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Abstract
In the light of the paper of Hasanzade Asl et al. (Fixed Point Theory Appl. 2012:212,
2012, doi:10.1186/1687-1812-2012-212), we obtain a fixed point theorem for
multivalued mappings on a complete metric space. Our result is a generalized version
of some results in the literature, including the famous result of Mizoguchi-Takahashi
(J. Math. Anal. Appl. 141:177-188, 1989). Also, we give some examples to illustrate our
result.
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1 Introduction and preliminaries
Let (X,d) be a metric space, and let CB(X) denote the class of all nonempty, closed and
bounded subsets of X. It is well known that H : CB(X)×CB(X)→R defined by

H(A,B) =max
{
sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}

is ametric onCB(X), which is called aHausdorffmetric, where d(x,B) = inf{d(x, y) : y ∈ B}.
Let T : X → CB(X) be a map, then T is called a multivalued contraction if for all x, y ∈ X,
there exists λ ∈ [, ) such that

H(Tx,Ty) ≤ λd(x, y).

In , Nadler [] proved a fundamental fixed point theorem for multivalued maps:
Every multivalued contraction on a complete metric space has a fixed point.
Then, a lot of generalizations of the result of Nadler have been given (see, for example,

[–]). One of the most important generalizations of it was given byMizoguchi and Taka-
hashi []. We can find both a simple proof of Mizoguchi-Takahashi fixed point theorem
and an example showing that it is a real generalization of Nadler’s result in []. We can
also find some important results about this direction in [–].

Definition  [] A function k : [,∞)→ [, ) is said to be anMT -function if it satisfies
lim sups→t+ k(s) <  for all t ∈ [,∞) (Mizoguchi-Takahashi’s condition).

©2013 Mınak and Altun; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/493
mailto:ishakaltun@yahoo.com
http://dx.doi.org/10.1186/1687-1812-2012-212
http://creativecommons.org/licenses/by/2.0


Mınak and Altun Journal of Inequalities and Applications 2013, 2013:493 Page 2 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/493

Lemma  [] Let k : [,∞) → [, ) be an MT -function, then the function h : [,∞) →
[, ) defined as h(t) = +k(t)

 is also anMT -function.

Lemma  [] k : [,∞) → [, ) is anMT -function if and only if for each t ∈ [,∞), there
exist rt ∈ [, ) and εt >  such that k(s)≤ rt for all s ∈ [t, t + εt).

Theorem  [] Let (X,d) be a complete metric space, and let T : X → CB(X) be a multi-
valued map. Assume

H(Tx,Ty) ≤ k
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X, where k is anMT -function. Then T has a fixed point.

Recently, Samet et al. [] introduced the notion of α-ψ-contractive mappings and gave
some fixed point results for such mappings. Their results are closely related to some or-
dered fixed point results. Then, using their idea, some authors presented fixed point re-
sults for single andmultivaluedmappings (see, for example, [–]). First, we recall these
results. Denote by � the family of nondecreasing functions ψ : [,∞) → [,∞) such that∑∞

n= ψ
n(t) < ∞ for all t > .

Definition  [] Let (X,d) be a metric space, T be a self-map on X,ψ ∈ � and α : X ×
X → [,∞) be a function. Then T is called α-ψ-contractive whenever

α(x, y)d(Tx,Ty)≤ ψ
(
d(x, y)

)
for all x, y ∈ X.

Note that every Banach contraction mapping is an α-ψ-contractive mapping with
α(x, y) =  and ψ(t) = λt for some λ ∈ [, ).

Definition  [] T is called α-admissible whenever α(x, y)≥  implies α(Tx,Ty)≥ .

There exist some examples for α-admissiblemappings in []. For convenience, wemen-
tion in here one of them. Let X = [,∞). Define T : X → X and α : X × X → [,∞)
by Tx =

√
x for all x ∈ X and α(x, y) = ex–y for x ≥ y and α(x, y) =  for x < y. Then T is

α-admissible.

