
Chen and Yang Journal of Inequalities and Applications 2013, 2013:485
http://www.journalofinequalitiesandapplications.com/content/2013/1/485

RESEARCH Open Access

Half-discrete Hardy-Hilbert’s inequality with
two interval variables
Qiang Chen1 and Bicheng Yang2*

*Correspondence:
bcyang@gdei.edu.cn
2Department of Mathematics,
Guangdong University of
Education, Guangzhou, Guangdong
510303, P.R. China
Full list of author information is
available at the end of the article

Abstract
By using the way of weight functions and the technique of real analysis, a half-discrete
Hardy-Hilbert’s inequality with two interval variables is derived. The equivalent forms,
operator expressions, some reverses as well as a few particular cases are obtained.
MSC: 26D15; 47A07

Keywords: Hardy-Hilbert’s inequality; weight function; equivalent form; operator
expression; reverse

1 Introduction
Assuming that p > , 

p +

q = , f (≥ ) ∈ Lp(R+), g(≥ ) ∈ Lq(R+),

‖f ‖p =
{∫ ∞


f p(x)dx

} 
p
> , ‖g‖q =

{∫ ∞


gq(y)dy

} 
q
> ,

we obtain the following Hardy-Hilbert’s integral inequality (cf. []):

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy <
π

sin(π/p)
‖f ‖p‖g‖q, ()

where the constant factor π
sin(π/p) is best possible. If am,bn ≥ , a = {am}∞m= ∈ lp, b =

{bn}∞n= ∈ lq,

‖a‖p =
{ ∞∑

m=

apm

} 
p

> , ‖b‖q =
{ ∞∑

n=

bqn

} 
q

> ,

then we still have the following discrete Hardy-Hilbert’s inequality with the same best
constant factor π

sin(π/p) :

∞∑
m=

∞∑
n=

ambn
m + n

<
π

sin(π/p)
‖a‖p‖b‖q. ()

Inequalities () and () are important in mathematical analysis and its applications (cf.
[–]). In , Yang [] proved an extension of () (for p = q = ) by introducing an inde-
pendent parameter λ ∈ (, ]. Recently, refining the results of [], Yang [] derived some ex-
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tensions of () and () as follows: For λ > , r > , r +

s = , φ(x) = xp(– λ

r )–,ψ(x) = xq(– λ
s )–,

 < ‖f ‖p,φ :=
{∫ ∞


φ(x)

∣∣f (x)∣∣p dx} 
p
<∞,  < ‖g‖q,ψ <∞,

 < ‖a‖p,φ :=

{ ∞∑
n=

φ(n)|an|n
} 

p

<∞,  < ‖b‖q,ψ < ∞,

we have∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy < B
(

λ

r
,
λ

s

)
‖f ‖p,φ‖g‖q,ψ , ()

∞∑
m=

∞∑
n=

ambn
(m + n)λ

< B
(

λ

r
,
λ

s

)
‖a‖p,φ‖b‖q,ψ ()

( < λ ≤ min{r, s}), where

B(u, v) =
∫ ∞



tu–

( + t)u+v
dt (u, v > )

is the beta function. Some Hilbert-type inequalities about other measurable kernels are
provided in [–].
Regarding the case of half-discrete Hilbert-type inequalities with non-homogeneous

kernels, Hardy, Littlewood and Polya provided some results in Theorem  of []. How-
ever, they had not proved that the constant factors in the new inequalities were best possi-
ble. Yang [] proved some results by introducing an interval variable and that the constant
factors are best possible.
In this paper, by using the way of weight functions and the technique of real analysis, a

half-discrete Hardy-Hilbert’s inequality with the best constant factor is given as follows:

∫ ∞


f (x)

∞∑
n=

an
(x + n)λ

dx < B
(

λ

r
,
λ

s

)
‖f ‖p,φ‖a‖q,ψ ( < λ ≤ s). ()

The best extension of () with two interval variables, some equivalent forms, operator
expressions, some reverses as well as a few particular cases are also considered.

