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Abstract
In this paper we prove the uniqueness of weak solutions and the global-in-time
existence of smooth solutions of the 2D generalized MHD system with fractional
diffusion with 1

2 power.
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1 Introduction
In this paper, we consider the following D generalized MHD system with  < α ≤  []:

divu = divb = , (.)

∂tu + (u · ∇)u +∇
(

π +


|b|

)
+ (–�)αu = b · ∇b, (.)

∂tb + u · ∇b – b · ∇u –�b = , (.)

(u,b)(t = ) = (u,b). (.)

Here, u is the fluid velocity field, π is the pressure and b is the magnetic field.
Very recently, Ji [] used the Fourier series analysis motivated in [] to prove the

global-in-time existence of smooth solutions of problem (.)-(.) when 
 < α ≤ , and

Ji [] pointed out that his result did not seem to come directly from the method like
energy estimates. In this paper, we use the standard energy method to deal with the
case α = 

 ; of course, our method also works when α > 
 . We will prove the follow-

ing.

Theorem . Let α = 
 . Let u,b ∈H with divu = divb =  in R

. Then problem (.)-
(.) has a unique global-in-time weak solution (u,b) satisfying

(u,b) ∈ L∞(
,T ;H), u ∈ L

(
,T ;H/), b ∈ L

(
,T ;H) (.)

for any T > .

Theorem . Let α = 
 . Let u,b ∈ Hs with s >  and divu = divb =  in R

.
Then problem (.)-(.) has a unique global-in-time smooth solution (u,b) satisfy-
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ing

u,b ∈ L∞(
,T ;Hs), u ∈ L

(
,T ;Hs+ 


)
, b ∈ L

(
,T ;Hs+) (.)

for any T > .

For D case and other related problems, we refer to [, ].
Our proof will use the following commutator estimates due to Kato and Ponce []:

∥∥�s(fg) – f�sg
∥∥
Lp ≤ C

(‖∇f ‖Lp
∥∥�s–g

∥∥
Lq +

∥∥�sf
∥∥
Lp ‖g‖Lq

)
, (.)

with s≥ , � := (–�)/ and 
p =


p
+ 

q
= 

p
+ 

q
.

2 Proof of Theorem 1.1
This section is devoted to the proof of Theorem .. The global-in-time existence of weak
solutions satisfying (.) was proved in [, ], we only need to show the uniqueness. Let
(ui,πi,bi) (i = , ) be two weak solutions of problem (.)-(.). We define

δu := u – u, δπ := π – π, δb := b – b.

Then it follows from (.)-(.) that

div δu = , div δb = , (.)

∂tδu + u · ∇δu + δu · ∇u +∇
(

π +


(
b – b

))
+ (–�)/δu

= b · ∇δb + δb · ∇b, (.)

∂tδb + u · ∇δb + δu · ∇b – b · ∇δu – δb · ∇u –�δb = . (.)

Testing (.) by δu and using (.) and (.), we see that



d
dt

∫
|δu| dx +

∫ ∣∣�/δu
∣∣ dx = –

∫
δu · ∇u · δudx

+
∫

b · ∇δb · δudx +
∫

δb · ∇b · δudx

=: I + I + I. (.)

Testing (.) by δb and using (.) and (.), we find that



d
dt

∫
|δb| dx +

∫
|∇δb| dx = –

∫
δu · ∇b · δbdx

+
∫

b · ∇δu · δbdx +
∫

δb · ∇u · δbdx

=: I + I + I. (.)
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In the following calculations, we use the Sobolev embedding Ḣ/ ⊂ L and the
Gagliardo-Nirenberg inequalities

‖w‖L/ ≤ C‖w‖L
∥∥�/w

∥∥
L , (.)

‖w‖L ≤ C‖w‖L‖∇w‖L . (.)