Definition  [] α is said to have (B) property whenever {xn} is a sequence in X such
that α(xn,xn+) ≥  for all n ∈ N and xn → x, then α(xn,x) ≥  for all n ∈N.

Theorem  (Theorem . of []) Let (X,d) be a complete metric space and T : X →
X be an α-admissible and α-ψ-contractive mapping. If there exists x ∈ X such that
α(x,Tx) ≥  and T is continuous, then T has a fixed point.

Remark  If we assume that α has (B) property instead of the continuity of T , then again
T has a fixed point (Theorem . of []). If for each x, y ∈ X there exists z ∈ X such that
α(x, z) ≥  and α(y, z) ≥ , then X is said to have (H) property. Therefore, if X has (H)
property in Theorem . and Theorem . in [], then the fixed point of T is unique
(Theorem . of []).
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Then some generalizations of α-ψ-contractive mappings are given as follows.

Definition  [] T is called a Ćirić type α-ψ-generalized contractive mapping whenever

α(x, y)d(Tx,Ty)≤ ψ
(
m(x, y)

)

for all x, y ∈ X, where

m(x, y) =max

{
d(x, y),d(x,Tx),d(y,Ty),



[
d(x,Ty) + d(y,Tx)

]}
.

Note that every Ćirić type generalized contraction mapping is a Ćirić type α-ψ-
generalized contractive mapping with α(x, y) =  and ψ(t) = λt for some λ ∈ [, ).

Theorem  (Theorem . of []) Let (X,d) be a complete metric space and T : X → X be
an α-admissible and Ćirić type α-ψ-generalized contractive mapping. If there exists x ∈ X
such that α(x,Tx)≥  and T is continuous or α has (B) property, then T has a fixed point.
If X has (H) property, then the fixed point of T is unique.

We can find some fixed point results for single-valued mappings in these directions in
[, ]. Now we recall some multivalued case.

Definition  [, ] Let (X,d) be a metric space and T : X → CB(X) be a multivalued
mapping. Then T is called multivalued α-ψ-contractive whenever

α(x, y)H(Tx,Ty)≤ ψ
(
d(x, y)

)

for all x, y ∈ X and T is called multivalued α∗-ψ-contractive whenever

α∗(Tx,Ty)H(Tx,Ty) ≤ ψ
(
d(x, y)

)
,

where α∗(Tx,Ty) = inf{α(a,b) : a ∈ Tx,b ∈ Ty}. Similarly, if we replace d(x, y) with m(x, y),
we can obtain Ćirić type multivalued α-ψ-generalized contractive and Ćirić type multi-
valued α∗-ψ-generalized contractive mappings on X.

Definition  [, ] Let (X,d) be a metric space and T : X → CB(X) be a multivalued
mapping.
(a) T is said to be α-admissible whenever for each x ∈ X and y ∈ Tx with α(x, y)≥ 

implies α(y, z) ≥  for all z ∈ Ty.
(b) T is said to be α∗-admissible whenever for each x ∈ X and y ∈ Tx with α(x, y)≥ 

implies α∗(Tx,Ty) ≥ .

Remark  It is clear that α∗-admissible maps are also α-admissible, but the converse may
not be true as shown in the following example.
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Example  Let X = [–, ] and α : X ×X → [,∞) be defined by α(x,x) =  and α(x, y) = 
for x 	= y. Define T : X → CB(X) by

Tx =

⎧⎪⎨
⎪⎩

{–x}, x /∈ {–, },
{, }, x = –,
{}, x = .

Let x = – and y =  ∈ Tx = {, }, then α(x, y) ≥ , but α∗(Tx,Ty) = α∗({, }, {}) = . Thus
T is not α∗-admissible. Now we show that T is α-admissible with the following cases:
Case . If x = , then y =  and α(x, y)≥ . Also, α(y, z) ≥  since z = – ∈ Ty = {–}.
Case . If x = –, then y ∈ {, } and α(x, y)≥ . Also, α(y, z) ≥  for all z ∈ Ty.
Case . If x /∈ {–, }, then y = –x and α(x, y)≥ . Also, α(y, z) ≥  since z = x ∈ Ty = {x}.