2 Some lemmas
Lemma  If r > , 

r +

s = , λ > , u(x) (x ∈ (b, c), –∞ ≤ b < c ≤ ∞) and v(x) (x ∈ (n –

,∞), n ∈ N) are strictly increasing differential functions, and [v(x)] λ
s –v′(x) is decreasing

in (n – ,∞), u(b+) = v((n – )+) = , u(c–) = v(∞) = ∞, Nn = {n,n + , . . .}. Define two
weight functions as follows:

ω(n) :=
[
v(n)

] λ
s

∫ c

b

[u(x)] λ
r –u′(x)

(u(x) + v(n))λ
dx, n ∈Nn , ()

� (x) :=
[
u(x)

] λ
r

∞∑
n=n

[v(n)] λ
s –v′(n)

(u(x) + v(n))λ
, x ∈ (b, c). ()
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Then the following inequality holds:

 < B
(

λ

r
,
λ

s

)(
 – θλ(x)

)
< � (x) < ω(n) = B

(
λ

r
,
λ

s

)
, ()

θλ(x) :=


B( λ
r ,

λ
s )

∫ v(n)
u(x)



t λ
s – dt

(t + )λ
=O

(


[u(x)]λ/s

)
, x ∈ (b, c). ()

Proof Setting t = u(x)
v(n) in (), we find dt = 

v(n)u
′(x)dx, and

ω(n) =
∫ ∞




(t + )λ

t
λ
r – dt = B

(
λ

r
,
λ

s

)
.

For any x ∈ (a,b), in view of the fact that


(u(x) + v(y))λ

[
v(y)

] λ
s –v′(y)

(
y ∈ (n – ,∞)

)
is strictly decreasing, we find

� (x) <
[
u(x)

] λ
r

∫ ∞

n–


(u(x) + v(y))λ

[
v(y)

] λ
s –v′(y)dy

t=v(y)/u(x)=
∫ ∞



t λ
s – dt

(t + )λ
= B

(
λ

s
,
λ

r

)
= ω(n),

� (x) >
[
u(x)

] λ
r

∫ ∞

n


(u(x) + v(y))λ

[
v(y)

] λ
s –v′(y)dy

t=v(y)/u(x)=
∫ ∞

v(n)
u(x)


(t + )λ

t
λ
s – dt

= B
(

λ

r
,
λ

s

)[
 – θλ(x)

]
, x ∈ (b, c),

 < θλ(x) =


B( λ
r ,

λ
s )

∫ v(n)
u(x)




(t + )λ

t
λ
s – dt

<


B( λ
r ,

λ
s )

∫ v(n)
u(x)


t

λ
s – dt =

s
λB( λ

r ,
λ
s )

(
v(n)
u(x)

) λ
s
.

Hence, we have () and (). �

Lemma  Let the assumptions of Lemma  be fulfilled and, additionally, p >  (p �= ),

p +


q = , an ≥ , n≥ n (n ∈N), f (x) is a non-negative measurable function in (b, c). Then

(i) For p > , we have the following inequalities:

J :=

{ ∞∑
n=n

v′(n)

[v(n)]–
pλ
s

[∫ c

b

f (x)
(u(x) + v(n))λ

dx
]p

} 
p

≤
[
B
(

λ

r
,
λ

s

)] 
q
{∫ c

b
� (x)

[u(x)]p(– λ
r )–

[u′(x)]p–
f p(x)dx

} 
p
, ()
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L :=

{∫ c

b

[� (x)]–qu′(x)

[u(x)]–
qλ
r

[ ∞∑
n=n

an
(u(x) + v(n))λ

]q

dx

} 
q

≤
{
B
(

λ

r
,
λ

s

) ∞∑
n=n

[v(n)]q(– λ
s )–

[v′(n)]q–
aqn

} 
q

. ()

(ii) For  < p < , we have the reverses of () and ().

