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1 Introduction and preliminaries
The metric fixed point theory is very important and useful in mathematics. It can be
applied in various branches of mathematics, variational inequalities optimization and ap-
proximation theory. In , Jungck [] proved a common fixed point theorem for com-
muting maps generalizing the Banach contraction mapping principle. This result was fur-
ther generalized and extended in various ways by many authors. On the other hand, Sessa
[] defined weak commutativity as follows.
Let (X,d) be a metric space, the self-mappings f , g are said to be weakly commuting if

d(fg(x), gf (x))≤ d(g(x), f (x)) for all x ∈ X. Further, Jungck [] introducedmore generalized
commutativity, the so-called compatibility, which is more general than weak commutativ-
ity. Let f , g be self-mappings of a metric space (X,d). The mappings f and g are said to be
compatible if limn→∞ d(fg(xn), gf (xn)) = , whenever {xn}∞n= is a sequence in X such that
limn→∞ f (xn) = limn→∞ g(xn) = z for some z ∈ X. Clearly, weakly commutingmappings are
compatible, but neither implication is reversible. Let X = [, ) with the usual metric. We
define mappings f and g on X by

f (x) :=

⎧⎨
⎩


 if  ≤ x < 

 ,

 – x
 if 

 ≤ x < 
and g(x) :=

⎧⎨
⎩


 if  ≤ x < 

 ,

 – x if 

 ≤ x < .

Let {xn}∞n= be a sequence in X with limn→∞ f (xn) = limn→∞ g(xn) = z, then z = 
 and

limn→∞ fg(xn) = limn→∞ gf (xn) = 
 . Thus the pair (f , g) is compatible on X. In [] Bran-

ciari obtained a fixed point theorem for a single mapping satisfying an analogue of the
Banach contraction principle for integral type inequality (see also [–]). Vijayaraju et al.
[] proved the existence of the unique common fixed point theorem for a pair of maps sat-
isfying a general contractive condition of integral type. Recently, Razani and Moradi []
proved the common fixed point theorem of integral type in modular spaces. The purpose
of this paper is to generalize and improve Jungck’s fixed point theorem [] and Branciari’s
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result [] to compatible maps in metric modular spaces. The notions of a metric modu-
lar on an arbitrary set and the corresponding modular space, more general than a metric
space, were introduced and studied recently by Chistyakov []. In the sequel, we recall
some basic concepts about modular metric spaces.

Definition . A function ω : (,∞)×X ×X → [,∞] is said to be a metric modular on
X if it satisfies the following three axioms:

(i) given x, y ∈ X , ωλ(x, y) =  for all λ >  if and only if x = y;
(ii) ωλ(x, y) = ωλ(y,x) for all λ >  and x, y ∈ X ;
(iii) ωλ+μ(x, y) ≤ ωλ(x, z) +ωμ(z, y) for all λ,μ >  and x, y, z ∈ X .
If, instead of (i), we have only the condition (i)′ ωλ(x,x) =  for all λ >  and x ∈ X, then

ω is said to be a (metric) pseudo-modular on X. The main property of a (pseudo)modular
ω on a set X is the following: given x, y ∈ X, the function  < λ �→ ωλ(x, y) ∈ [,∞] is non-
increasing on (,∞). In fact, if  < μ < λ, then (iii), (i)′ and (ii) imply

ωλ(x, y)≤ ωλ–μ(x,x) +ωμ(x, y) = ωμ(x, y)

for all x, y ∈ X. If follows that at each point λ >  the right limitωλ+(x, y) := limε→+ ωλ+ε(x,
y) and the left limit ωλ–(x, y) := limε→+ ωλ–ε(x, y) exist in [,∞] and the following two
inequalities hold:

ωλ+(x, y)≤ ωλ(x, y) ≤ ωλ–(x, y)

for all x, y ∈ X. We know that if x ∈ X, the set Xω = {x ∈ X : limλ→∞ ωλ(x,x) = } is a
metric space, called a modular space, whose metric is given by

d
ω(x, y) = inf

{
λ >  : ωλ(x, y) ≤ λ

}

for all x, y ∈ Xω . We know that (see []) if X is a real linear space, ρ : X → [,∞] and

ωλ(x, y) = ρ

(
x – y

λ

)

for all λ >  and x, y ∈ X, then ρ is modular on X if and only if ω is metric modular on X.