The purpose of this work is to present some generalizations of Mizoguchi-Takahashi’s
fixed point theorem using this new idea.

2 Main results
Theorem  Let (X,d) be a complete metric space, and let T : X → CB(X) be an α-
admissible multivalued mapping such that

α(x, y)H(Tx,Ty)≤ k
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X, where k is an MT -function. Suppose that there exist x ∈ X and x ∈ Tx
such that α(x,x) ≥ . If T is continuous or α has (B) property, then T has a fixed point.

Proof Define h(t) = +k(t)
 , then from Lemma , h : [,∞)→ [, ) is anMT -function. Let

x and x be asmentioned in the hypothesis. If x = x, then x is a fixed point ofT . Assume
x 	= x, then –k(d(x,x))

 d(x,x) > . Therefore there exists x ∈ Tx such that

d(x,x) ≤ H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ α(x,x)H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ k
(
d(x,x)

)
d(x,x) +

 – k(d(x,x))


d(x,x)

=
 + k(d(x,x))


d(x,x)

= h
(
d(x,x)

)
d(x,x).

Since T is α-admissible, x ∈ Tx and α(x,x) ≥ , then α(x,u) ≥  for all u ∈ Tx. Thus
α(x,x) ≥  since x ∈ Tx. If x = x, then x is a fixed point of T . Assume x 	= x, then
–k(d(x,x))

 d(x,x) > . Therefore there exists x ∈ Tx such that

d(x,x) ≤ H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ α(x,x)H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

http://www.journalofinequalitiesandapplications.com/content/2013/1/493
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≤ k
(
d(x,x)

)
d(x,x) +

 – k(d(x,x))


d(x,x)

=
 + k(d(x,x))


d(x,x)

= h
(
d(x,x)

)
d(x,x).

Again, since T is α-admissible, then α(x,x) ≥ . In this way, we can construct a sequence
{xn} in X such that xn+ ∈ Txn, α(xn,xn+) ≥  and

d(xn,xn+) ≤ h
(
d(xn–,xn)

)
d(xn–,xn)

for all n ∈ N. Since h(t) <  for all t ∈ [,∞), then {d(xn,xn+)} is a nonincreasing sequence
in [,∞) and so there exists λ ≥  such that limn→∞ d(xn,xn+) = λ. Now since h is an
MT -function, then lim sups→λ+ h(s) <  and h(λ) < . Therefore from Lemma  there exist
r ∈ [, ) and ε >  such that h(s) ≤ r for all s ∈ [λ,λ+ ε). Since limn→∞ d(xn,xn+) = λ, then
there exists n ∈N such that λ ≤ d(xn,xn+) < λ + ε for all n≥ n and so

d(xn+,xn+) ≤ h
(
d(xn,xn+)

)
d(xn,xn+)

≤ rd(xn,xn+)

for all n ≥ n. Thus, we have

∞∑
n=

d(xn,xn+) =
n∑
n=

d(xn,xn+) +
∞∑

n=n+

d(xn,xn+)

=
n∑
n=

d(xn,xn+) +
∞∑

n=n

d(xn+,xn+)

≤
n∑
n=

d(xn,xn+) +
∞∑

n=n

rd(xn,xn+)

≤
n∑
n=

d(xn,xn+) +
∞∑
n=

rnd(xn ,xn+)

< ∞

and so {xn} is a Cauchy sequence. Since X is complete, there exists z ∈ X such that
limn→∞ xn = z.
IfT is continuous, then from the inequality d(xn+,Tz) ≤H(Txn,Tz), we have d(z,Tz) = 

and so z ∈ Tz.
Now assume that α has (B) property. Then α(xn, z) ≥  for all n ∈N. Therefore

d(xn+,Tz) ≤ H(Txn,Tz)

≤ α(xn, z)H(Txn,Tz)

≤ k
(
d(xn, z)

)
d(xn, z)

≤ d(xn, z)

and, taking limit n → ∞, we have d(z,Tz) =  and so z ∈ Tz. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/493
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Although α∗-admissibility implies α-admissibility of T , we will give the following theo-
rem. However, the contractive condition is slightly different from (.).