Proof (i) By Hölder’s inequality with weight (cf. []) and (), it follows that

[∫ c

b

f (x)
(u(x) + v(n))λ

dx
]p

=
{∫ c

b


(u(x) + v(n))λ

[
[u(x)](– λ

r )/q

[v(n)](– λ
s )/p

[v′(n)]/p

[u′(x)]/q
f (x)

][
[v(n)](– λ

s )/p

[u(x)](– λ
r )/q

[u′(x)]/q

[v′(n)]/p

]
dx

}p

≤
∫ c

b

v′(n)
(u(x) + v(n))λ

[u(x)](– λ
r )(p–)

[v(n)]– λ
s [u′(x)]p–

f p(x)dx

×
{∫ c

b

u′(x)
(u(x) + v(n))λ

[v(n)](– λ
s )(q–)

[u(x)]– λ
r [v′(n)]q–

dx
}p–

=
{

ω(n)[v(n)]q(– λ
s )–

[v′(n)]q–

}p– ∫ c

b

v′(n)f p(x)
(u(x) + v(n))λ

[u(x)](– λ
r )(p–) dx

[v(n)]– λ
s [u′(x)]p–

=
[B( λ

r ,
λ
s )]

p–

[v(n)]
pλ
s –v′(n)

∫ c

b

v′(n)f p(x)
(u(x) + v(n))λ

[u(x)](– λ
r )(p–) dx

[v(n)]– λ
s [u′(x)]p–

.

Then, by the Lebesgue term-by-term integration theorem (cf. []), we obtain

J ≤
[
B
(

λ

r
,
λ

s

)] 
q
{ ∞∑
n=n

∫ c

b

v′(n)f p(x)
(u(x) + v(n))λ

[u(x)](– λ
r )(p–) dx

[v(n)]– λ
s [u′(x)]p–

} 
p

=
[
B
(

λ

r
,
λ

s

)] 
q
{∫ c

b

∞∑
n=n

v′(n)f p(x)
(u(x) + v(n))λ

[u(x)](– λ
r )(p–) dx

[v(n)]– λ
s [u′(x)]p–

} 
p

=
[
B
(

λ

r
,
λ

s

)] 
q
{∫ c

b
� (x)

[u(x)]p(– λ
r )–

[u′(x)]p–
f p(x)dx

} 
p
,

and () follows.
Still, by Hölder’s inequality, we have

[ ∞∑
n=n

an
(u(x) + v(n))λ

]q

=

{ ∞∑
n=n


(u(x) + v(n))λ

[
[u(x)](– λ

r )/q

[v(n)](– λ
s )/p

[v′(n)]/p

[u′(x)]/q

][
[v(n)](– λ

s )/p

[u(x)](– λ
r )/q

[u′(x)]/q

[v′(n)]/p
an

]}q

≤
{ ∞∑
n=n


(u(x) + v(n))λ

[u(x)](– λ
r )(p–)

[v(n)]– λ
s

v′(n)
[u′(x)]p–

}q–
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×
∞∑

n=n


(u(x) + v(n))λ

[v(n)](– λ
s )(q–)

[u(x)]– λ
r

u′(x)
[v′(n)]q–

aqn

=
[u(x)]–

qλ
r

[� (x)]–qu′(x)

∞∑
n=n

[u(x)] λ
r –u′(x)[v(n)] λ

s

(u(x) + v(n))λ
[v(n)]q(– λ

s )–

[v′(n)]q–
aqn.

