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Abstract
We first introduce a new concept of b-dislocated metric space as a generalization of
dislocated metric space and analyze different properties of such spaces.
A fundamental result for the convergence of sequences in b-dislocated metric spaces
is established and is employed to prove some common fixed point results for four
mappings satisfying the generalized weak contractive condition in partially ordered
b-dislocated metric spaces. Moreover, some examples and applications to integral
equations are given here to illustrate the usability of the obtained results.
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1 Introduction and preliminaries
The Banach contraction principle is one of the simplest and most applicable results of
metric fixed point theory. It is a popular tool for proving the existence of solution of prob-
lems in different fields of mathematics. There are several generalizations of the Banach
contraction principle in literature on metric fixed point theory [–]. Hitzler and Seda
[] introduced the concept of dislocated topologies and named their corresponding gen-
eralized metric a dislocated metric. They have also established a fixed point theorem in
complete dislocated metric spaces to generalize the celebrated Banach contraction prin-
ciple. The notion of dislocated topologies has useful applications in the context of logic
programming semantics (see []). Further useful results can be seen in [–].

Definition . [] Let X be a nonempty set. A mapping dl : X × X → [,∞) is called a
dislocated metric (or simply dl-metric) if the following conditions hold for any x, y, z ∈ X:

(i) If dl(x, y) = , then x = y;
(ii) dl(x, y) = dl(y,x);
(iii) dl(x, y)≤ dl(x, z) + dl(z, y).

The pair (X,dl) is called a dislocated metric space or a dl-metric space. Note that when
x = y, dl(x, y) may not be .

Example . If X = R+ ∪ {}, then dl(x, y) = x + y defines a dislocated metric on X.
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Definition . [] A sequence {xn} in a dl-metric space is called: () a Cauchy sequence
if, given ε > , there exists n ∈ N such that for all n,m ≥ n, we have dl(xm,xn) < ε or
limn,m→∞ dl(xn,xm) = , () convergent with respect to dl if there exists x ∈ X such that
dl(xn,x) →  as n→ ∞. In this case, x is called the limit of {xn} and we write xn → x.

A dl-metric space X is called complete if every Cauchy sequence in X converges to a
point in X.

Definition . A nonempty set X is called an ordered dislocated metric space if it is
equipped with a partial ordering � and there exists a dislocated metric dl on X.

Definition . Let (X,�) be a partially ordered set. Then x, y ∈ X are called comparable
if x � y or y� x holds.

Definition . [] Let (X,�) be a partially ordered set. A self-mapping f on X is called
dominating if x� fx for each x in X.

Example . [] Let X = [, ] be endowed with the usual ordering, and let f : X → X be
defined by fx = n√x. Since x ≤ x 

n = fx for all x ∈ X, therefore f is a dominating map.

Definition . [] Let (X,�) be a partially ordered set. A self-mapping f on X is called
dominated if fx � x for each x in X.

Example . [] Let X = [, ] be endowed with the usual ordering, and let f : X → X be
defined by fx = xn for some n ∈ N. Since fx = xn ≤ x for all x ∈ X, therefore f is a dominated
map.

In the following, we give the definition of a b-dislocated metric space.

Definition . Let X be a nonempty set. A mapping bd : X × X → [,∞) is called a
b-dislocatedmetric (or simply bd-metric) if the following conditions hold for any x, y, z ∈ X
and s ≥ :

(bd) If bd(x, y) = , then x = y;
(bd) bd(x, y) = bd(y,x);
(bd) bd(x, y) ≤ s(bd(x, z) + bd(z, y)).

The pair (X,bd) is called a b-dislocated metric space or a bd-metric space. It should be
noted that the class of bd-metric spaces is effectively larger than that of dl-metric spaces,
since a bd-metric is a bl-metric when s = .
Here, we present an example to show that in general a b-dislocated metric need not be

a bl-metric.

Example . Let (X,dl) be a dislocatedmetric space, and bd(x, y) = (bl(x, y))p, where p > 
is a real number. We show that bd is a b-dislocated metric with s = p–.

Obviously, conditions (bd) and (bd) of Definition . are satisfied.
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If  < p < ∞, then the convexity of the function f (x) = xp (x > ) implies that ( a+b )p ≤

 (a

p + bp). Hence, (a + b)p ≤ p–(ap + bp) holds. Thus, for each x, y, z ∈ X, we obtain that

bd(x, y) =
(
dl(x, y)

)p ≤ [
dl(x, z) + dl(z, y)

]p
≤ p–

[(
dl(x, z)

)p + (
dl(z, y)

)p]
= p–

[
bd(x, z) + bd(z, y)

]
.

So, condition (bd) of Definition . is also satisfied and bd is a bd-metric.
However, if (X,dl) is a dislocatedmetric space, then (X,bd) is not necessarily a dislocated

metric space. For example, if X = R is the set of real numbers, then dl(x, y) = |x| + |y| is a
dislocated metric, and bd(x, y) = (|x| + |y|) is a b-dislocated metric on R with s = , but
not a dislocated metric on R.
Recently, Sarma and Kumari [] established the existence of a topology induced by a

dislocated metric which is metrizable with a family of sets {B(x, ε) ∪ {x} : x ∈ X, ε > } as
a base, where B(x, ε) = {y ∈ X : dl(x, y) < ε} for all x ∈ X and ε > . Also, B(x, ε) = {y ∈ X :
dl(x, y) ≤ ε} is a closed ball.
On the similar lines, we show that each b-dislocatedmetric space onX generates a topol-

ogy τbd whose base is the family of open bd-balls

Bbd (x, ε) =
{
y ∈ X : bd(x, y) < ε

}
.

Definition . We say that a net (xα : α ∈ �) in X converges to x in (X,bd) and write
limα∈� xα = x if limα∈� bd(xα ,x) = .

