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Abstract
In this paper, we prove the generalized Hyers-Ulam stability of the heat equation with
an initial condition

{
�u(x, t) = ut(x, t) (for all x ∈ Rn and t > 0),

u(x, 0) = g(x) (for all x ∈ R
n)

in a class of twice continuously differentiable functions under certain conditions.

1 Introduction
Let X be a normed space, and let I be an open interval. If for any function f : I → X satis-
fying the differential inequality

∥∥an(x)y(n)(x) + an–(x)y(n–)(x) + · · · + a(x)y′(x) + a(x)y(x) + h(x)
∥∥ ≤ ε

for all x ∈ I and for some ε ≥  there exists a solution f : I → X of the differential equation

an(x)y(n)(x) + an–(x)y(n–)(x) + · · · + a(x)y′(x) + a(x)y(x) + h(x) = 

such that ‖f (x) – f(x)‖ ≤ K (ε) for any x ∈ I , where K (ε) is an expression of ε only, then we
say that the above differential equation has the Hyers-Ulam stability.
If the above statement is also true when we replace ε and K (ε) by ϕ(x) and �(x), where

ϕ,� : I → [,∞) are functions not depending on f and f explicitly, then we say that the
corresponding differential equation has the generalized Hyers-Ulam stability. (This type
of stability is sometimes called the Hyers-Ulam-Rassias stability.)
Wemay apply these terminologies to other differential equations and partial differential

equations. For more detailed definitions of the Hyers-Ulam stability and the generalized
Hyers-Ulam stability, refer to [–].
Obłoza seems to be the first author who has investigated the Hyers-Ulam stability of

linear differential equations (see [, ]). Here, we introduce the result of Alsina and Ger
(see []): If a differentiable function f : I → R is a solution of the differential inequality
|y′(x)– y(x)| ≤ ε, where I is an open subinterval ofR, then there exists a solution f : I →R

of the differential equation y′(x) = y(x) such that |f (x)– f(x)| ≤ ε for any x ∈ I . This result
was generalized by Miura et al. (see [, ]).
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In , Jung and Lee [] proved the Hyers-Ulam stability of the first-order linear par-
tial differential equation

aux(x, y) + buy(x, y) + cu(x, y) + d = ,

where a,b ∈R and c,d ∈C are constants with
(c) �= . It seems that the first paper dealing
with the Hyers-Ulam stability of partial differential equations was written by Prastaro and
Rassias []. For a recent result on this subject, refer to [].
In this paper, using an idea from the papers [, ], we investigate the generalizedHyers-

Ulam stability of the heat equation with an initial value condition

⎧⎨
⎩�u(x, t) = ut(x, t) (for all x ∈R

n and t > ),

u(x, ) = g(x) (for all x ∈R
n)

(.)

in the class of radially symmetric functions, where � denotes the Laplace operator. The
heat equation plays an important role in a number of fields of science. It is strongly related
to the Brownian motion in probability theory. The heat equation is also connected with
chemical diffusion, and it is sometimes called the diffusion equation.

2 Main result
For a given integer n ≥ , xi denotes the ith coordinate of any point x in R

n, i.e., x =
(x, . . . ,xi, . . . ,xn). We assume that t is a constant with  < t ≤ ∞, and we define

T := {t ∈R |  < t < t} and |x| :=
√
x + · · · + xn.

Due to an idea from [, Section ..], we may search for a solution of (.) of the form
u(x, t) = (/tn/)v(|x|/t/) for some function v. Based on this argument, we define

U :=
{
u :Rn × T →R | u(x, t) = 

tn/
w(r) for all x ∈R

n, t ∈ T

and for some function w : [,∞) →R with r =
|x|
t/

and lim
r→∞ rnw(r) = lim

r→∞ rn–w′(r) = 
}
.

Theorem . Let ϕ,ϕ : [,∞)→ [,∞) and ψ : T → [,∞) be functions such that

D :=
∫ ∞



eu/

un–

∫ ∞

u
sn–ϕ(s)dsdu < ∞, (.)

c := inf
t∈T t

n/+ψ(t) > . (.)

Assume that g : Rn → R is a function with g ∈ C(Rn) ∩ L∞(Rn). If a twice continuously
differentiable function u ∈U satisfies

⎧⎨
⎩|�u(x, t) – ut(x, t)| ≤ ϕ( |x|

t/ )ψ(t) (for all x ∈R
n and t ∈ T)

|u(x, ) – g(x)| ≤ ϕ(|x|) (for all x ∈R
n),

(.)
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then there exist solutions u,u : Rn × T → R of the heat equation and a real number γ

such that

∣∣u(x, t) – γu(x, t)
∣∣ ≤ cD

tn/
e–|x|/t , (.)∣∣∣∣

∫
Rn

u(x – y, t)g(y)dy – γu(x, t)
∣∣∣∣ ≤ (π )n/cD

∫
Rn

u(x – y, t)
∣∣g(y)∣∣dy (.)

for all x ∈ R
n and t ∈ T with |x|/t/ > , where

u(x, t) :=


(π t)n/
e–|x|/t and u(x, t) :=

∫
Rn

u(x – y, t)g(y)dy. (.)