Then, by the Lebesgue term-by-term integration theorem, we have

L ≤
{∫ c

b

∞∑
n=n

[u(x)] λ
r –u′(x)[v(n)] λ

s

(u(x) + v(n))λ
[v(n)]q(– λ

s )–

[v′(n)]q–
aqn dx

} 
q

=

{ ∞∑
n=n

[[
v(n)

] λ
s

∫ c

b

[u(x)] λ
r –u′(x)

(u(x) + v(n))λ
dx

]
[v(n)]q(– λ

s )–

[v′(n)]q–
aqn

} 
q

=

{ ∞∑
n=n

ω(n)
[v(n)]q(– λ

s )–

[v′(n)]q–
aqn

} 
q

,

and then, in view of (), inequality () follows.
(ii) By reverse Hölder’s inequality (cf. []) and in the same way, for q < , we can obtain

the reverses of () and (). �

3 Main results
We set 	(x) := [u(x)]p(–

λ
r )–

[u′(x)]p– , 	̃(x) := ( – θλ(x))	(x) (x ∈ (b, c)), and


(n) :=
[v(n)]q(– λ

s )–

[v′(n)]q–
(n≥ n,n ∈N)

(θλ(x) is indicated by ()), wherefrom

[
	(x)

]–q = u′(x)

[u(x)]–
qλ
r
,

[

(n)

]–p = v′(n)

[v(n)]–
pλ
s
.

Theorem  Let the assumptions of Lemma  be fulfilled and, additionally, p > , 
p +


q = ,

f (x)≥  (x ∈ (b, c)), an ≥  (n≥ n, n ∈N), f ∈ Lp,	(b, c), a = {an}∞n=n ∈ lq,
 ,

 < ‖f ‖p,	 =
{∫ c

b
	(x)f p(x)dx

} 
p
< ∞

and  < ‖a‖q,
 = {∑∞
n=n 
(n)aqn} 

q < ∞. Then the following equivalent inequalities hold:

I :=
∞∑

n=n

∫ c

b

anf (x)dx
(u(x) + v(n))λ

=
∫ c

b

∞∑
n=n

anf (x)dx
(u(x) + v(n))λ

< B
(

λ

r
,
λ

s

)
‖f ‖p,	‖a‖q,
 , ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/485
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J :=

{ ∞∑
n=n

[

(n)

]–p[∫ c

b

f (x)
(u(x) + v(n))λ

dx
]p

} 
p

< B
(

λ

r
,
λ

s

)
‖f ‖p,	, ()

L :=

{∫ c

b

[
	(x)

]–q[ ∞∑
n=n

an
(u(x) + v(n))λ

]q

dx

} 
q

< B
(

λ

r
,
λ

s

)
‖a‖q,
 , ()

where the constant factor B( λ
r ,

λ
s ) is best possible.

Proof By the Lebesgue term-by-term integration theorem, there are two expressions for
I in (). In view of () and (), we obtain ().
By Hölder’s inequality, we have

I =
∞∑

n=n

[



–
q (n)

∫ c

b

f (x)dx
(u(x) + v(n))λ

][




q (n)an

] ≤ J‖a‖q,
 . ()

Then, by (), we have (). On the other hand, assuming that () is valid, we set

an :=
[

(n)

]–p[∫ c

b

f (x)
(u(x) + v(n))λ

dx
]p–

, n≥ n,

then it follows that Jp– = ‖a‖q,
 . By (), we find J < ∞. If J = , then () is trivially valid;
if J > , then, by (), we have

‖a‖qq,
 = Jp = I < B
(

λ

r
,
λ

s

)
‖f ‖p,	‖a‖q,
 ,

‖a‖q–q,
 = J < B
(

λ

r
,
λ

s

)
‖f ‖p,	,

and thus we get (), which is equivalent to ().
In view of () and (), we have ().
By Hölder’s inequality, we find

I =
∫ c

b

[
	


p (x)f (x)

][
	

–
p (x)

∞∑
n=n

an
(u(x) + v(n))λ

]
dx ≤ ‖f ‖p,	L. ()

Then, by (), we have (). On the other hand, assuming that () is valid, we set

f (x) :=
[
	(x)

]–q[ ∞∑
n=n

an
(u(x) + v(n))λ

]q–

, x ∈ (b, c),

http://www.journalofinequalitiesandapplications.com/content/2013/1/485
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then it follows that Lq– = ‖f ‖p,	. By (), we find L <∞. If L = , then () is trivially valid;
if L > , then, by (), we have