Note that the limit of a net in (X,bd) is unique. For A ⊆ X, we write D(A) = {x ∈ X :
x is a limit of a net in (A,bd)}.

Proposition . If A,B ⊆ X, then
(i) D(A) =∅ if A =∅,
(ii) D(A)⊆D(B) if A⊆ B,
(iii) D(A∪ B) =D(A)∪D(B),
(iv) D(D(A))⊆D(A).

Proof To prove (i), (ii) and (iii), we refer to []. To prove (iv), let x ∈ D(D(A)). Suppose
that for each α in �, (xαβ

: β ∈ �(α)) is a net in A such that xα = limβ∈�(α) xαβ
. Thus, for

each positive integer i, there is αi ∈ � such that bd(xαi ,x) <

is , and βi ∈ �(αi) such that

bd(xαiβi
,xαi ) <


is . Take αiβi = γi for each i, then {γ,γ,γ, . . .} is a directed set γi < γj if i < j,

and bd(xγi ,x) ≤ s(bd(xγi ,xαi ) + bd(xαi ,x)) <

i . This implies that x ∈D(A). �

As a corollary, we have the following.

Corollary . Let, for all A ⊂ X, A = A ∪ D(A). Then the operation A → A on P(X) sat-
isfies Kuratowski’s closure axioms []:

(i) ∅ =∅,
(ii) A⊂ A,
(iii) A = A,
(iv) A∪ B = A∪ B.
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Consequently, we have the following.

Theorem . Let ϒ be the family of all subsets A of X for which A = A and τbd are the
complements of members of ϒ . Then the τbd is a topology for X and the τbd -closure of a
subset A of X is A.

Definition . The topology τbd obtained inTheorem . is called the topology induced
by bd and simply referred to as the bd-topology of X; and it is denoted by (X,bd, τbd ).

Now we state some propositions and corollaries in (X,bd, τbd ) which can be proved fol-
lowing similar arguments to those given in [].

Proposition . Let A⊆ X. Then x ∈D(A) iff for every δ > , Bδ(x)∩A =∅.

Corollary . x ∈ A ⇐⇒ x ∈ A or Bδ(x)∩A =∅, ∀δ > .

Corollary . A set A ⊆ X is open in (X,bd, τbd ) if and only if for every x ∈ A, there is δ > 
such that {x} ∪ Bδ(x)⊆ A.

Proposition . If x ∈ X and δ > , then {x} ∪ Bδ(x) is an open set in (X,bd, τbd ).

Corollary . If x ∈ X and Vr(x) = Br(x) ∪ {x} for r > , then the collection {Vr(x)|x ∈ X}
is an open base at x in (X,bd, τbd ). If bd is a b-metric and V = B(x), then τbd coincides with
the metric topology.

Proposition . (X,bd, τbd ) is a Hausdorff space.

Proof If x, y ∈ X and bd(x,y)
s = r > , then Vr(x)∩Vr(y) =∅. �

Corollary . If x ∈ X, then the collection {V (x)|x ∈ X} is an open base at x for (X,bd, τbd ).
Hence, (X,bd, τbd ) is first countable.

Remark . The above corollary enables us to deal with sequences instead of nets.

Motivated by Proposition . in [], we have the following proposition for the b-dislo-
cated metric space.

Proposition . Let (X,bd) be a b-dislocatedmetric space.The following three conditions
are equivalent:

(i) For all x ∈ X , we have bd(x,x) = .
(ii) bd is a b-metric.
(iii) For all x ∈ X and all r > , we have Br(x) =∅.

Proof We show that (iii) implies (i). Since B r
s (x) =∅ for all r > , there exists some y ∈ X

with bd(x, y) < r
s . But for all y ∈ X, we have bd(x,x) ≤ sbd(x, y). Therefore, bd(x,x) < r for

all r > . Hence, bd(x,x) = . �

If (X,bd) is a b-dislocated metric space, then (X ′,bd), where X ′ = {x ∈ X|bd(x,x) = } is
a b-metric space. Indeed, (X′,bd) is a b-dislocated metric space, so assertion now follows
immediately from the above proposition.

http://www.journalofinequalitiesandapplications.com/content/2013/1/486
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Definition . A sequence {xn} in a b-dislocated metric space (X,bd) converges with
respect to bd (bd-convergent) if there exists x ∈ X such that bd(xn,x) converges to  as
n→ ∞. In this case, x is called the limit of {xn}, and we write xn → x.

Proposition . Limit of a convergent sequence in a b-dislocated metric space is unique.

Proof Let x and y be limits of the sequence {xn}. By properties (bd) and (bd) of Defini-
tion ., it follows that bd(x, y) ≤ s(bd(xn,x) + bd(xn, y)) → . Hence, bd(x, y) = , and by
property (bd) of Definition . it follows that x = y. �

Definition . A sequence {xn} in a b-dislocated metric space (X,bd) is called a bd-
Cauchy sequence if, given ε > , there exits n ∈ N such that for all n,m ≥ n, we have
bd(xm,xn) < ε or limn,m→∞ bd(xn,xm) = .

Proposition . Every convergent sequence in a b-dislocated space is bd-Cauchy.

Proof Let {xn} be a sequence which converges to some x, and ε > . Then there exists
n ∈ N with bd(xn,x) < ε

s for all n ≥ n. For m,n ≥ n, we obtain bd(xn,xm) ≤ s(bd(xn,x) +
bd(xm,x)) < s ε

s = ε. Hence, {xn} is bd-Cauchy. �

Definition . A b-dislocatedmetric space (X,bd) is called complete if every bd-Cauchy
sequence in X is bd-convergent.

The following example shows that in general a b-dislocated metric is not continuous.