Example . The following indexed objects ω are simple examples of (pseudo)modulars
on a set X. Let λ >  and x, y ∈ X, we have:
(a) ωa

λ(x, y) =∞ if x �= y, ωa
λ(x, y) =  if x = y;

and if (X,d) is a (pseudo)metric space with (pseudo)metric d, then we also have:
(b) ωb

λ(x, y) =
d(x,y)
ϕ(λ) , where ϕ : (,∞)→ (,∞) is a nondecreasing function;

(c) ωc
λ(x, y) = ∞ if λ ≤ d(x, y), and ωc

λ(x, y) =  if λ > d(x, y);
(d) ωd

λ(x, y) =∞ if λ < d(x, y), and ωd
λ(x, y) =  if λ ≥ d(x, y).

Definition . Let Xω be a modular metric space.
() The sequence {xn}∞n= in Xω is said to be convergent to x ∈ Xω if ωλ(xn,x) →  as

n→ ∞ for all λ > .
() The sequence {xn}∞n= inXω is said to be Cauchy to x ∈ Xω ifωλ(xn,xm) →  asm,n→

∞ for all λ > .
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() A subset C of Xω is said to be closed if the limit of a convergent sequence of C always
belongs to C.
() A subset C of Xω is said to be complete if any Cauchy sequence of C is a convergent

sequence and its limit is in C.
() A subset C of Xω is said to be bounded if for all λ > , δω(C) = sup{ωλ(x, y);x, y ∈

C} < ∞.

2 A common fixed point theorem for contractive conditionmaps
Here, the existence of a common fixed point for ω-compatible mappings satisfying a con-
tractive condition of integral type in modular metric spaces is studied. We recall the fol-
lowing definition.

Definition . Let Xω be amodular metric space induced bymetric modular ω. Two self-
mappings T , h of Xω are called ω-compatible if ωλ(Thxn,hTxn) → , whenever {xn}∞n= is
a sequence in Xω such that hxn → z and Txn → z for some point z ∈ Xω and for λ > .

Theorem . Let Xω be a complete modular metric space. Suppose that c,k, l ∈ R
+, c > l

and T ,h : Xω → Xω are two ω-compatible mappings such that T(Xω)⊆ h(Xω) and

∫ ω λ
c
(Tx,Ty)


ϕ(t)dt ≤ k

∫ ω λ
l
(hx,hy)


ϕ(t)dt, (.)

for some k ∈ (, ) and for λ > ,where ϕ :R+ →R
+ is a Lebesgue integrable function which

is summable, nonnegative and for all ε > ,

∫ ε


ϕ(t)dt > . (.)

If one of T or h is continuous, then there exists a unique common fixed point of T and h.

Proof Let x be an arbitrary point of Xω and generate inductively the sequence {Txn}∞n=
as follows: Txn = hxn+ for each n and x = x, that is possible as T(Xω) ⊆ h(Xω). For each
integer n ≥  and for all λ > , (.) shows that

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ k

∫ ω λ
l
(hxn+,hxn)


ϕ(t)dt

≤ k
∫ ω λ

c
(Txn ,Txn–)


ϕ(t)dt

≤ k
∫ ω λ

l
(hxn ,hxn–)


ϕ(t)dt.

By the principle of mathematical induction, we can easily show that

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ kn

∫ ω λ
l
(Tx,x)


ϕ(t)dt,

which, upon taking the limit as n→ ∞, yields

lim
n→∞

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/483
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Hence (.) implies that

lim
n→∞ωλ

c
(Txn+,Txn) = .