‖f ‖pp,	 = Lq = I < B
(

λ

r
,
λ

s

)
‖f ‖p,	‖a‖q,
 ,

‖f ‖p–p,	 = L < B
(

λ

r
,
λ

s

)
‖a‖q,
 ,

and we have (), which is equivalent to ().
Hence inequalities (), () and () are equivalent.
There exists a unified constant d ∈ (b, c) satisfying u(d) = . For  < ε < qλ

s , setting

f̃ (x) := , x ∈ (b,d); f̃ (x) :=
[
u(x)

] λ
r –

ε
p–u′(x), x ∈ [d, c),

ãn := [v(n)]
λ
s –

ε
q–v′(n), n≥ n, if there exists a positive number k (≤ B( λ

r ,
λ
s )) such that ()

is valid when replacing B( λ
r ,

λ
s ) by k, then, in particular, we have

Ĩ :=
∫ c

b

∞∑
n=n

ãn
(u(x) + v(n))λ

f̃ (x)dx < k‖̃f ‖p,	‖̃a‖q,


= k
(

ε

) 
p
{[

v(n)
]–ε–v′(n) +

∞∑
n=n+

[
v(n)

]–ε–v′(n)

} 
q

< k
(

ε

) 
p
{[

v(n)
]–ε–v′(n) +

∫ ∞

n

[
v(y)

]–ε–v′(y)dy
} 

q

=
k
ε

{
ε
[
v(n)

]–ε–v′(n) +
[
v(n)

]–ε} 
q . ()

In view of the decreasing property of [v(y)]
λ
s –

ε
q –v′(y)

(u(x)+v(y))λ , we find

Ĩ =
∫ c

d

[
u(x)

] λ
r –

ε
p–u′(x)

∞∑
n=n

[v(n)]
λ
s –

ε
q–v′(n)

(u(x) + v(n))λ
dx

≥
∫ c

d

[
u(x)

] λ
r –

ε
p–u′(x)

[∫ ∞

n

[v(y)]
λ
s –

ε
q–v′(y)

(u(x) + v(y))λ
dy

]
dx

t=v(y)/u(x)=
∫ c

d

[
u(x)

]–ε–u′(x)
[∫ ∞

v(n)
u(x)

t
λ
s –

ε
q–

( + t)λ
dt

]
dx

=
∫ c

d

[
u(x)

]–ε–u′(x)
[∫ ∞



t
λ
s –

ε
q– dt

( + t)λ
–

∫ v(n)
u(x)



t
λ
s –

ε
q– dt

( + t)λ

]
dx

=

ε
B
(

λ

s
–

ε

q
,
λ

r
+

ε

q

)
–A(x), ()

A(x) :=
∫ c

d

[
u(x)

]–ε–u′(x)
[∫ v(n)

u(x)



t
λ
s –

ε
q–

( + t)λ
dt

]
dx.

http://www.journalofinequalitiesandapplications.com/content/2013/1/485
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Since we find

 < A(x) <
∫ c

d

[
u(x)

]–ε–u′(x)
[∫ v(n)

u(x)


t

λ
s –

ε
q– dt

]
dx

=
[v(n)]

λ
s –

ε
q

( λ
s –

ε
q )(

λ
s +

ε
p )
,

then it follows that

A(x) =O()
(
ε → +

)
.

By () and (), we have

B
(

λ

s
–

ε

q
,
λ

r
+

ε

q

)
– εO()

< k
{
ε
[
v(n)

]–ε–v′(n) +
[
v(n)

]–ε} 
q ,

and then B( λ
r ,

λ
s ) ≤ k (ε → +). Hence k = B( λ

r ,
λ
s ) is the best possible constant factor of

().
We conform that the constant factor B( λ

r ,
λ
s ) in () (()) is best possible. Otherwise,

we would reach a contradiction by () (()) that the constant factor in () is not best
possible. �

Remark  We set two weight normed spaces as follows:

Lp,	(b, c) =
{
f ;‖f ‖p,	 < ∞}

, lq,
 =
{
a = {an}∞n=n ;‖a‖q,
 <∞}

.

