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Abstract
In the present paper, we have proved theorems dealing with matrix summability
factors by using quasi β-power increasing sequences. Some new results have also
been obtained.
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1 Introduction
A positive sequence (γn) is said to be quasi β-power increasing sequence if there exists
a constant K = K (β ,γ ) ≥  such that Knβγn ≥ mβγm holds for all n ≥ m ≥  []. A se-
quence (λn) is said to be of bounded variation, denote by (λn) ∈ BV , if

∑∞
n= |�λn| =∑∞

n= |λn – λn+| < ∞. Let
∑

an be a given infinite series with the partial sums (sn). Let
(pn) be a sequence of positive numbers such that

Pn =
n∑

v=

pv → ∞ as n→ ∞ (P–i = p–i = , i≥ ). ()

The sequence-to-sequence transformation

σn =

Pn

n∑
v=

pvsv ()

defines the sequence (σn) of the (N̄ ,pn) mean of the sequence (sn), generated by the se-
quence of coefficients (pn) [].
The series

∑
an is said to be summable |N̄ ,pn|k , k ≥  if []

∞∑
n=

(
Pn

pn

)k–

|σn – σn–|k < ∞. ()

LetA = (anv) be a normalmatrix, i.e., a lower triangularmatrix of nonzero diagonal entries.
Then A defines the sequence-to-sequence transformation, mapping the sequence s = (sn)
to As = (An(s)), where

An(s) =
n∑

v=

anvsv, n = , , . . . . ()
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The series
∑

an is said to be summable |A,pn|k , k ≥  if []

∞∑
n=

(
Pn

pn

)k–∣∣�̄An(s)
∣∣k < ∞, ()

where

�̄An(s) = An(s) –An–(s).

Before stating the main theorem, we must first introduce some further notations.
Given a normal matrix A = (anv), we associate two lower semimatrices Ā = (ānv) and

Â = (ânv) as follows:

ānv =
n∑
i=v

ani, n, v = , , . . . ()

and

â = ā = a, ânv = ānv – ān–,v, n = , , . . . . ()

Itmay be noted that Ā and Â are thewell-knownmatrices of series-to-sequence and series-
to-series transformations, respectively. Then, we have

An(s) =
n∑

v=

anvsv =
n∑

v=

ānvav ()

and

�̄An(s) =
n∑

v=

ânvav. ()

2 Known result
Recently, many authors have come up with theorems dealing with the applications of
power increasing sequences [, –]. Among them, Bor andÖzarslan have proved two the-
orems for |N̄ ,pn|k summability method by using quasi β-power increasing sequence [].
Their theorems are as follows.

Theorem A Let (Xn) be a quasi β-power increasing sequence for some  < β < , and let
there be sequences (βn) and (λn) such that

|�λn| ≤ βn, ()

βn →  as n→ , ()
∞∑
n=

n|�βn|Xn < ∞, ()

|λn|Xn =O() as n→ ∞. ()
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If

n∑
v=

|sv|k
v

=O(Xn), ()

m∑
n=

pn
Pn

|sn|k =O(Xm), m→ ∞, ()

then
∑

anλn is summable |N̄ ,pn|k , k ≥ .

Theorem B Let (Xn) be a quasi β-power increasing sequence for some  < β < , and let
sequences (βn) and (λn) satisfy conditions ()-() and (). If

∞∑
n=

Pn|�βn|Xn < ∞, ()

m∑
n=

|sn|k
Pn

=O(Xm), ()

then
∑

anλn is summable |N̄ ,pn|k , k ≥ .

3 Themain result
The aim of this paper is to generalize Theorem A and Theorem B to |A,pn|k summability.
Now, we shall prove the following two theorems.

Theorem  Let A = (anv) be a positive normal matrix such that

ān = , n = , , . . . , ()

an–,v ≥ anv, for n≥ v + , ()

ann =O
(
pn
Pn

)
, ()

and (Xn) is a quasi β-power increasing sequence for some  < β < . If all the conditions of
Theorem A and

(λn) ∈ BV ()

are satisfied, then the series
∑

anλn is summable |A,pn|k , k ≥ .

In the special case of anv = pv
Pn , this theorem reduces to Theorem A.

Theorem  Let A = (anv) be a positive normal matrix as in Theorem , and let (Xn) is a
quasi β-power increasing sequence for some  < β < . If all the conditions of Theorem B
and () are satisfied, then the series

∑
anλn is summable |A,pn|k , k ≥ .

We need following lemmas for the proof of our theorems.

http://www.journalofinequalitiesandapplications.com/content/2013/1/474


Özarslan and Yavuz Journal of Inequalities and Applications 2013, 2013:474 Page 4 of 7
http://www.journalofinequalitiesandapplications.com/content/2013/1/474

Lemma  [] Let (Xn) be a quasi β-power increasing sequence for some  < β < . If condi-
tions () and () satisfied, then

nXnβn =O() as n→ ∞, ()
∞∑
n=

Xnβn <∞. ()

Lemma  Let (Xn) be a quasi β-power increasing sequence for some  < β < . If conditions
() and () are satisfied, then

PnβnXn =O(), ()
∞∑
n=

pnβnXn < ∞. ()

The proof of Lemma  is similar to that of Bor in [] and hence is omitted.