We now show that {Txn}∞n= is Cauchy. So, for all ε > , there exists n ∈ N such that
ωλ

c
(Txn+,Txn) < ε

c for all n ∈ N with n ≥ n and λ > . Without loss of generality, sup-
posem,n ∈ N and m > n. Observe that for λ

c(m–n) > , there exists n λ
m–n

∈N such that

ω λ
c(m–n)

(Txn+,Txn) <
ε

c(m – n)

for all n ≥ n λ
m–n

. We thus obtain

ωλ
c
(Txn,Txm)

≤ ω λ
c(m–n)

(Txn,Txn+) +ω λ
c(m–n)

(Txn+,Txn+) + · · · +ω λ
c(m–n)

(Txm–,Txm)

<
ε

c(m – n)
+

ε

c(m – n)
+ · · · + ε

c(m – n)

=
ε

c

for all n,m ≥ n λ
m–n

. This implies that {Txn}∞n= is a Cauchy sequence. Since Xω is complete,
there exists z ∈ Xω such thatωλ

c
(Txn, z) →  as n→ ∞. IfT is continuous, thenTxn → Tz

and Thxn → Tz. By the ω-compatibility of Xω , we have ωλ(hTxn,Thxn) →  as n→ ∞ for
λ > . Moreover, hTxn → Tz since ωλ(hTxn,Tz) ≤ ωλ


(hTxn,Thxn) +ωλ


(Thxn,Tz).

In the sequel, we prove that z is a common fixed point of T and h. By (.), we get

∫ ω λ
c
(Txn ,Txn)


ϕ(t)dt ≤ k

∫ ω λ
l
(hTxn ,hxn)


ϕ(t)dt.

Taking the limit as n→ ∞ yields

∫ ω λ
c
(Tz,z)


ϕ(t)dt ≤ k

∫ ω λ
l
(Tz,z)


ϕ(t)dt

≤ k
∫ ω λ

c
(Tz,z)


ϕ(t)dt,

which implies that ωλ
c
(Tz, z) =  for λ > . Hence Tz = z. It follows from T(Xω) ⊆ h(Xω)

that there exists a point z such that z = Tz = hz. By (.), we get

∫ ω λ
c
(Txn ,Tz)


ϕ(t)dt ≤ k

∫ ω λ
l
(hTxn ,hz)


ϕ(t)dt.

Taking the limit as n→ ∞ yields

∫ ω λ
c
(Tz,Tz)


ϕ(t)dt ≤ k

∫ ω λ
l
(Tz,hz)


ϕ(t)dt,

http://www.journalofinequalitiesandapplications.com/content/2013/1/483


Azadifar et al. Journal of Inequalities and Applications 2013, 2013:483 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/483

and so

∫ ω λ
c
(z,Tz)


ϕ(t)dt ≤ k

∫ ω λ
l
(z,hz)


ϕ(t)dt

≤ k
∫ ω λ

l
(z,z)


ϕ(t)dt.

Hence z = Tz = hz and also hz = hTz = Thz = Tz = z (see []). In addition, if one con-
siders h to be continuous (instead of T ), then by a similar argument (as above), one can
prove hz = Tz = z.
Finally, suppose that z and ω are two arbitrary common fixed points of T and h. Then

we have

∫ ω λ
c
(z,ω)


ϕ(t)dt =

∫ ω λ
c
(Tz,Tω)


ϕ(t)dt

≤ k
∫ ω λ

l
(hz,hω)


ϕ(t)dt

≤ k
∫ ω λ

c
(z,ω)


ϕ(t)dt,

which implies that ωλ
c
(z,ω) =  for λ >  and hence z = ω. �

The following theorem is another version of Theorem . when l = c, by adding the
restriction that T ,h : B → B, where B is a closed and bounded subset of Xω .

Theorem . Let Xω be a complete modular metric space, and let B be a closed and
bounded subset of Xω . Suppose that T ,h : Xω → Xω are two ω-compatible mappings such
that T(Xω) ⊆ h(Xω) and

∫ ω λ
c
(Tx,Ty)


ϕ(t)dt ≤ k

∫ ω λ
c
(hx,hy)


ϕ(t)dt (.)

for all x, y ∈ B and for λ > , where c,k ∈ R
+ with k ∈ (, ), and ϕ :R+ → R

+ is a Lebesgue
integrable function which is summable, nonnegative and for all ε > ,

∫ ε

 ϕ(t)dt > . If one
of T or h is continuous, then T and h have a unique common fixed point.