(i) Define a half-discrete Hilbert’s operator as follows: T : Lp,	(b, c) → lp,
–p , for f ∈
Lp,	(b, c), there exists a unified representation Tf ∈ lp,
–p satisfying

Tf (n) =
∫ c

b

f (x)
(u(x) + v(n))λ

dx, n≥ n.

Then, by (), it follows that

‖Tf ‖p.
–p < B
(

λ

r
,
λ

s

)
‖f ‖p,	,

and then T is bounded with

‖T‖ ≤ B
(

λ

r
,
λ

s

)
.

Since the constant factor in () is best possible, we have ‖T‖ = B( λ
r ,

λ
s ).

(ii) Define a half-discrete Hilbert’s operator as follows:

T̃ : lq,
 → Lq,	–q (b, c),

http://www.journalofinequalitiesandapplications.com/content/2013/1/485
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for a ∈ lq,
 , there exists a unified representation T̃a ∈ Lq,	–q (b, c) satisfying

(T̃a)(x) =
∞∑

n=n

an
(u(x) + v(n))λ

, x ∈ (b, c).

Then, by () it follows that

‖T̃a‖q·	–q < B
(

λ

r
,
λ

s

)
‖a‖q,
 ,

and then T̃ is bounded with

‖T̃‖ ≤ B
(

λ

r
,
λ

s

)
.

Since the constant factor in () is best possible, we have ‖T̃‖ = B( λ
r ,

λ
s ).

In the following theorem, for  < p < , we still use the formal symbols of ‖f ‖p,	̃ and
‖a‖q,
 et al.

Theorem  Let the assumptions of Lemma  be fulfilled and, additionally,  < p < ,

p +


q = , f (x)≥  (x ∈ (b, c)), an ≥  (n≥ n, n ∈N),

 < ‖f ‖p,	̃ =
{∫ c

b

(
 – θλ(x)

)
	(x)f p(x)dx

} 
p
< ∞

and  < ‖a‖q,
 = {∑∞
n=n 
(n)aqn} 

q < ∞. Other conditions are similar to those in Theo-
rem , then we have the following equivalent inequalities:

I :=
∞∑

n=n

∫ c

b

anf (x)dx
(u(x) + v(n))λ

=
∫ c

b

∞∑
n=n

anf (x)dx
(u(x) + v(n))λ

> B
(

λ

r
,
λ

s

)
‖f ‖p,	̃‖a‖q,
 , ()

J :=

{ ∞∑
n=n

[

(n)

]–p[∫ c

b

f (x)
(u(x) + v(n))λ

dx
]p

} 
p

> B
(

λ

r
,
λ

s

)
‖f ‖p,	̃, ()

L̃ :=

{∫ c

b

[
	̃(x)

]–q[ ∞∑
n=n

an
(u(x) + v(n))λ

]q

dx

} 
q

> B
(

λ

r
,
λ

s

)
‖a‖q,
 . ()

Moreover, if there exists a constant δ >  such that for any δ ∈ [, δ), [v(y)]
λ
s +δ–v′(y) is

decreasing in (n – ,∞), then the constant factor B( λ
r ,

λ
s ) in the above inequalities is best

possible.

http://www.journalofinequalitiesandapplications.com/content/2013/1/485


Chen and Yang Journal of Inequalities and Applications 2013, 2013:485 Page 10 of 13
http://www.journalofinequalitiesandapplications.com/content/2013/1/485

Proof In view of () and the reverse of (), for

� (x) > B
(

λ

r
,
λ

s

)(
 – θλ(x)