Proof Since u(x, t) ∈U , there exists a function w : [,∞) →R such that

u(x, t) =

tn/

w(r)

for any x ∈R
n and t ∈ T , where we set r = |x|/t/. Using this notation, we calculate ut and

�u:

ut(x, t) = –
n

tn/+
w(r) –


tn/+

rw′(r),

uxi (x, t) =


tn/+/
w′(r)

xi
|x| ,

uxixi (x, t) =


tn/+/

(

t/

w′′(r)
xi
|x| +w′(r)

(

|x| –

xi
|x|

))
.

So, we have

�u(x, t) – ut(x, t)

=


tn/+

(
w′′(r) +

n – 
r

w′(r) +
r

w′(r) +

n

w(r)

)

=


rn–


tn/+

((
rn–w′′(r) + (n – )rn–w′(r)

)
+


(
rnw′(r) + nrn–w(r)

))

=


rn–


tn/+

(
rn–w′(r) +

rn


w(r)

)′

for all x ∈R
n, t ∈ T with r > . Moreover, from the last equality and (.), it follows that

∣∣�u(x, t) – ut(x, t)
∣∣ = 

rn–


tn/+

∣∣∣∣
(
rn–w′(r) +

rn


w(r)

)′∣∣∣∣
≤ ϕ(r)ψ(t)

or

∣∣∣∣
(
rn–w′(r) +

rn


w(r)

)′∣∣∣∣ ≤ rn–ϕ(r)tn/+ψ(t)
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for all r >  and t ∈ T . In view of (.), we have

–crn–ϕ(r)≤
(
rn–w′(r) +

rn


w(r)

)′
≤ crn–ϕ(r)

for any r > .
We integrate each term of the last inequality from r to ∞ and take account of the defi-

nition of U to get

–c
∫ ∞

r
sn–ϕ(s)ds≤ –rn–w′(r) –

rn


w(r)≤ c

∫ ∞

r
sn–ϕ(s)ds

or ∣∣∣∣w′(r) +
r

w(r)

∣∣∣∣ ≤ c
rn–

∫ ∞

r
sn–ϕ(s)ds

for all r > .
According to [, Theorem ], together with (.), there exists a (unique) constant γ ∈R

such that
∣∣∣∣w(r) – γ

(π )n/
e–r

/
∣∣∣∣ ≤ ce–r

/
∫ ∞

r

eu/

un–

∫ ∞

u
sn–ϕ(s)dsdu

for all r > , or equivalently

∣∣∣∣u(x, t) – γ

(π t)n/
e–|x|/t

∣∣∣∣ ≤ c
tn/

e–|x|/t
∫ ∞

|x|/t/
eu/

un–

∫ ∞

u
sn–ϕ(s)dsdu

for all x ∈ R
n and t ∈ T with |x|/t/ > , which proves the validity of inequality (.), and

in view of (.), it is not difficult to prove that u(x, t) is a solution of the heat equation,
i.e., �u(x, t) – ∂

∂t u(x, t) = .
If we replace x with x – y and multiply each term by |g(y)|, and if we integrate all terms

in the last inequality over Rn, then we obtain

–(π )n/cD
∫
Rn

u(x – y, t)
∣∣g(y)∣∣dy

≤
∫
Rn

u(x – y, t)g(y)dy – γ

∫
Rn

u(x – y, t)g(y)dy

≤ (π )n/cD
∫
Rn

u(x – y, t)
∣∣g(y)∣∣dy

for all x, y ∈R
n and t ∈ T . If we define u(x, t) as in (.) for any x ∈R

n and t ∈ T , following
the proof of [, Theorem  in Section .], we can then easily prove that

�u(x, t) –
∂

∂t
u(x, t) = 

for all x ∈R
n and t ∈ T with |x|/t/ > , which shows the validity of inequality (.). �

Remark .
(i) The linearity of solutions of heat equation (.) implies that γu(x, t) and γu(x, t)

are also solutions of the heat equation.
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(ii) As in the proof of [, Theorem  in Section .], we can show that

lim
(x,t)→(x,)
x∈Rn ,t>

u(x, t) = g(x)

for each x ∈Rn.
(iii) If a function ϕ : [,∞) → [,∞) satisfies

∫ ∞

u
sn–ϕ(s)ds =O

(
une–αu)

for all u≥  and for some α > /, then there exists a positive number A such that

D =
∫ ∞



eu/

un–

∫ ∞

u
sn–ϕ(s)dsdu

≤
∫ ∞


Aue(/–α)u du

=
A

α – 
<∞,

i.e., ϕ satisfies condition (.).
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