Example . Let X =N∪ {∞} and bd : X ×X → R be defined by

bd(m,n) =

⎧⎪⎪⎨
⎪⎪⎩


m + 

n ifm,n are even ormn =∞,

 ifm and n are odd andm = n,

 otherwise.

Then it is easy to see that for allm,n,p ∈ X, we have

bd(m,p) ≤ 
(
bd(m,n) + bd(n,p)

)
.

Thus, (X,bd) is a b-dislocated metric space. Let xn = n for each n ∈ N. Then

bd(n,∞) =

n

→  as n→ ∞,

that is, xn → ∞, but bd(xn, ) = � bd(∞, ) as n→ ∞.

We need the following simple lemma about the bd-convergent sequences in the proof
of our main results.

Lemma . Let (X,bd) be a b-dislocated metric with parameter s ≥ . Suppose that {xn}
and {yn} are bd-convergent to x, y, respectively. Then we have


s
bd(x, y)≤ lim inf

n→∞ bd(xn, yn) ≤ lim sup
n→∞

bd(xn, yn)≤ sbd(x, y).

http://www.journalofinequalitiesandapplications.com/content/2013/1/486
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In particular, if bd(x, y) = , then we have limn→∞bd(xn, yn) =  = bd(x, y). Moreover, for
each z ∈ X, we have


s
bd(x, z) ≤ lim inf

n→∞ bd(xn, z) ≤ lim sup
n→∞

bd(xn, z) ≤ sbd(x, z).

In particular, if bd(x, z) = , then we have limn→∞bd(xn, z) =  = bd(x, z).

Proof Using the triangle inequality in a b-dislocated metric space, it is easy to see that

bd(x, y) ≤ sbd(x,xn) + sbd(xn, yn) + sbd(yn, y)

and

bd(xn, yn) ≤ sbd(xn,x) + sbd(x, y) + sbd(y, yn).

Taking the lower limit as n → ∞ in the first inequality and the upper limit as n → ∞ in
the second inequality, the result follows. Similarly, using again the triangle inequality, the
last assertion follows. �

Definition . [] Let f and g be two self-maps on a nonempty set X. If w = fx = gx, for
some x in X, then x is called a coincidence point of f and g , where w is called a point of
coincidence of f and g .

Definition . [] Let f and g be two self-maps defined on a set X. Then f and g are said
to be weakly compatible if they commute at every coincidence point.

Definition . Let (X,bd) be a b-dislocated metric space. Then the pair (f , g) is said to
be compatible if and only if limn→∞ bd(fgxn, gfxn) = , whenever {xn} is a sequence in X so
that limn→∞ fxn = limn→∞ gxn = t for some t ∈ X.

2 Common fixed point results
Suppose that


 =
{
ψ : [,∞) → [,∞)|ψ is a continuous non-decreasing function with

ψ(t) = ⇔ t = 
}

and

� =
{
ϕ : [,∞) → [,∞)|ϕ is a lower semi-continuous function with

ϕ(t) = ⇔ t = 
}
.

Theorem . Let (X,bd,�) be an ordered complete b-dislocated metric space, and let f ,
g , S and T be four self-maps on X such that (f , g) and (S,T) are dominated and dominat-
ing maps, respectively, with fX ⊆ TX and gX ⊆ SX. Suppose that for all two comparable
elements x, y ∈ X,

ψ
(
sbd(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/486


Hussain et al. Journal of Inequalities and Applications 2013, 2013:486 Page 7 of 21
http://www.journalofinequalitiesandapplications.com/content/2013/1/486

is satisfied, where

Ms(x, y) =max

{
bd(Sx,Ty),bd(fx,Sx),bd(gy,Ty),

bd(Sx, gy) + bd(fx,Ty)
s

}
, (.)

ψ ∈ 
 and ϕ ∈ �. If for every non-increasing sequence {xn} and a sequence {yn} with yn �
xn, for all n such that yn → u, we have u� xn and either

(a) (f ,S) are compatible, f or S is continuous and (g,T) is weakly compatible, or
(a) (g,T) are compatible, g or T is continuous and (f ,S) is weakly compatible,

then f , g , S and T have a common fixed point. Moreover, the set of common fixed points
of f , g , S and T is well ordered if and only if f , g , S and T have one and only one common
fixed point.

Proof Let x be an arbitrary point in X. We define inductively the sequences {xn} and {yn}
in X by

yn+ = fxn = Txn+, yn+ = gxn+ = Sxn+, n = , , , . . . .

This can be done as fX ⊆ TX and gX ⊆ SX. By given assumptions, xn+ � Txn+ = fxn �
xn and xn � Sxn = gxn– � xn–. Thus, we have xn+ � xn for all n ≥ . We will show
that {yn} is bd-Cauchy. Suppose that bd(yn, yn+) >  for every n. If not, then for some k,
bd(yk , yk+) = , and from (.), we obtain

ψ
(
bd(yk+, yk+)

) ≤ ψ
(
sbd(yk+, yk+)

)
= ψ

(
sbd(fxk , gxk+)

)
≤ ψ

(
Ms(xk ,xk+)

)
– ϕ

(
Ms(xk ,xk+)

)
, (.)

where

Ms(xk ,xk+) = max

{
bd(Sxk ,Txk+),bd(fxk ,Sxk),bd(gxk+,Txk+),

bd(Sxk , gxk+) + bd(fxk ,Txk+)
s

}

= max

{
bd(yk , yk+),bd(yk+, yk),bd(yk+, yk+),

bd(yk , yk+) + bd(yk+, yk+)
s

}

= max

{
,,bd(yk+, yk+),

bd(yk , yk+) + bd(yk+, yk+)
s

}

= bd(yk+, yk+), (.)

since

bd(yk , yk+) + bd(yk+, yk+)
s

≤ sbd(yk , yk+) + sbd(yk+, yk+) + sbd(yk , yk+)
s

=
sbd(yk+, yk+)

s
< bd(yk+, yk+).