)
,

we have ().
By reverse Hölder’s inequality, we obtain

I =
∞∑

n=n

[



–
q (n)

∫ c

b

f (x)dx
(u(x) + v(n))λ

][




q (n)an

]
≥ J‖a‖q,
 . ()

Then, by (), we have (). On the other hand, assuming that () is valid, we set an as in
Theorem , then it follows that Jp– = ‖a‖q,
 . By the reverse of (), we find J > . If J =∞,
then () is trivially valid; if J < ∞, then, by (), we have

‖a‖qq,
 = Jp = I > B
(

λ

r
,
λ

s

)
‖f ‖p,	̃‖a‖q,
 ,

‖a‖q–q,
 = J > B
(

λ

r
,
λ

s

)
‖f ‖p,	̃,

and we have (), which is equivalent to ().
In view of () and the reverse of (), for

[
� (x)

]–q > [
B
(

λ

r
,
λ

s

)(
 – θλ(x)

)]–q

(q < ),

we have ().
By reverse Hölder’s inequality, we have

I =
∫ c

b

[
	̃


p (x)f (x)

][
	̃

–
p (x)

∞∑
n=n

an
(u(x) + v(n))λ

]
dx

≥ ‖f ‖p,	̃L̃. ()

Then, by (), we have (). On the other hand, assuming that () is valid, setting

f (x) :=
[
	̃(x)

]–q[ ∞∑
n=n

an
(u(x) + v(n))λ

]q–

, x ∈ (b, c),

then L̃q– = ‖f ‖p,	̃. By the reverse of (), we find L̃ > . If L̃ =∞, then () is trivially valid;
if L̃ < ∞, then, by (), we have

‖f ‖pp,	̃ = L̃q = I > B
(

λ

r
,
λ

s

)
‖f ‖p,	̃‖a‖q,
 ,

‖f ‖p–p,	̃ = L̃ > B
(

λ

r
,
λ

s

)
‖a‖q,
 ,

and we have (), which is equivalent to ().

http://www.journalofinequalitiesandapplications.com/content/2013/1/485
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Hence inequalities (), () and () are equivalent.
For  < ε <min{ |q|λ

r , |q|δ}, setting f̃ (x) = , x ∈ (b,d);

f̃ (x) =
[
u(x)

] λ
r –

ε
p–u′(x), x ∈ [d, c),

ãn = [v(n)]
λ
s –

ε
q–v′(n), n ≥ n, if there exists a positive number k (≥ B( λ

r ,
λ
s )) such that ()

is still valid when replacing B( λ
r ,

λ
s ) by k, then, in particular, for q < , in view of (), we

have

Ĩ :=
∫ c

b

∞∑
n=n

ãñf (x)dx
(u(x) + v(n))λ

> k‖̃f ‖p,	̃‖̃a‖q,


= k
{∫ c

d

(
 –O

(


[u(x)]λ/s

))[
u(x)

]–ε–u′(x)dx
} 

p
{ ∞∑
n=n

[
v(n)

]–ε–v′(n)

} 
q

= k
{

ε
–O()

} 
p
{[

v(n)
]–ε–v′(n) +

∞∑
n=n+

[
v(n)

]–ε–v′(n)

} 
q

> k
{

ε
–O()

} 
p
{[

v(n)
]–ε–v′(n) +

∫ ∞

n

[
v(y)

]–ε–v′(y)dy
} 

q

=
k
ε

{
 – εO()

} 
p
{
ε
[
v(n)

]–ε–v′(n) +
[
v(n)

]–ε} 
q . ()

In view of the decreasing property of [v(y)]
λ
s –

ε
q –v′(y)

(u(x)+v(y))λ , we find

Ĩ =
∫ c

d

[
u(x)

] λ
r –

ε
p–u′(x)

∞∑
n=n

[v(n)]
λ
s –

ε
q–v′(n)

(u(x) + v(n))λ
dx

≤
∫ c

d

[
u(x)