Theorem  Let (X,d) be a complete metric space, and let T : X → CB(X) be an α∗-
admissible multivalued mapping such that

α∗(Tx,Ty)H(Tx,Ty) ≤ k
(
d(x, y)

)
d(x, y)

for all x, y ∈ X, where k is an MT -function. Suppose that there exist x ∈ X and x ∈ Tx
such that α(x,x) ≥ . If T is continuous or α has (B) property, then T has a fixed point.

Proof Define h(t) = +k(t)
 , then from Lemma , h : [,∞)→ [, ) is anMT -function. Let

x and x be as mentioned in the hypothesis. If x ∈ Tx, then x is a fixed point of T .
Let x /∈ Tx. Since x 	= x, then –k(d(x,x))

 d(x,x) > . If x ∈ Tx, x is a fixed point of T .
Let x /∈ Tx. Also, since T is α∗-admissible, α∗(Tx,Tx) ≥ . Therefore, there exists x ∈
Tx such that

d(x,x) ≤ H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ α∗(Tx,Tx)H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ k
(
d(x,x)

)
d(x,x) +

 – k(d(x,x))


d(x,x)

=
 + k(d(x,x))


d(x,x)

= h
(
d(x,x)

)
d(x,x).

Since α(x,x) ≥ α∗(Tx,Tx) ≥ , then α∗(Tx,Tx) ≥ . Therefore there exists x ∈ Tx
such that

d(x,x) ≤ H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ α∗(Tx,Tx)H(Tx,Tx) +
 – k(d(x,x))


d(x,x)

≤ k
(
d(x,x)

)
d(x,x) +

 – k(d(x,x))


d(x,x)

=
 + k(d(x,x))


d(x,x)

= h
(
d(x,x)

)
d(x,x).

Again, if x ∈ Tx, x is a fixed point of T . Let x /∈ Tx. Since α(x,x) ≥ α∗(Tx,Tx) ≥ ,
then α∗(Tx,Tx) ≥ . In this way, we can construct a sequence {xn} in X such that xn+ ∈
Txn, α(xn,xn+) ≥  and

d(xn,xn+) ≤ h
(
d(xn–,xn)

)
d(xn–,xn)

for all n ∈ N. As in the proof of Theorem , we can show that {xn} is a Cauchy sequence
in X. Since X is complete, there exists z ∈ X such that limn→∞ xn = z.

http://www.journalofinequalitiesandapplications.com/content/2013/1/493
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IfT is continuous, then from the inequality d(xn+,Tz) ≤H(Txn,Tz), we have d(z,Tz) = 
and so z ∈ Tz.
Now assume that α has (B) property. Then α(xn, z) ≥  for all n ∈ N. Since T is α∗-

admissible, α∗(Txn,Tz) ≥ . Therefore

d(xn+,Tz) ≤ H(Txn,Tz)

≤ α∗(Txn,Tz)H(Txn,Tz)

≤ k
(
d(xn, z)

)
d(xn, z)

≤ d(xn, z)

and, taking limit n → ∞, we have d(z,Tz) =  and so z ∈ Tz. �

Now we give an example to illustrate our main theorems. Note that Theorem  cannot
be applied to this example.

Example  Let X = [–, ] and d(x, y) = |x – y|. Define T : X → CB(X) by

Tx =

⎧⎪⎨
⎪⎩

{x + }, x ∈ [–,– 
 ),

{x – }, x ∈ (  , ],
[– 

 ,

 ], x ∈ [– 

 ,

 ]

and α : X ×X → [,∞) by

α(x, y) =

{
, x, y ∈ [– 

 ,

 ],

, otherwise.

Then T is α∗-admissible and

α∗(Tx,Ty)H(Tx,Ty) ≤ k
(
d(x, y)

)
d(x, y) (.)

for all x, y ∈ X, where k is anyMT -function. Indeed, first we show that T is α∗-admissible.
If α(x, y)≥ , then x, y ∈ [– 

 ,

 ] and hence

α∗(Tx,Ty) = α∗
([

–


,



]
,
[
–


,



])

= inf

{
α(a,b) : a,b ∈

[
–


,



]}
= .