http://www.journalofinequalitiesandapplications.com/content/2013/1/486
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So, from (.) and (.), we obtain that

ψ
(
bd(yk+, yk+)

) ≤ ψ
(
bd(yk+, yk+)

)
– ϕ

(
bd(yk+, yk+)

)
,

which gives ϕ(bd(yk+, yk+)) ≤  and so yk+ = yk+, which further implies that yk+ =
yk+. Thus, {yn} becomes a constant sequence, hence, yn is a Cauchy sequence.
Now, take bd(yn, yn+) >  for each n. As xn and xn+ are comparable, so from (.) we

have

ψ
(
bd(yn+, yn+)

) ≤ ψ
(
sbd(yn+, yn+)

)
=ψ

(
sbd(fxn, gxn+)

)
≤ ψ

(
Ms(xn,xn+)

)
– ϕ

(
Ms(xn,xn+)

)
≤ ψ

(
Ms(xn,xn+)

)
. (.)

Hence

bd(yn+, yn+) ≤Ms(xn,xn+), (.)

where

Ms(xn,xn+) = max

{
bd(Sxn,Txn+),bd(fxn,Sxn),bd(gxn+,Txn+),

bd(Sxn, gxn+) + bd(fxn,Txn+)
s

}

= max

{
bd(yn, yn+),bd(yn+, yn),bd(yn+, yn+),

bd(yn, yn+) + bd(yn+, yn+)
s

}

≤ max

{
bd(yn, yn+),bd(yn+, yn+),

sbd(yn, yn+) + sbd(yn+, yn+) + sbd(yn, yn+)
s

}

= max

{
bd(yn, yn+),bd(yn+, yn+),

sbd(yn, yn+) + sbd(yn+, yn+)
s

}

= max
{
bd(yn, yn+),bd(yn+, yn+)

}
.

If for some n, bd(yn+, yn+) ≥ bd(yn, yn+) > , then (.) gives that Ms(xn,xn+) =
bd(yn+, yn+) and from (.) we have

ψ
(
bd(yn+, yn+)

) ≤ ψ
(
sbd(yn+, yn+)

)
≤ ψ

(
Ms(xn,xn+)

)
– ϕ

(
Ms(xn,xn+)

)
=ψ

(
bd(yn+, yn+)

)
– ϕ

(
bd(yn+, yn+)

)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/486
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which yields that ϕ(bd(yn+, yn+)) ≤ , or, equivalently, bd(yn+, yn+) = , a contradic-
tion.
Hence, Ms(xn,xn+) ≤ bd(yn, yn+). Since Ms(xn,xn+) ≥ bd(yn, yn+), therefore,

bd(yn+, yn+) ≤Ms(xn,xn+) = bd(yn, yn+). Following similar arguments to those given
above, we have

bd(yn+, yn+) ≤Ms(xn+,xn+) = bd(yn+, yn+). (.)

Therefore, {bd(yn, yn+)} is a non-increasing sequence and so there exists r ≥  such that

lim
n→∞bd(yn–, yn) = lim

n→∞Ms(xn,xn+) = r.

Suppose that r > . As

ψ
(
bd(yn+, yn+)

) ≤ ψ
(
sbd(yn+, yn+)

)
≤ ψ

(
Ms(xn,xn+)

)
– ϕ

(
Ms(xn,xn+)

)
,

by taking the upper limit as n → ∞, we obtain

ψ(r) ≤ ψ(r) – lim inf
n→∞ ϕ

(
Ms(xn,xn+)

)

= ψ(r) – ϕ
(
lim inf
n→∞ Ms(xn,xn+)

)

= ψ(r) – ϕ(r),

a contradiction. Hence

lim
n→∞bd(yn–, yn) = . (.)

Now, we prove that {yn} is a bd-Cauchy sequence. To do this, it is sufficient to show that the
subsequence {yn} is bd-Cauchy inX. Assume on the contrary that {yn} is not a bd-Cauchy
sequence. Then there exists ε >  for which we can find subsequences {ymk } and {ynk } of
{yn} so that nk is the smallest index for which nk > mk > k,

bd(ymk , ynk ) ≥ ε (.)

and

bd(ymk , ynk–) < ε. (.)

Using the triangle inequality and (.), we obtain that

ε ≤ bd(ymk , ynk ) ≤ sbd(ymk , ymk+) + sbd(ymk+, ynk ).

Taking the upper limit as k → ∞ and using (.), we obtain

ε

s
≤ lim sup

k→∞
bd(ymk+, ynk ). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/486
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Using the triangle inequality and (.), we have

ε ≤ bd(ymk , ynk )

≤ sbd(ymk , ynk–) + sbd(ynk–, ynk–) + sbd(ynk–, ynk )

< εs + sbd(ynk–, ynk–) + sbd(ynk–, ynk ).

Taking the upper limit as k → ∞ and using (.), we obtain

ε ≤ lim sup
k→∞

bd(ymk , ynk ) ≤ εs. (.)

Also,

ε ≤ bd(ymk , ynk ) ≤ sbd(ymk , ynk–) + sbd(ynk–, ynk ).

Hence

ε

s
≤ lim sup

k→∞
bd(ymk , ynk–).

On the other hand, we have

bd(ymk , ynk–) ≤ sbd(ymk , ynk ) + sbd(ynk , ynk–).

So, from (.) and (.), we have

lim sup
k→∞

bd(ymk , ynk–) ≤ s lim sup
k→∞

bd(ymk , ynk ) ≤ εs.

Consequently,

ε

s
≤ lim sup

k→∞
bd(ymk , ynk–)≤ εs. (.)

Similarly,

ε

s
≤ lim sup

k→∞
bd(ymk+, ynk–) ≤ εs. (.)

