simplicity,

Mi =

⎡
⎢⎢⎢⎢⎢⎢⎣

M M M M M

∗ M  M M

∗ ∗ M M M

∗ ∗ ∗ M M

∗ ∗ ∗ ∗ M

⎤
⎥⎥⎥⎥⎥⎥⎦
,

M = AT
i P + PAi + αP – e–αhR

– e–αhR +Q + ρiI,

M = e–αhR – SAi,

M = e–αhR – SAi,
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M = PDi – SDi – SAi,

M = S – SAi,

M = –e–αhQ – e–αhR – e–αhU ,

M = e–αhU – SDi,

M = S,

M = –e–αhQ – e–αhR – e–αhU ,
(.)

M = e–αhU – SDi,

M = S,

M = –SDi – e–αhU + ρiI,

M = S – SDi,

M = S + ST + hR + hR + (h – h)U ,

Ji =Q – SAi –AT
i S

T
 ,

αi =
{
x ∈ Rn : xTJix < 

}
, i = , , . . . ,N ,

ᾱ = α, ᾱi = αi
∖ i–⋃

j=

ᾱj, i = , , . . . ,N ,

λ = λmin(P),

λ = λmax(P) + hλmax(Q) + hλmax(R)

+ (h – h)λmax(U).

The following is the main result of the paper, which gives sufficient conditions for mean
square exponential stability problem for a class of switched stochastic systems (.) with
time-varying delay.

Theorem . Given α > . The zero solution of switched stochastic system (.) is α-
exponentially stable in the mean square if there exist symmetric positive definite matrices
P, Q, R, U , and matrices Si, i = , , . . . , , satisfying the following conditions:

(i) ∃δi ≥ , i = , , . . . ,N ,
∑N

i= δi >  :
∑N

i= δiJi < ,
(ii) Mi < , i = , , . . . ,N .
The switching rule is chosen as γ (x(t)) = i, whenever x(t) ∈ ᾱi. Moreover, the solution

x(t,φ) of the switched stochastic system satisfies

E
{∥∥x(t,φ)∥∥}≤ E

{√
λ

λ
e–αt‖φ‖

}
, ∀t ∈ R+.

Proof We consider the following Lyapunov-Krasovskii functional for system (.):

E
{
V (t,xt)

}
= E

{ ∑
i=

Vi

}
,
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where

V = xT (t)Px(t),

V =
∫ t

t–h
eα(s–t)xT (s)Qx(s)ds,

V =
∫ t

t–h
eα(s–t)xT (s)Qx(s)ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )Rẋ(τ )dτ ds,

V = h
∫ 

–h

∫ t

t+s
eα(τ–t)ẋT (τ )Rẋ(τ )dτ ds,

V = (h – h)
∫ t–h

t–h

∫ t

t+s
eα(τ–t)ẋT (τ )Uẋ(τ )dτ ds.

It easy to check that

E
{
λ
∥∥x(t)∥∥}≤ E

{
V (t,xt)

}≤ E
{
λ‖xt‖

}
, ∀t ≥ . (.)

Taking the derivative of V along the solution of system (.) and taking the mathematical
expectation, we obtain

E{V̇} = E
{
xT (t)Pẋ(t)

}
= E

{
xT (t)

[
AT
i P +AiP

]
x(t) + xT (t)PDix

(
t – h(t)

)
+ xT (t)Pσiω(t)

}
;

E{V̇} = E
{
xT (t)Qx(t) – e–αhxT (t – h)Qx(t – h) – αV

}
;

E{V̇} = E
{
xT (t)Qx(t) – e–αhxT (t – h)Qx(t – h) – αV

}
;

E{V̇} = E
{
h ẋ

T (t)Rẋ(t) – h
∫ t

t–h
eα(τ–t)ẋT (s)Rẋ(s)ds – αV

}

≤ E
{
h ẋ

T (t)Rẋ(t) – he–αh
∫ t

t–h
ẋT (s)Rẋ(s)ds – αV

}
;

E{V̇} = E
{
hẋ

T (t)Rẋ(t) – h
∫ t

t–h
eα(τ–t)ẋT (s)Rẋ(s)ds – αV

}

≤ E
{
hẋ

T (t)Rẋ(t) – he–αh
∫ t

t–h
ẋT (s)Rẋ(s)ds – αV

}
;

E{V̇} ≤ E
{
(h – h)ẋT (t)Uẋ(t) – (h – h)e–αh

∫ t–h

t–h
ẋT (s)Uẋ(s)ds – αV

}
.