Proof Let x ∈ B and m,n ∈ N. Let {xn}∞n= be the sequence generated in the proof of The-
orem .. Then

∫ ω λ
c
(Txn+m ,Txm)


ϕ(t)dt ≤ k

∫ ω λ
c
(hxn+m ,hxm)


ϕ(t)dt

= k
∫ ω λ

c
(Txn+m–,Txm–)


ϕ(t)dt

≤ k
∫ ω λ

c
(Txn+m–,Txm–)


ϕ(t)dt

...
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≤ km
∫ ω λ

c
(Txn ,x)


ϕ(t)dt

≤ km
∫ δω(B)


ϕ(t)dt

for λ > . Since B is bounded,

lim
n,m→∞

∫ ω λ
c
(Txn+m ,Txm)


ϕ(t)dt ≤ ,

which implies that limn,m→∞ ωλ
c
(Txn+m,Txm) = . Therefore, {Txn}∞n= is Cauchy. Since Xω

is complete and B is closed, there exists z ∈ B such that limn→∞ ωλ
c
(Txn, z) = . If T is

continuous, then Txn → Tz and Thxn → Tz. Then, by ω-compatibility of Xω , we have
ωλ(hTxn,Thxn) →  as n→ ∞ for λ > . Moreover, hTxn → Tz. Next, we prove that z is a
fixed point of T . It follows from (.) that

∫ ω λ
c
(Txn ,Txn)


ϕ(t)dt ≤ k

∫ ω λ
c
(hTxn ,hxn)


ϕ(t)dt.

Taking the limit as n→ ∞ yields

∫ ω λ
c
(Tz,z)


ϕ(t)dt ≤ k

∫ ω λ
c
(Tz,z)


ϕ(t)dt.

So ωλ
c
(Tz, z) =  for λ >  and hence Tz = z. Since T(Xω) ⊆ h(Xω), there exists a point z

such that z = Tz = hz, and

∫ ω λ
c
(Txn ,Tz)


ϕ(t)dt ≤ k

∫ ω λ
c
(hTxn ,hz)


ϕ(t)dt.

Taking the limit as n→ ∞ yields

∫ ω λ
c
(z,Tz)


ϕ(t)dt ≤ k

∫ ω λ
c
(z,z)


ϕ(t)dt.

Hence z = Tz = hz and also hz = hTz = Thz = Tz = z (see []). In addition, if one con-
siders h to be continuous (instead of T ), then by a similar argument (as above), one can
prove hz = Tz = z.
Let z and ω be two arbitrary common fixed points of T and h. Then

∫ ω λ
c
(z,ω)


ϕ(t)dt =

∫ ω λ
c
(Tz,Tω)


ϕ(t)dt

≤ k
∫ ω λ

c
(z,ω)


ϕ(t)dt,

which implies that ωλ
c
(z,ω) =  for λ >  and hence z = ω. �

3 A common fixed point theorem for quasi-contractionmaps
In this section, we prove Theorem . for a quasi-contractionmap of integral type. To this
end, we present the following definition.

http://www.journalofinequalitiesandapplications.com/content/2013/1/483
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Definition . Two self-mappings T ,h : Xω → Xω of a modular metric space Xω are
(c, l,q)-generalized contractions of integral type if there exist  < q <  and c, l ∈ R

+ with
c > l such that

∫ ω λ
c
(Tx,Ty)


ϕ(t)dt ≤ q

∫ m(x,y)


ϕ(t)dt, (.)

where m(x, y) = max{ωλ
l
(hx,hy),ωλ

l
(hx,Tx),ωλ

l
(hy,Ty),

ω λ
l
(hx,Ty)+ω λ

l
(hy,Tx)

 }, and ϕ : R+ →
R

+ is a Lebesgue integrable function which is summable, nonnegative and for all ε > ,∫ ε

 ϕ(t)dt > , λ >  and x, y ∈ Xω .

Theorem . Let Xω be a complete modular metric space. Suppose that T and h are
(c, l,q)-generalized contractions of integral type self-maps of Xω and T(Xω) ⊆ h(Xω). If one
of T or h is continuous, then T and h have a unique common fixed point.