As xmk and xnk– are comparable, from (.) we have

ψ
(
sbd(ymk+, ynk )

)
=ψ

(
sbd(fxmk , gxnk–)

)
≤ ψ

(
Ms(xmk ,xnk–)

)
– ϕ

(
Ms(xmk ,xnk–)

)
,

where

Ms(xmk ,xnk–) = max

{
bd(Sxmk ,Txnk–),bd(fxmk ,Sxmk ),bd(gxnk–,Txnk–),

bd(Sxmk , gxnk–) + bd(fxmk ,Txnk–)
s

}
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= max

{
bd(ymk , ynk–),bd(ymk+, ymk ),bd(ynk , ynk–),

bd(ymk , ynk ) + bd(ymk+, ynk–)
s

}
.

Taking the upper limit and using (.) and (.)-(.), we get

ε + ε

s

s
= min

{
ε

s
,
ε + ε

s

s

}

≤ lim sup
k→∞

Ms(xmk ,xnk–)

= max

{
lim sup
k→∞

bd(ymk , ynk–), , ,

lim supk→∞ bd(ymk , ynk ) + lim supk→∞ bd(ymk+, ynk–)
s

}

≤ max

{
εs,

εs + εs

s

}
= εs.

Hence, we have

ε + ε

s

s
≤ lim sup

k→∞
Ms(xmk ,xnk–) ≤ εs. (.)

Similarly, we can obtain

ε + ε

s

s
≤ lim inf

k→∞
Ms(xmk ,xnk–) ≤ εs. (.)

As

ψ
(
sbd(ymk+, ynk )

)
=ψ

(
sbd(fxmk , gxnk–)

)
≤ ψ

(
Ms(xmk ,xnk–)

)
– ϕ

(
Ms(xmk ,xnk–)

)
,

so, by taking the upper limit as k → ∞, and from (.) and (.), we obtain

ψ
(
εs

)
=ψ

(
s

ε

s

)

≤ ψ
(
s lim sup

k→∞
bd(ymk+, ynk )

)

≤ ψ
(
lim sup
k→∞

Ms(xmk ,xnk–)
)
– lim inf

k→∞
ϕ
(
Ms(xmk ,xnk–)

)

≤ ψ
(
εs

)
– ϕ

(
lim inf
k→∞

Ms(xmk ,xnk–)
)

≤ ψ
(
εs

)
– ϕ

(
lim inf
k→∞

Ms(xmk ,xnk–)
)
,

which implies that

ϕ
(
lim inf
k→∞

Ms(xmk ,xnk–)
)
= ,
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so lim infMs(xmk ,xnk–) = , a contradiction to (.). Hence {yn} is a bd-Cauchy se-
quence in X. Since X is complete, there exists y ∈ X such that

lim
n→∞ fxn = lim

n→∞Txn+ = lim
n→∞ gxn+ = lim

n→∞Sxn = y.

Now, we show that y is a common fixed point of f , g , S and T .
Assume that (a) holds and S is continuous. Then

lim
n→∞Sxn+ = Sy and lim

n→∞Sfxn = Sy.

Using the triangle inequality, we have

bd(fSxn,Sy)≤ s
(
bd(fSxn,Sfxn) + bd(Sfxn,Sy)

)
.

Since the pair (f ,S) is compatible, limn→∞ bd(fSxn,Sfxn) = . So, by taking the limit when
n→ ∞ in the above inequality, we have

lim
n→∞bd(fSxn,Sy) ≤ s

(
lim
n→∞bd(fSxn,Sfxn) + lim

n→∞bd(Sfxn,Sy)
)
= .

Hence, limn→∞ fSxn = Sy. As Sxn+ = gxn+ � xn+, from (.) we obtain

ψ
(
sbd(fSxn+, gxn+)

) ≤ ψ
(
Ms(Sxn+,xn+)

)
– ϕ

(
Ms(Sxn+,xn+)

)
, (.)

where

Ms(Sxn+,xn+)

=max

{
bd

(
Sxn+,Txn+

)
,bd

(
fSxn+,Sxn+

)
,bd(gxn+,Txn+),

bd(Sxn+, gxn+) + bd(fSxn+,Txn+)
s

}
.

Now, by using Lemma ., we get

lim sup
n→∞

Ms(Sxn+,xn+)≤max

{
sbd(Sy, y), , ,

sbd(Sy, y) + sbd(Sy, y)
s

}

= sbd(Sy, y).

Hence, by taking the upper limit in (.) and using Lemma ., we obtain

ψ
(
sbd(Sy, y)

)
= ψ

(
s


s
bd(Sy, y)

)
≤ ψ

(
sbd(Sy, y)

)
– ϕ

(
sbd(Sy, y)

)

≤ ψ
(
sbd(Sy, y)

)
– ϕ

(
sbd(Sy, y)

)

which gives ϕ(sbd(Sy, y))≤ , or, equivalently, Sy = y.
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Now, since gxn+ � xn+ and gxn+ → y as n → ∞, then y � xn+ and from (.) we
have

ψ
(
sbd(fy, gxn+)

) ≤ ψ
(
Ms(y,xn+)

)
– ϕ

(
Ms(y,xn+)

)
, (.)

where

Ms(y,xn+) = max

{
bd(Sy,Txn+),bd(fy,Sy),bd(gxn+,Txn+),

bd(Sy, gxn+) + bd(fy,Txn+)
s

}
.

Taking the upper limit as n → ∞ in (.) and using Lemma ., we have

ψ
(
sbd(fy, y)

)
=ψ

(
s


s
bd(fy, y)

)
≤ ψ

(
bd(fy, y)

)
– ϕ

(
bd(fy, y)

)

≤ ψ
(
sbd(fy, y)

)
– ϕ

(
bd(fy, y)

)
,

which implies that ϕ(bd(fy, y)) ≤ , so fy = y.
Since f (X) ⊆ T(X), there exists a point v ∈ X such that fy = Tv. Suppose that gv = Tv.