Applying Proposition . and the Leibniz-Newton formula, we have

E
{
–hi

∫ t

t–hi
ẋT (s)Rẋ(s)ds

}
≤ E

{
–
[∫ t

t–hi
ẋ(s)ds

]T
R
[∫ t

t–hi
ẋ(s)ds

]}

≤ E
{
–
[
x(t) – x(t – hi)

]TR[x(t) – x(t – hi)
]}

= E
{
–xT (t)Rx(t) + xT (t)Rx(t – hi) – xT (t – hi)Rx(t – hi)

}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/499
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Note that

E
{∫ t–h

t–h
ẋT (s)Uẋ(s)ds

}
= E

{∫ t–h(t)

t–h
ẋT (s)Uẋ(s)ds +

∫ t–h

t–h(t)
ẋT (s)Uẋ(s)ds

}
.

Using Proposition . gives

E
{[

h – h(t)
] ∫ t–h(t)

t–h
ẋT (s)Uẋ(s)ds

}

≥ E
{[∫ t–h(t)

t–h
ẋ(s)ds

]T
U
[∫ t–h(t)

t–h
ẋ(s)ds

]}

≥ E
{[
x
(
t – h(t)

)
– x(t – h)

]TU[x(t – h(t)
)
– x(t – h)

]}
.

Since h – h(t) ≤ h – h, we have

E
{
[h – h]

∫ t–h(t)

t–h
ẋT (s)Uẋ(s)ds

}

≥ E
{[
x
(
t – h(t)

)
– x(t – h)

]TU[x(t – h(t)
)
– x(t – h)

]}
,

then

E
{
–(h – h)

∫ t–h(t)

t–h
ẋT (s)Uẋ(s)ds

}

≤ E
{
–
[
x
(
t – h(t)

)
– x(t – h)

]TU[x(t – h(t)
)
– x(t – h)

]}
.

Similarly, we have

E
{
–(h – h)

∫ t–h

t–h(t)
ẋT (s)Uẋ(s)ds

}

≤ E
{
–
[
x(t – h) – x

(
t – h(t)

)]TU[x(t – h) – x
(
t – h(t)

)]}
.

Therefore, we have

E
{
V̇ (·) + αV (·)}
≤ E

{
xT (t)

[
AT
i P +AiP + αP + Q

]
x(t)

}
+ E

{
xT (t)PDix

(
t – h(t)

)
+ xT (t)Pσiω(t)

}
+ E

{
–e–αhxT (t – h)Qx(t – h)

}
+ E

{
–e–αhxT (t – h)Qx(t – h)

}
+ E

{
ẋT (t)

[(
h + h

)
R + (h – h)U

]
ẋ(t)

}
+ E

{
–e–αh

[
x(t) – x(t – h)

]TR[x(t) – x(t – h)
]}

+ E
{
–e–αh

[
x(t) – x(t – h)

]TR[x(t) – x(t – h)
]}

+ E
{
–e–αh

[
x
(
t – h(t)

)
– x(t – h)

]TU[x(t – h(t)
)
– x(t – h)

]}
+ E

{
–e–αh

[
x(t – h) – x

(
t – h(t)

)]TU[x(t – h) – x
(
t – h(t)

)]}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/499
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By using the following identity relation

ẋ(t) –Aix(t) –Dix
(
t – h(t)

)
= ,

and multiplying by xT (t)S, xT (t – h)S, xT (t – h)S, xT (t – h(t))S, ẋT (t)S,
ωT (t)σT

i both sides of the identity relation, we have

xT (t)Sẋ(t) – xT (t)SAix(t) – xT (t)SDix
(
t – h(t)

)
– xT (t)Sσiω(t) = ,

xT (t – h)Sẋ(t) – xT (t – h)SAix(t)

– xT (t – h)SDix
(
t – h(t)

)
– xT (t – h)Sσiω(t) = ,

xT (t – h)Sẋ(t) – xT (t – h)SAix(t)

– xT (t – h)SDix
(
t – h(t)

)
– xT (t – h)Sσiω(t) = , (.)

xT
(
t – h(t)

)
Sẋ(t) – xT

(
t – h(t)

)
SAix(t)

– xT
(
t – h(t)

)
SDix

(
t – h(t)

)
– xT

(
t – h(t)

)
Sσiω(t) = ,

ẋT (t)Sẋ(t) – ẋT (t)SAix(t) – ẋT (t)SDix
(
t – h(t)

)
– ẋT (t)Sσiω(t) = ,

ωT (t)σT
i ẋ(t) – ωT (t)σT

i Aix(t) – ωT (t)σT
i Dix

(
t – h(t)

)
– ωT (t)σT

i σiω(t) = .