4 Proof of Theorem 1
Let (Tn) denote A-transform of the series

∑
anλn. Then by (), () and applying Abel’s

transformation, we have

�̄Tn =
n∑
v=

ânvavλv

=
n–∑
v=

�v(ânvλv)
v∑

k=

ak + ânnλn

n∑
v=

av

=
n–∑
v=

(ânvλv – ân,v+λv+)sv + annλnsn

=
n–∑
v=

(ânvλv – ân,v+λv+ – ân,v+λv + ân,v+λv)sv + annλnsn

=
n–∑
v=

�v(ânv)λvsv +
n–∑
v=

ân,v+�λvsv + annλnsn

= Tn, + Tn, + Tn, say.

Since

|Tn, + Tn, + Tn,|k ≤ k
(|Tn,|k + Tn,|k + Tn,|k

)
,

to complete the proof of the Theorem , it is sufficient to show that

∞∑
n=

(Pn/pn)k–|Tn,r|k < ∞, for r = , , . ()
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First, applying Hölder’s inequality with indices k and k′, where k >  and 
k +


k′ = , we get

that

m+∑
n=

(
Pn

pn

)k–

|Tn,|k ≤
m+∑
n=

(
Pn

pn

)k–
( n–∑

v=

|�vânv||λv||sv|
)k

= O()
m+∑
n=

(
Pn

pn

)k–
( n–∑

v=

|�vânv||λv|k|sv|k
)

×
( n–∑

v=

|�vânv|
)k–

= O()
m+∑
n=

(
Pn

pn
ann

)k–
( n–∑

v=

|�vânv||λv|k|sv|k
)

= O()
m∑
v=

|λv|k|sv|k
m+∑
n=v+

|�vânv|

= O()
m∑
v=

pv
Pv

|λv|k–|λv||sv|k =O()
m∑
v=

pv
Pv

|λv||sv|k

= O()
m–∑
v=

�|λv|
v∑
i=

pi
Pi

|si|k +O()|λm|
m∑
v=

pv
Pv

|sv|k

= O()
m–∑
v=

βvXv +O()|λm|Xm

= O() asm→ ∞,

by virtue of the hypotheses of Theorem  and Lemma .
Since (λn) ∈ BV by (), applying Hölder’s inequality with the same indices as those

above, we have

m+∑
n=

(
Pn

pn

)k–∣∣Tn()
∣∣k ≤

m+∑
n=

(
Pn

pn

)k–
( n–∑

v=

|�λv||ân,v+||sv|
)k

= O()
m+∑
n=

(
Pn

pn

)k–
( n–∑

v=

|�λv||ân,v+||sv|k
)

×
( n–∑

v=

|�λv||ân,v+|
)k–

= O()
m+∑
n=

(
Pn

pn
ann

)k–
( n–∑

v=

βv|ân,v+||sv|k
)

×
( n–∑

v=

|�λv|
)k–

= O()
m∑
v=

βv|sv|k
m+∑
n=v+

|ân,v+|

= O()
m∑
v=

βv|sv|k

= O()
m∑
v=

(vβv)
|sv|k
v
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= O()
m–∑
v=

�(vβv)
v∑
i=

|si|k
i

+O()mβm

m∑
v=

|sv|k
v

= O()
m–∑
v=

�(vβv)Xv +O()mβmXm

= O()
m–∑
v=

v|�βv|Xv +O()
m–∑
v=

βv+Xv+ +O()mβmXm

= O() asm → ∞,

by virtue of the hypotheses of Theorem  and Lemma .
Finally, by following the similar process as in Tn,, we have that

m∑
n=

(
Pn

pn

)k–∣∣Tn()
∣∣k ≤

m∑
n=

(
Pn

pn

)k–

|ann|k|λn|k|sn|k

= O()
m∑
n=

pn
Pn

|λn||sn|k

= O() asm → ∞.

So, we get

∞∑
n=

(Pn/pn)k–|Tn,r|k < ∞, for r = , , .

This completes the proof of Theorem .

5 Proof of Theorem 2
Using Lemma  and proceeding as in the proof of Theorem , replacing

∑m
v= βv|sv|k by∑m

v= βvPv( |sv|k
Pv ), we can easily prove Theorem .

If we take pn =  in these theorems, then we have two new results dealing with |A|k
summability factors of infinite series. Also, if we take k = , then we obtain another two
new results concerning |A| summability. Finally, by taking (Xn) as almost increasing se-
quence in the theorems, we get new results dealing with |A,pn|k summability factors of
infinite series.
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