Since v� Tv = fy� y, from (.) we have

ψ
(
bd(Tv, gv)

)
=ψ

(
bd(fy, gv)

) ≤ ψ
(
Ms(y, v)

)
– ϕ

(
Ms(y, v)

)
, (.)

where

Ms(y, v) =max

{
bd(Sy,Tv),bd(fy,Sy),bd(gv,Tv),

bd(Sy, gv) + bd(fy,Tv)
s

}

= bd(gv,Tv).

So, from (.) we have

ψ
(
bd(Tv, gv)

) ≤ ψ
(
bd(gv,Tv)

)
– ϕ

(
bd(gv,Tv)

)
,

a contradiction. Therefore gv = Tv. Since the pair (g,T) is weakly compatible, gy = gfy =
gTv = Tgv = Tfy = Ty and y is the coincidence point of g andT . Since Sxn � xn and Sxn →
y as n→ ∞, it implies that y � xn and from (.) we obtain

ψ
(
sbd(fxn, gy)

) ≤ ψ
(
Ms(xn, y)

)
– ϕ

(
Ms(xn, y)

)
, (.)

where

Ms(xn, y) = max

{
bd(Sxn,Ty),bd(fxn,Sxn),bd(gy,Ty),

bd(Sxn, gy) + bd(fxn,Ty)
s

}
. (.)
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Taking the upper limit as n → ∞ in (.) and using Lemma ., we have

max

{

s
bd(y, gy),bd(gy,Ty),

s
s

bd(y, gy)
}

≤ lim inf
n→∞ Ms(xn, y)

≤ lim sup
n→∞

Ms(xn, y)

≤max

{
sbd(y, gy),bd(gy,Ty),

s
s

bd(y, gy)
}

=max
{
sbd(y, gy),bd(gy, gy)

}
≤max

{
sbd(y, gy), sbd(y, gy)

}
= sbd(y, gy). (.)

Taking the upper limit as n→ ∞ in (.) and using Lemma . and (.), we have

ψ
(
sbd(y, gy)

)
=ψ

(
s


s
bd(y, gy)

)

≤ ψ
(
lim sup
n→∞

Ms(xn, y)
)
– lim inf

n→∞ ϕ
(
Ms(xn, y)

)

≤ ψ
(
sbd(y, gy)

)
– ϕ

(
lim inf
n→∞ Ms(xn, y)

)

≤ ψ
(
sbd(y, gy)

)
– ϕ

(
lim inf
n→∞ Ms(xn, y)

)
,

which implies that lim infn→∞ Ms(xn, y) = , so we have y = gy. Therefore, fy = gy = Sy =
Ty = y.
The proof is similar when f is continuous.
Similarly, if (a) holds, then the result follows.
Now, suppose that the set of common fixed points of f , g , S and T is well ordered. We

show that they have a unique common fixed point. Assume on the contrary that fu = gu =
Su = Tu = u and fv = gv = Sv = Tv = v, but u = v. By assumption, we can apply (.) to obtain

ψ
(
sbd(u, v)

)
=ψ

(
sbd(fu, gv)

)
≤ ψ

(
sbd(fu, gv)

) ≤ ψ
(
Ms(u, v)

)
– ϕ

(
Ms(u, v)

)
,

where

Ms(u, v) =max

{
bd(Su,Tv),bd(fu,Su),bd(gv,Tv),

bd(Su, gv) + bd(fu,Tv)
s

}

=max

{
bd(u, v),bd(u,u),bd(v, v),

bd(u, v) + bd(u, v)
s

}

=max
{
bd(u, v),bd(u,u),bd(v, v)

}
≤max

{
bd(u, v), sbd(u, v), sbd(u, v)

}
≤ sbd(u, v).
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Hence

ψ
(
sbd(u, v)

) ≤ ψ
(
sbd(u, v)

)
– ϕ

(
Ms(u, v)

)
.

So, we haveMs(u, v) = , a contradiction. Therefore u = v. The converse is obvious. �

In the following theorem, we omit the continuity assumption of f , g ,T and S and replace
the compatibility of the pairs (f ,S) and (g,T) by weak compatibility of the pairs, and we
show that f , g , S and T have a common fixed point on X .

Theorem . Let (X,bd,�) be an ordered complete b-dislocated metric space, and f , g , S
and T be four self-maps on X such that (f , g) and (S,T) are dominated and dominating
maps, respectively, with fX ⊆ TX and gX ⊆ SX, and TX and SX are bd-closed subsets of X .
Suppose that for all two comparable elements x, y ∈ X,

ψ
(
sd(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)
(.)

is satisfied, where

Ms(x, y) =max

{
bd(Sx,Ty),bd(fx,Sx),bd(gy,Ty),

bd(Sx, gy) + bd(fx,Ty)
s

}
,

ψ ∈ 
 and ϕ ∈ �. If for every non-increasing sequence {xn} and a sequence {yn} with yn �
xn, for all n such that yn → u, we have u � xn, and the pairs (f ,S) and (g,T) are weakly
compatible, then f , g , S and T have a common fixed point. Moreover, the set of common
fixed points of f , g , S and T is well ordered if and only if f , g , S and T have one and only
one common fixed point.

Proof Following the proof of Theorem ., there exists y ∈ X such that

lim
k→∞

bd(yk , y) = . (.)

SinceT(X) is bd-closed and {yn+} ⊆ T(X), therefore y ∈ T(X). Hence, there exists u ∈ X
such that y = Tu and

lim
n→∞bd(yn+,Tu) = lim

n→∞bd(Txn+,Tu) = . (.)

Similarly, there exists v ∈ X such that y = Tu = Sv and

lim
n→∞bd(yn,Sv) = lim

n→∞bd(Sxn,Sv) = . (.)