Proof Choose c > l. Let x be an arbitrary point of Xω and generate inductively the se-
quence {Txn}∞n= as follows: Txn = hxn+ and T(Xω)⊆ h(Xω). We thus obtain

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ q

∫ m(xn+,xn)


ϕ(t)dt

for λ > , where

m(xn+,xn) = max

{
ωλ

l
(hxn+,hxn),ωλ

l
(Txn,hxn),ωλ

l
(hxn+,Txn+),

ωλ
l
(hxn+,Txn) +ωλ

l
(hxn,Txn+)



}
.

It follows from Txn = hxn+ that

m(xn+,xn) =max

{
ωλ

l
(hxn+,hxn),ωλ

l
(Txn,Txn+),

 +ωλ
l
(hxn,Txn+)



}
.

Moreover,

ωλ
l
(hxn,Txn+) = ωλ

l
(Txn–,Txn+)

≤ ω λ
l
(Txn–,Txn) +ω λ

l
(Txn,Txn+)

≤ ωλ
c
(Txn–,Txn) +ωλ

c
(Txn,Txn+).

Then

m(xn+,xn) ≤ ωλ
c
(Txn,Txn–)

and

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ q

∫ ω λ
c
(Txn ,Txn–)


ϕ(t)dt.

http://www.journalofinequalitiesandapplications.com/content/2013/1/483


Azadifar et al. Journal of Inequalities and Applications 2013, 2013:483 Page 8 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/483

Continuing this process, we get

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ qn

∫ ω λ
c
(Tx,x)


ϕ(t)dt.

So limn→∞ ωλ
c
(Txn,Txn+) =  as n tends to infinity. Suppose l < c′ < l. Since ωλ is a de-

creasing function, one may write ω λ
c′
(Txn,Txn+) ≤ ωλ

c
(Txn,Txn+), whenever c′ < l ≤ c.

Taking the limit from both sides of this inequality shows that limn→∞ ω λ
c′
(Txn,Txn+) = 

for l < c′ < l and λ > . Thus we have limn→∞ ωλ
c
(Txn,Txn+) =  for any c > l. Now, we

show that {Txn}∞n= is Cauchy. Since limn→∞ ωλ
c
(Txn,Txn+) =  for λ > , for ε > , there

exists n ∈ N such that ωλ
c
(Txn+,Txn) < ε

c for all n ∈ N with n ≥ n and λ > . Without
loss of generality, suppose m,n ∈ N and m > n. Observe that for λ

c(m–n) > , there exists
n λ

m–n
∈N such that

ω λ
c(m–n)

(Txn+,Txn) <
ε

c(m – n)

for all n ≥ n λ
m–n

. Now we have

ωλ
c
(Txn,Txm)

≤ ω λ
c(m–n)

(Txn,Txn+) +ω λ
c(m–n)

(Txn+,Txn+) + · · · +ω λ
c(m–n)

(Txm–,Txm)

<
ε

c(m – n)
+

ε

c(m – n)
+ · · · + ε

c(m – n)

=
ε

c

for all n,m ≥ n λ
m–n

. This implies {Txn}∞n= is a Cauchy sequence. SinceXω is complete, there
exists z ∈ Xω such thatωλ

c
(Txn, z) →  as n→ ∞. Next we prove that z is a fixed point ofT .

If T is continuous, then Txn → Tz and Thxn → Tz. By the ω-compatibility of Xω , we
have ωλ(hTxn,Thxn) →  as n → ∞ for λ > . Moreover, hTxn → Tz since ωλ(hTxn,Tz) ≤
ωλ


(hTxn,Thxn) +ωλ


(Thxn,Tz). Note that

∫ ω λ
c
(Txn ,Txn)


ϕ(t)dt ≤ q

∫ m(xn ,Txn)


ϕ(t)dt,

where

m(xn,Txn) = max

{
ωλ

l
(hxn,hTxn),ωλ

l
(hxn,Txn),ωλ

l
(hTxn,TTxn),

ωλ
l
(hxn,TTxn) +ωλ

l
(Txn,hTxn)



}
.