Using (.), (.), (.), (.) and (.), we bound I, I + I, I + I and I as follows:

I ≤ ‖∇u‖L‖δu‖L/ ≤ C‖u‖Ḣ/‖δu‖L
∥∥�/δu

∥∥
L

≤ 


∥∥�/δu
∥∥
L +C‖u‖Ḣ/‖δu‖L ,

I + I = ,

I + I ≤ C‖∇b‖L‖δu‖L‖δb‖L
≤ C‖∇b‖L‖δu‖L‖δb‖/L ‖∇δb‖/L

≤ 


‖∇δb‖L +C‖δu‖L +C‖∇b‖L‖δb‖L ,

I ≤ ‖∇u‖L‖δb‖L ≤ C‖δb‖L ≤ C‖δb‖L‖∇δb‖L

≤ 


‖∇δb‖L +C‖δb‖L .

Adding up (.) and (.) and using the above estimates, we conclude that



d
dt

∫ (|δu| + |δb|)dx
≤ C‖u‖Ḣ/‖δu‖L +C‖δu‖L +C‖∇b‖L‖δb‖L +C‖δb‖L ,

which gives

δu = δb = .

This completes the proof.

3 Proof of Theorem 1.2
This section is devoted to the proof of Theorem .. We only need to prove a priori esti-
mates (.) for simplicity.
First, we have (.).
Applying �s to (.), testing by �su and using (.), we see that



d
dt

∫ ∣∣�su
∣∣ dx +

∫ ∣∣�s+ 
 u

∣∣ dx
= –

∫ (
�s(u · ∇u) – u∇�su

)
�sudx

+
∫ (

�s(b · ∇b) – b · ∇�sb
)
�sudx +

∫
b · ∇�sb · �sudx

=: J + J + J. (.)
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Applying �s to (.), testing by �sb and using (.), we find that



d
dt

∫ ∣∣�sb
∣∣ dx +

∫ ∣∣�s+b
∣∣ dx

= –
∫ (

�s(u · ∇b) – u · ∇�sb
)
�sb dx

+
∫ (

�s(b · ∇u) – b · ∇�su
)
�sb dx +

∫
b · ∇�su · �sb dx

=: J + J + J. (.)

Using (.), (.), (.) and (.), we bound J, J, J + J, J and J as follows:

J ≤ C‖∇u‖L
∥∥�su

∥∥
L/

≤ C‖u‖Ḣ/
∥∥�su

∥∥
L

∥∥�s+ 
 u

∥∥
L

≤ 

∥∥�s+ 

 u
∥∥
L +C‖u‖Ḣ/

∥∥�su
∥∥
L ,

J ≤ C‖∇b‖L
∥∥�sb

∥∥
L

∥∥�su
∥∥
L

≤ C‖∇b‖L
∥∥�sb

∥∥
L

∥∥�s+ 
 u

∥∥
L

≤ 

∥∥�s+ 

 u
∥∥
L +C‖∇b‖L

∥∥�sb
∥∥
L ,

J + J = ,

J, J ≤ C‖∇u‖L
∥∥�sb

∥∥
L +C‖∇b‖L/

∥∥�su
∥∥
L/

∥∥�sb
∥∥
L

≤ C
∥∥�sb

∥∥
L +C‖∇b‖L/

∥∥�su
∥∥
L/

≤ C
∥∥�sb

∥∥
L

∥∥�s+b
∥∥
L +C‖∇b‖L/

∥∥�su
∥∥
L

∥∥�s+ 
 u

∥∥
L

≤ 

∥∥�s+b

∥∥
L +



∥∥�s+ 

 u
∥∥
L +C

∥∥�sb
∥∥
L +C‖∇b‖L/

∥∥�su
∥∥
L .

Adding up (.) and (.) and using the above estimates, we arrive at

d
dt

∫ (∣∣�su
∣∣ + ∣∣�sb

∣∣)dx +
∫ (∣∣�s+ 

 u
∣∣ + ∣∣�s+b

∣∣)dx
≤ C‖u‖Ḣ/

∥∥�su
∥∥
L +C‖∇b‖L

∥∥�sb
∥∥
L +C

∥∥�sb
∥∥
L +C‖∇b‖L/

∥∥�su
∥∥
L ,

which yields (.).
This completes the proof.
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