] λ
r –

ε
p–u′(x)

[∫ ∞

n–

[v(y)]
λ
s –

ε
q–v′(y)

(u(x) + v(y))λ
dy

]
dx

t=v(y)/u(x)=
∫ c

d

[
u(x)

]–ε–u′(x)
[∫ ∞



t
λ
s –

ε
q–

( + t)λ
dt

]
dx

=

ε
B
(

λ

s
–

ε

q
,
λ

r
+

ε

q

)
. ()

By () and (), we have

B
(

λ

s
–

ε

q
,
λ

r
+

ε

q

)
> k

{
 – εO()

} 
p
{
ε
[
v(n)

]–ε–v′(n) +
[
v(n)

]–ε} 
q ,

and then

B
(

λ

r
,
λ

s

)
≥ k

(
ε → +

)
.

Hence k = B( λ
r ,

λ
s ) is the best possible constant factor of ().
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We conform that the constant factor B( λ
r ,

λ
s ) in () (()) is best possible. Otherwise,

we would reach a contradiction by () (()) that the constant factor in () is not best
possible. �

Remark  (i) If α > , u(x) = xα , b = , c = ∞, v(n) = nα , n = , in view of [v(x)] λ
s –v′(x) =

αx αλ
s – is decreasing, then we have  < αλ ≤ s and for α = ,  < λ ≤ s, u(x) = x (x ∈ (,∞)),

v(n) = n (n ∈N) in (), () and (), we have () and the following equivalent inequalities:

{ ∞∑
n=

n
pλ
s –

[∫ ∞



f (x)
(x + n)λ

dx
]p

} 
p

< B
(

λ

r
,
λ

s

)
‖f ‖p,φ , ()

{∫ ∞


x

qλ
r –

[ ∞∑
n=

an
(x + n)λ

]q

dx

} 
q

< B
(

λ

r
,
λ

s

)
‖a‖q,ψ . ()

(ii) For u(x) = lnx, b = , c =∞, v(n) = lnn, n = ,  < λ ≤ s in (), () and (), we have
the following half-discrete Mulholland’s inequality and its equivalent forms:

∫ ∞


f (x)

∞∑
n=

an
(lnnx)λ

dx < B
(

λ

r
,
λ

s

)
‖f ‖p,φ̂‖a‖q,ψ̂ , ()

{ ∞∑
n=

(lnn)
pλ
s –

n

[∫ ∞



f (x)
(lnnx)λ

dx
]p

} 
p

< B
(

λ

r
,
λ

s

)
‖f ‖p,φ̂ , ()

{∫ ∞



(lnx)
qλ
r –

x

[ ∞∑
n=

an
(lnnx)λ

]q

dx

} 
q

< B
(

λ

r
,
λ

s

)
‖a‖q,ψ̂ , ()

where φ̂(x) = (lnx)p(– λ
r )–xp– and ψ̂(n) = (lnn)q(– λ

s )–nq–.
(iii) For x = 

t , g(t) = tλ–f ( t ) in (), () and (), we can obtain the following equivalent
inequalities with non-homogeneous kernel and the best constant factor B( λ

r ,
λ
s ):

∫ ∞


g(t)

∞∑
n=

an
( + tn)λ

dt < B
(

λ

r
,
λ

s

)
‖g‖p,ψ‖a‖q,ψ , ()

{ ∞∑
n=

n
pλ
s –

[∫ ∞



g(t)
( + tn)λ

dt
]p

} 
p

< B
(

λ

r
,
λ

s

)
‖g‖p,ψ , ()

{∫ ∞


t
qλ
s –

[ ∞∑
n=

an
( + tn)λ

]q

dt

} 
q

< B
(

λ

r
,
λ

s

)
‖a‖q,ψ . ()

In fact, we can show that (), () and () are respectively equivalent to (), () and
(), and then it follows that (), () and () are equivalent with the same best constant
factor B( λ

r ,
λ
s ).
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