Taking the limit as n→ ∞, we get

∫ ω λ
c
(z,Tz)


ϕ(t)dt ≤ q

∫ ω λ
c
(z,Tz)


ϕ(t)dt,

http://www.journalofinequalitiesandapplications.com/content/2013/1/483
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and so Tz = z. Since T(Xω) ⊆ h(Xω), there exists a point z such that z = Tz = hz. We have

∫ ω λ
c
(Txn ,Tz)


ϕ(t)dt ≤ q

∫ m(Txn ,z)


ϕ(t)dt

and

m(Txn, z) = max

{
ωλ

l
(hTxn, z),ωλ

l

(
hTxn,Txn

)
,ωλ

l
(z,Tz),

ωλ
l
(hTxn,Tz) +ωλ

l
(z,Txn)



}
.

Taking the limit as n→ ∞, we get

∫ ω λ
c
(z,Tz)


ϕ(t)dt ≤ q

∫ ω λ
c
(z,Tz)


ϕ(t)dt.

It follows that z = Tz = hz and also hz = hTz = Thz = Tz = z (see []). Moreover, if h is
continuous (instead of T ), then by a similar argument (as above), we can prove hz = Tz = z.
Let z and ω be two arbitrary fixed points of T and h. Then

m(z,ω) = max

{
ωλ

l
(z,ω), , ,

ωλ
l
(z,ω) +ωλ

l
(z,ω)



}

= ωλ
l
(z,ω).

Therefore,

∫ ω λ
c
(z,ω)


ϕ(t)dt ≤ q

∫ ω λ
l
(z,ω)


ϕ(t)dt,

which implies that z = ω. �

4 Generalization
Here, we extend the results of the last section. We need a general contractive inequality of
integral type. Let R+ be a set of nonnegative real numbers and consider (∗) φ : R+ → R

+

as a nondecreasing and right-continuous function such that φ(t) < t for any t > .
To prove the next theorem, we need the following lemma [].

Lemma. Let t > . φ(t) < t if only if limk φk(t) = ,where φk denotes the k-times repeated
composition of φ with itself.

Next, we prove a modified version of Theorem ..

Theorem. Let Xω be a complete modular metric space. Suppose that c, l ∈R
+, c > l and

T ,h : Xω → Xω are two ω-compatible mappings such that T(Xω)⊆ h(Xω) and

∫ ω λ
c
(Tx,Ty)


ϕ(t)dt ≤ φ

(∫ ω λ
l
(hx,hy)


ϕ(t)dt

)
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/483
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where φ is a function satisfying the property (∗), and ϕ :R+ →R
+ is a Lebesgue integrable

mapping which is summable, nonnegative and for all ε > ,
∫ ε

 ϕ(t)dt >  and λ > . If one
of T or h is continuous, then T and h have a unique common fixed point.

Proof Let x be an arbitrary point of Xω and generate inductively the sequence {Txn}∞n= as
follows: Txn = hxn+ and x = x, that is possible as T(Xω)⊆ h(Xω),

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ φ

(∫ ω λ
l
(hxn+,hxn)


ϕ(t)dt

)

≤ φ

(∫ ω λ
c
(Txn ,Txn–)


ϕ(t)dt

)

≤ φ
(∫ ω λ

l
(hxn ,hxn–)


ϕ(t)dt

)

for each integer n≥  and λ > . By the principle of mathematical induction, we can easily
see that

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt ≤ φn

(∫ ω λ
l
(Tx,x)


ϕ(t)dt

)
.

Taking the limit as n→ ∞, we obtain, by Lemma .,

lim
n

∫ ω λ
c
(Txn+,Txn)


ϕ(t)dt = .

Using the same method as in the proof of Theorem ., we show that T and h have a
unique common fixed point. �

Applying the method of proof of Theorem ., we get the following result.

Theorem . Let Xω be a complete modular metric space. Suppose c, l ∈ R
+, c > l and

T ,h : Xω → Xω such that T(Xω) ⊆ h(Xω)

∫ ω λ
c
(Tx,Ty)


ϕ(t)dt ≤ φ

(∫ m(x,y)


ϕ(t)dt

)
,

where m(x, y) = max{ωλ
l
(hx,hy),ωλ

l
(hx,Tx),ωλ

l
(hy,Ty),

ω λ
l
(hx,Ty)+ω λ

l
(hy,Tx)

 }, φ is a function
satisfying the property (∗) and λ > . If one of T or h is continuous, then there exists a
unique common fixed point of h and T .