Therefore T is α∗-admissible.
Now we consider the following cases:
Case . Let x, y ∈ X with {x, y} ∩ {[–,– 

 )∪ (  , ]} 	= ∅, then α∗(Tx,Ty) = . Thus (.) is
satisfied.

http://www.journalofinequalitiesandapplications.com/content/2013/1/493


Mınak and Altun Journal of Inequalities and Applications 2013, 2013:493 Page 8 of 10
http://www.journalofinequalitiesandapplications.com/content/2013/1/493

Case . Let x, y ∈ X with x, y ∈ [– 
 ,


 ], then

H(Tx,Ty) =H
([

–


,



]
,
[
–


,



])

= 

and so again (.) is satisfied.
Now, if x, y ∈ (  , ] with x 	= y, we have

H(Tx,Ty) = H
({x – }, {y – })

= d(x, y).

Therefore there is noMT -function satisfying (.).

Remark  If we take α : X×X → [,∞) by α(x, y) = , then anymultivaluedmappings T :
X → CB(X) are α-admissible as well as α∗-admissible. Therefore, Mizoguchi-Takahashi’s
fixed point theorem is a special case of Theorem  and Theorem .

We can obtain some ordered fixed point results from our theorems as follows. First we
recall some ordered notions. Let X be a nonempty set and  be a partial order on X.

Definition  [] Let A, B be two nonempty subsets of X, the relations between A and B
are defined as follows:

(r) If for every a ∈ A there exists b ∈ B such that a b, then A≺ B.
(r) If for every b ∈ B there exists a ∈ A such that a b, then A≺ B.
(r) If A≺ B and A ≺ B, then A≺ B.

Remark  [] ≺ and≺ are different relations between A and B. For example, let X =R,
A = [  , ], B = [, ],  be the usual order on X, then A ≺ B but A ⊀ B; if A = [, ],
B = [,  ], then A≺ B while A⊀ B.

Remark  [] ≺, ≺ and ≺ are reflexive and transitive, but are not antisymmetric. For
instance, let X =R, A = [, ], B = [, ]∪ [, ],  be the usual order on X, then A≺ B and
B ≺ A, but A 	= B. Hence, they are not partial orders.

Corollary  Let (X,) be a partially ordered set and suppose that there exists a metric
d in X such that (X,d) is a complete metric space. Let T : X → CB(X) be a multivalued
mapping such that

H(Tx,Ty) ≤ k
(
d(x, y)

)
d(x, y)

for all x, y ∈ X with x  y, where k is an MT -function. Suppose that there exists x ∈ X
such that {x} ≺ Tx. Assume that for each x ∈ X and y ∈ Tx with x y, we have y  z for
all z ∈ Ty. If T is continuous or X satisfies the following condition:

{
{xn} ⊂ X is a nondecreasing sequence with xn → x in X,
then xn  x for all n,

(.)

then T has a fixed point.

http://www.journalofinequalitiesandapplications.com/content/2013/1/493
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Proof Define the mapping α : X ×X → [,∞) by

α(x, y) =

{
, x y,
, otherwise.

Then we have

α(x, y)H(Tx,Ty)≤ k
(
d(x, y)

)
d(x, y)

for all x, y ∈ X. Also, since {x} ≺ Tx, then there exists x ∈ Tx such that x  x and so
α(x,x) ≥ . Now let x ∈ X and y ∈ Tx with α(x, y)≥ , then x  y and so, by the hypothe-
ses, we have y  z for all z ∈ Ty. Therefore, α(y, z) ≥  for all z ∈ Ty. This shows that T is
α-admissible. Finally, if T is continuous or X satisfies (.), then T is continuous or α has
(B) property. Therefore, from Theorem , T has a fixed point. �

Remark  We can give a similar corollary using ≺ instead of ≺.
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