Now we prove that v is a coincidence point of f and S.
Since Txn+ → y = Sv as n→ ∞, so, by assumption, Txn+ � Sv. Therefore, from (.)

we have

ψ
(
sbd(fv, gxn+)

) ≤ ψ
(
Ms(v,xn+)

)
– ϕ

(
Ms(v,xn+)

)
, (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/486


Hussain et al. Journal of Inequalities and Applications 2013, 2013:486 Page 16 of 21
http://www.journalofinequalitiesandapplications.com/content/2013/1/486

where

Ms(v,xn+) = max

{
bd(Sv,Txn+),bd(fv,Sv),bd(gxn+,Txn+),

bd(Sv, gxn+) + bd(fv,Txn+)
s

}

= max

{
bd(Tu,Txn+),bd(fv, y),bd(gxn+,Txn+),

bd(Sv, yn+) + bd(fv,Txn+)
s

}
.

Taking the upper limit as n → ∞ and using (.)-(.) and Lemma ., we obtain
that

max

{
bd(fv, y),


s
bd(y, y),


s

bd(y, y)
}

≤ lim inf
n→∞ Ms(v,xn+)

≤ lim sup
n→∞

Ms(v,xn+)

≤max

{
,bd(fv, y), sbd(y, y),

 + sbd(fv, y)
s

}

≤max
{
bd(fv, y), sbd(fv, y)

}
= sbd(fv, y). (.)

Taking the upper limit as n→ ∞ in (.) and using (.) and Lemma ., we obtain
that

ψ
(
sd(fv, y)

)
= ψ

(
s


s
d(fv, y)

)

≤ ψ
(
sbd(fv, y)

)
– ϕ

(
lim inf
n→∞ Ms(v,xn+)

)

≤ ψ
(
sbd(fv, y)

)
– ϕ

(
lim inf
n→∞ Ms(v,xn+)

)
,

which implies that lim infn→∞ Ms(v,xn+) = , so from (.) we obtain fv = y = Sv.
As f and S are weakly compatible, we have fy = fSv = Sfv = Sy. Thus, y is a coincidence

point of f and S.
Similarly, it can be shown that y is a coincidence point of the pair (g,T). Now, we show

that fy = gy. From (.) we have

ψ
(
sd(fy, gy)

) ≤ ψ
(
Ms(y, y)

)
– ϕ

(
Ms(y, y)

)
,

where

Ms(y, y) = max

{
bd(Sy,Ty),bd(fy,Sy),bd(gy,Ty),

bd(Sy, gy) + bd(fy,Ty)
s

}

= max

{
bd(fy, gy),bd(fy, fy),bd(gy, gy),

bd(fy, gy) + bd(fy, gy)
s

}
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= max
{
bd(fy, gy),bd(fy, fy),bd(gy, gy)

}
≤ max

{
bd(fy, gy), sbd(fy, gy), sbd(fy, gy)

}
= sbd(fy, gy).

So, we have

ψ
(
sd(fy, gy)

) ≤ ψ
(
Ms(y, y)

)
– ϕ

(
Ms(y, y)

)
≤ ψ

(
sbd(fy, gy)

)
– ϕ

(
Ms(y, y)

)
≤ ψ

(
sbd(fy, gy)

)
– ϕ

(
Ms(y, y)

)
,

which implies thatMs(y, y) = , so we have fy = gy. Therefore, fy = gy = Sy = Ty.
Now, similar to the proof of Theorem ., indeed from (.)-(.), we have gy = y.

Therefore, fy = gy = Sy = Ty = y, as required. The last conclusion follows similarly as in the
proof of Theorem .. �

Now, we give an example to support our result.

Example . Let X = [,∞) be equipped with the b-dislocated metric bd(x, y) = (x + y)

where s =  and suppose that ‘�’ is the usual ordering ≤ on X. Obviously, (X,bd,≤) is an
ordered complete b-dislocated metric space. Let f , g,S,T : X → X be defined as

f (x) = ln

(
 +

x


)
, g(x) = ln

(
 +

x


)
,

S(x) = ex – , T(x) = ex – .

For each x ∈ X, we have + x
 ≤ ex and + x

 ≤ ex, so f (x) = ln(+ x
 ) ≤ x, g(x) = ln(+ x

 ) ≤ x,
x ≤ ex –  = S(x) and x ≤ ex –  = T(x). Thus, f and g are dominated and T and S are
dominating with f (X) = g(X) = S(X) = T(X) = [,∞). Also, the pair (g,T) is compatible,
g is continuous and (f ,S) is weakly compatible. Let the control functions ψ ,ϕ : [,∞) →
[,∞) be defined as ψ(t) = bt and ϕ(t) = (b– )t, for all t ∈ [,∞), where  < b ≤ 

 . Note
that

ψ
(
sbd

(
f (x), g(y)

))
= b

(
f (x) + g(y)

)

= b
(
ln

(
 +

x


)
+ ln

(
 +

y


))

≤ b
(
x

+
y


)

=



b(x + y)

≤ (
ex –  + ey – 

)
= bd

(
S(x),T(y)

)
≤ M(x, y) =ψ

(
M(x, y)

)
– ϕ

(
M(x, y)

)
, x, y ∈ X.

Thus, f , g , S and T satisfy all the conditions of Theorem .. Moreover,  is a unique
common fixed point of f , g , S and T .
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Corollary . Let (X,bd,�) be an ordered complete b-dislocated metric space, and let f
and g be two dominated self-maps on X . Suppose that for every two comparable elements
x, y ∈ X,

ψ
(
sbd(fx, gy)

) ≤ ψ
(
Ms(x, y)

)
– ϕ

(
Ms(x, y)

)

is satisfied, where

Ms(x, y) =max

{
bd(x, y),bd(fx,x),bd(gy, y),

bd(x, gy) + bd(fx, y)
s

}
,

ψ ∈ 
 and ϕ ∈ �. If for every non-increasing sequence {xn} and a sequence {yn} with yn �
xn, for all n such that yn → u, we have u � xn, then f and g have a common fixed point.
Moreover, the set of common fixed points of f and g is well ordered if and only if f and g
have one and only one common fixed point.