Proof The proof is similar to the proof of Theorem .. �

Now we provide examples to validate and illustrate Theorems . and ..

Example . Let Xω = { 
n : n ∈N} ∪ {} and ωλ(x, y) := |x–y|

λ
for λ > . Define the mapping

T ,h : Xω → Xω by

T(x) :=

⎧⎨
⎩


n+ if x = 

n ,

 otherwise
and h(x) :=

⎧⎨
⎩


n+ if x = 

n ,

 otherwise.
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Then all the hypotheses of Theorem . are satisfied with ϕ(t) = t for t >  and c = , l = ,
k = 

 .

Example . Let Xω = { 
n : n ∈ N} ∪ {} and ωλ(x, y) := |x–y|

λ
for λ > . Define the mapping

T ,h : Xω → Xω by

T(x) :=

⎧⎨
⎩


n+ if x = 

n ,

 otherwise
and h(x) :=

⎧⎨
⎩


n if x = 

n ,

 otherwise.

Then all the hypotheses of Theorem . are satisfied with ϕ(t) = t


t– (– log t) for t >  and
c = l = λ = , k = 

 . See [] for details.

5 Application
In the section, we assume that R = (–∞, +∞), R+ = (,+∞), N denotes the set of all pos-
itive integers, ‘opt’ stands for ‘sup’ or ‘inf’, Y is a Banach space and Xω is an ω-complete
space. Suppose that S ⊆ Xω , D ⊆ Y and B(S) denotes the complete space of all bounded
real-valued functions on S with the norm

‖g‖ = sup
{∣∣g(x)∣∣ : x ∈ S

} (
g ∈ B(S)

)

and 	 = {ϕ;ϕ :R+ →R
+} such that ϕ is Lebesgue integrable, summable on each compact

subset of R+ and
∫ ε

 ϕ(t)dt >  for each ε > . We prove the solvability of the functional
equations

f (x) = opt
y∈D

{
u(x, y) +H

(
x, y, f

(
T(x, y)

))}
(.)

for all x ∈ S in B(S). First, we recall the following lemma [].

Lemma . ([]) Let E be a set, and let p,q : E → R be mappings. If opty∈E p(y) and
opty∈E q(y) are bounded, then

∣∣∣opt
y∈E

p(t) – opt
y∈E

q(t)
∣∣∣ ≤ sup

y∈E

∣∣p(y) – q(y)
∣∣.

Theorem . Let u : S×D →R, T : S×D → S, H : S×D×R →R, φ ∈ 	. Suppose that
u and H are bounded such that

∫ c|H(x,y,g(T(x,y)))–H(x,y,h(T(x,y)))|
λ


ϕ(t)dt ≤ k

∫ l‖g–h‖
λ


ϕ(t)dt (.)

for all (x, y, g,h,λ) ∈ S ×D× B(S)× B(S)×R
+, and some  < k <  and c > l > . Then the

functional equation (.) has a unique solution w ∈ B(S) and {Anz}n∈N converges to w for
each z ∈ B(S), where the mapping A is defined by

Az(x) = opt
y∈D

{
u(x, y) +H

(
x, y, z

(
T(x, y)

))}
(x ∈ S). (.)
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Proof By boundedness of u and H , there existsM >  such that

sup
{∣∣u(x, y)∣∣ + ∣∣H(

x, y, z
(
T(x, y)

))∣∣ : (x, y, t) ∈ S ×D×R
} ≤M. (.)

It is easy to show that A is a self-mapping in B(S) by (.), (.) and Lemma .. Using [,
Theorem .] and φ ∈ 	, we conclude that for each ε > , there exists δ >  such that

∫
C

ϕ(t)dt < ε, ∀C ⊆ [, M] withm(C) ≤ δ, (.)

wherem(C) denotes the Lebesgue measure of C.
Let x ∈ S, h, g ∈ B(S). Suppose that opty∈D = infy∈D. Clearly, for c > l, (.) implies that

there exist y, z ∈ D satisfying

Ag(x) > u(x, y) +H
(
x, y, g

(
T(x, y)

))
–

δ

c
; (.)