Adding all the zero items of (.) into (.), we obtain

E
{
V̇ (·) + αV (·)}≤ E

{
xT (t)

[
AT
i P + PAi + αP – e–αhR

]
x(t)

}
+ E

{
xT (t)

[
–e–αhR + SAi +AT

i S
T
 + Q

]
x(t)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)[PDi – SDi – SAi]x

(
t – h(t)

)}
+ E

{
xT (t)[S – SAi]ẋ(t)

}
+ E

{
xT (t)

[
Pσi – Sσi –AT

i σi
]
ω(t)

}
+ E

{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
+ E

{
xT (t – h)[–Sσi]ω(t)

}
+ E

{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
+ E

{
xT (t – h)[–Sσi]ω(t)

}
+ E

{
xT
(
t – h(t)

)[
–e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT

(
t – h(t)

)
[S – SDi]ẋ(t)

}

http://www.journalofinequalitiesandapplications.com/content/2013/1/499
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+ E
{
xT

(
t – h(t)

)[
–Sσi – σT

i Di
]
ω(t)

}
+ E

{
ẋT (t)

[
S + ST + hR + hR + (h – h)U

]
ẋ(t)

}
+ E

{
ẋT (t)

[
σT
i – Sσi

]
ω(t)

}
+ E

{
ωT (t)

[
–σT

i σi
]
ω(t)

}
.

By assumption (.), we have

E
{
V̇ (·) + αV (·)}≤ E

{
xT (t)

[
AT
i P + PAi + αP – e–αhR

]}
+ E

{
xT (t)

[
–e–αhR + SAi +AT

i S
T
 + Q

]
x(t)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)[PDi – SDi – SAi]x

(
t – h(t)

)}
+ E

{
xT (t)[S – SAi]ẋ(t)

}
+ E

{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
+ E

{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
+ E

{
xT
(
t – h(t)

)[
–SDi – e–αhU

]
x
(
t – h(t)

)}
+ E

{
xT

(
t – h(t)

)
[S – SDi]ẋ(t)

}
+ E

{
ẋT (t)

[
S + ST + hR + hR + (h – h)U

]
ẋ(t)

}
+ E

{

[
–σT

i σi
]}
.

Applying assumption (.), the following estimations hold:

E
{
V̇ (·) + αV (·)}≤ E

{
xT (t)

[
AT
i P + PAi + αP – e–αhR

]}
+ E

{
xT (t)

[
–e–αhR + SAi +AT

i S
T
 + Q + ρiI

]
x(t)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)

[
e–αhR – SAi

]
x(t – h)

}
+ E

{
xT (t)[PDi – SDi – SAi]x

(
t – h(t)

)}
+ E

{
xT (t)[S – SAi]ẋ(t)

}
+ E

{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
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+ E
{
xT (t – h)

[
–e–αhQ – e–αhR – e–αhU

]
x(t – h)

}
+ E

{
xT (t – h)

[
e–αhU – SDi

]
x
(
t – h(t)

)}
+ E

{
xT (t – h)Sẋ(t)

}
+ E

{
xT
(
t – h(t)

)[
–SDi – e–αhU + ρiI

]
x
(
t – h(t)

)}
+ E

{
xT

(
t – h(t)

)
[S – SDi]ẋ(t)

}
+ E

{
ẋT (t)

[
S + ST + hR + hR + (h – h)U

]
ẋ(t)

}
= E

{
xT (t)Jix(t) + ζT (t)Miζ (t)

}
, (.)

where ζT (t) = [xT (t),xT (t – h),xT (t – h),xT (t – h(t)), ẋT (t)].
Therefore, we finally obtain from (.) and condition (ii) that

E
{
V̇ (·) + αV (·)} < E

{
xT (t)Jix(t)

}
, ∀i = , , . . . ,N , t ∈ R+.