Proof Taking S and T as identity maps on X, the result follows from Theorem .. �

Corollary . Let (X,bd,�) be an ordered complete b-dislocated metric space. Let f and
g be dominated self-maps on X. Suppose that for every two comparable elements x, y ∈ X,

sbd(fx, gy) ≤Ms(x, y) – ϕ
(
Ms(x, y)

)

is satisfied, where

Ms(x, y) =max

{
bd(x, y),bd(fx,x),bd(gy, y),

bd(x, gy) + bd(fx, y)
s

}
,

and ϕ ∈ �. If for every non-increasing sequence {xn} and a sequence {yn} with yn � xn, for
all n such that yn → u, it implies that u � xn, then f and g have a common fixed point.
Moreover, the set of common fixed points of f and g is well ordered if and only if f and g
have one and only one common fixed point.

Proof If we take S and T as the identity maps on X and ψ(t) = t for all t ∈ [,∞), then
from Theorem . it follows that f and g have a common fixed point. �

Remark . As corollaries we can state partial metric space as well as b-metric space ver-
sions of our proved results in a similar way, which extends recent results in these settings.

3 Existence of a common solution for a system of integral equations
Consider the following system of integral equations:

x(t) =
∫ b

a
K

(
t, r,x(r)

)
dr,

x(t) =
∫ b

a
K

(
t, r,x(r)

)
dr,

(.)

where b > a ≥ . The purpose of this section is to present an existence theorem for a
solution to (.) that belongs to X = C[a,b] (the set of continuous real functions defined
on [a,b]) by using the obtained result in Corollary ..
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Here, K,K : [a,b] × [a,b] × R → R. The considered problem can be reformulated in
the following manner.
Let f , g : X → X be the mappings defined by

fx(t) =
∫ b

a
K

(
t, r,x(r)

)
dr,

gx(t) =
∫ b

a
K

(
t, r,x(r)

)
dr

for all x ∈ X and for all t ∈ [a,b].
Then the existence of a solution to (.) is equivalent to the existence of a common fixed

point of f and g . According to Example ., X equipped with

bd(u, v) = max
t∈[a,b]

(∣∣u(t)∣∣ + ∣∣v(t)∣∣)p

for all u, v ∈ X, is a complete b-dislocated metric space with s = p–.
We endow X with the partial ordering � given by

x � y ⇐⇒ x(t)≤ y(t)

for all t ∈ [a,b]. Moreover, in [], it is proved that (X,�) is regular.
Now, we will prove the following result.

Theorem . Suppose that the following hypotheses hold:
(i) K,K : [a,b]× [a,b]× R→ R are continuous;
(ii) for all t, r ∈ [a,b] and x ∈ X , we have

x(t)≤min

{∫ b

a
K

(
t, r,x(r)

)
dr,

∫ b

a
K

(
t, r,x(r)

)
dr

}
;

(iii) for all r, t ∈ [a,b] and x, y ∈ X with x � y, we have

(∣∣K
(
t, r,x(r)

)∣∣ + ∣∣K
(
t, r, y(r)

)∣∣) ≤ ξ (t, r) ln
(
 +

(∣∣x(r)∣∣ + ∣∣y(r)∣∣)p),

where ξ is a continuous function satisfying

sup
t∈[a,b]

(∫ b

a
ξ (t, r)p dr

)
<


p–p(b – a)p–

.

Then the integral equations (.) have a common solution x ∈ X.

Proof From condition (ii), f and g are dominated self-maps on X.
Let ≤ p,q <∞ with 

p +

q = .
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Now, let x, y ∈ X be such that x� y. From condition (iii), for all t ∈ [a,b], we have

(
p–

(∣∣fx(t)∣∣ + ∣∣gy(t)∣∣))p

≤ p
–p

(∫ b

a

(∣∣K
(
t, r,x(r)

)∣∣ + ∣∣K
(
t, r,x(r)

)∣∣)dr
)p

≤ p
–p

[(∫ b

a
q dr

) 
q

(∫ b

a

(∣∣K
(
t, r,x(r)

)∣∣ + ∣∣K
(
t, r,x(r)

)∣∣)p dr
) 

p
] p

≤ p
–p(b – a)

p
q

(∫ b

a
ξ (t, r)p

(
ln

(
 +

(∣∣x(r)∣∣ + ∣∣y(r)∣∣)p))p dr
)

≤ p
–p(b – a)

p
q

(∫ b

a
ξ (t, r)p

(
ln

(
 + bd(x, y)

))p dr
)

≤ p
–p(b – a)

p
q

(∫ b

a
ξ (t, r)p

(
ln

(
 +Ms(x, y)

))p dr
)

= p
–p(b – a)p–

(∫ b

a
ξ (t, r)p dr

)(
ln

(
 +Ms(x, y)

))p

<
(
ln

(
 +Ms(x, y)

))p
=Ms(x, y)p –

(
Ms(x, y)p –

(
ln

(
 +Ms(x, y)

))p).
Hence,

(
sbd(fx, gy)

)p = s sup
t∈[a,b]

(∣∣fx(t)∣∣ + ∣∣gy(t)∣∣)p

≤Ms(x, y)p –
(
Ms(x, y)p –

(
ln

(
 +Ms(x, y)

))p).
Takingψ(t) = tp and ϕ(t) = tp–(ln(+ t))p in Corollary ., there exists x ∈ X, a common

fixed point of f and g , that is, x is a solution for (.). �
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