Ah(x) > u(x, z) +H
(
x, z,h

(
T(x, z)

))
–

δ

c
; (.)

Ag(x)≤ u(x, z) +H
(
x, z, g

(
T(x, z)

))
; (.)

Ah(x)≤ u(x, y) +H
(
x, y,h

(
T(x, y)

))
. (.)

Put H = H(x, y, g(T(x, y))), H = H(x, y,h(T(x, y))), H = H(x, z, g(T(x, z))), H = H(x, z,
h(T(x, z))).
From (.) and (.), it follows that

c
(
Ag(x) –Ah(x)

)
> c

(
H

(
x, y, g

(
T(x, y)

))
–H

(
x, y,h

(
T(x, y)

)))
– δ

> l
(
H

(
x, y, g

(
T(x, y)

))
–H

(
x, y,h

(
T(x, y)

)))
– δ

≥ –max
{
l
∣∣H(

x, y, g
(
T(x, y)

))
–H

(
x, y,h

(
T(x, y)

))∣∣,
l
∣∣H(

x, z, g
(
T(x, z)

))
–H

(
x, z,h

(
T(x, z)

))∣∣} – δ

= –max
{
l|H –H|, l|H –H|

}
– δ.

Similarly, from (.) and (.), we get

c
(
Ah(x) –Ag(x)

)
> c

(
H

(
x, z,h

(
T(x, z)

))
–H

(
x, z, g

(
T(x, z)

)))
– δ

> l
(
H

(
x, z,h

(
T(x, z)

))
–H

(
x, z, g

(
T(x, z)

)))
– δ

≥ –max
{
l
∣∣H(

x, y, g
(
T(x, y)

))
–H

(
x, y,h

(
T(x, y)

))∣∣,
l
∣∣H(

x, z, g
(
T(x, z)

))
–H

(
x, z,h

(
T(x, z)

))∣∣} – δ

= –max
{
l|H –H|, l|H –H|

}
– δ.

So

c
(
Ag(x) –Ah(x)

)
<max

{
l|H –H|, l|H –H|

}
+ δ.
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Then

c|Ag(x) –Ah(x)|
λ

<max

{
l|H –H|

λ
,
l|H –H|

λ

}
+

δ

λ
(.)

for each λ > .
Similarly, we infer that (.) holds also for opty∈D = supy∈D. Combining (.), (.) and

(.) yields

∫ c|Ag(x)–Ah(x)|
λ


ϕ(t)dt ≤

∫ max{ l|H–H|
λ

, l|H–H|
λ

}+ δ
λ


ϕ(t)dt

= max

{∫ l|H–H|
λ

+ δ
λ


ϕ(t)dt,

∫ l|H–H|
λ

+ δ
λ


ϕ(t)dt

}

= max

{∫ l|H–H|
λ


ϕ(t)dt +

∫ l|H–H|
λ

+ δ
λ

l|H–H|
λ

ϕ(t)dt,

∫ l|H–H|
λ


ϕ(t)dt +

∫ l|H–H|
λ

+ δ
λ

l|H–H|
λ

ϕ(t)dt
}

≤ max

{∫ l|H–H|
λ


ϕ(t)dt,

∫ l|H–H|
λ


ϕ(t)dt

}

+max

{∫ l|H–H|
λ

+ δ
λ

l|H–H|
λ

ϕ(t)dt,
∫ l|H–H|

λ
+ δ

λ

l|H–H|
λ

ϕ(t)dt
}

≤ k
∫ l‖g–h‖

λ


ϕ(t)dt + ε,

which means that

∫ c‖Ag–Ah‖
λ


ϕ(t)dt ≤ k

∫ l‖g–h‖
λ


ϕ(t)dt + ε

for each λ > . Letting ε → + in the above inequality, we deduce that

∫ c‖Ag–Ah‖
λ


ϕ(t)dt ≤ k

∫ l‖g–h‖
λ


ϕ(t)dt.

Thus Theorem . follows from Theorem .. This completes the proof. �
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