We now apply condition (i) and Proposition ., the system Ji is strictly complete, and the
sets αi and ᾱi by (.) are well defined such that

N⋃
i=

αi = Rn \ {},

N⋃
i=

ᾱi = Rn \ {}, ᾱi ∩ ᾱj = ∅, i �= j.

Therefore, for any x(t) ∈ Rn, t ∈ R+, there exists i ∈ {, , . . . ,N} such that x(t) ∈ ᾱi. By
choosing a switching rule as γ (x(t)) = i whenever γ (x(t)) ∈ ᾱi, from (.) we have

E
{
V̇ (·) + αV (·)}≤ E

{
xT (t)Jix(t)

}
< , t ∈ R+,

and hence

E
{
V̇ (t,xt)

}≤ E
{
–αV (t,xt)

}
, ∀t ∈ R+. (.)

Integrating both sides of (.) from  to t, we obtain

E
{
V (t,xt)

}≤ E
{
V (φ)e–αt

}
, ∀t ∈ R+.

Furthermore, taking condition (.) into account, we have

E
{
λ
∥∥x(t,φ)∥∥}≤ E

{
V (xt)

}≤ E
{
V (φ)e–αt

}≤ E
{
λe–αt‖φ‖},

then

E
{∥∥x(t,φ)∥∥}≤ E

{√
λ

λ
e–αt‖φ‖

}
, t ∈ R+.

http://www.journalofinequalitiesandapplications.com/content/2013/1/499
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By Definition ., system (.) is exponentially stable in the mean square. The proof is
complete. �

To illustrate the obtained result, let us give the following numerical example.

4 Numerical example
Example . Consider the following switched stochastic systems with interval time-
varying delay (.), where the delay function h(t) is given by

h(t) = . + . sin t

and

A =

(
– .
. –.

)
, A =

(
–. .
. –.

)
,

D =

(
–. .
. –.

)
, D =

(
–. .
. –.

)
.

It is worth noting that the delay function h(t) is non-differentiable and the exponent α ≥ .
Therefore, themethods used in [, , , –, –] are not applicable to this system.
By LMI toolbox ofMatlab, we find that conditions (i), (ii) of Theorem . are satisfied with
h = ., h = ., δ = ., δ = ., α = ., ρ = ., ρ = ., ρ = ., ρ = . and

P =

(
. –.
–. .

)
, Q =

(
. –.
–. .

)
,

R =

(
. –.
–. .

)
, U =

(
. –.
–. .

)
,

S =

(
–. –.
. –.

)
, S =

(
–. .
. –.

)
,

S =

(
–. .
. –.

)
, S =

(
. –.
–. .

)
,

S =

(
–. .
–. –.

)
.

In this case, we have

(J, J) =

([
–. –.
–. –.

]
,

[
–. .
. –.

])
.

Moreover, the sum

δJ(R,Q) + δJ(R,Q) =

[
–. 

 –.

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/499
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Figure 1 The simulation of the solutions x1(t) and x2(t) with the initial condition φ(t) = [10 5]T ,
t ∈ [–0.4, 0].

is negative definite; i.e., the first entry in the first row and the first column –. <  is
negative and the determinant of the matrix is positive. The sets α and α are given as

α =
{
(x,x) : –.x – .xx – .x < 

}
,

α =
{
(x,x) : .x – .xx + .x > 

}
.

Obviously, the union of these sets is equal to R \ {}. The switching regions are defined
as

ᾱ =
{
(x,x) : –.x – .xx – .x < 

}
,

ᾱ = α \ ᾱ.

By Theorem ., switched stochastic system (.) is .-exponentially stable in the mean
square and the switching rule is chosen as γ (x(t)) = i whenever x(t) ∈ ᾱi. Moreover, the
solution x(t,φ) of the system satisfies

E
{∥∥x(t,φ)∥∥}≤ E

{
.e–.t‖φ‖}, ∀t ∈ R+.

(The trajectories of solution of switched stochastic systems is shown in Figure , respec-
tively.)

5 Conclusions
In this paper, we have proposed new delay-dependent conditions for the mean square
exponential stability of switched stochastic systems with time-varying delay. Based on the
improved Lyapunov-Krasovskii functional and the linear matrix inequality technique, a
switching rule for the mean square exponential stability of switched stochastic systems
with time-varying delay has been established in terms of LMIs.
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