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Abstract
Let {an,i,n ∈ Zd+, i≤ n} be an array of real numbers, and let {Xi, i ∈ Zd+} be the
martingale differences with respect to {Gn,n ∈ Zd+} satisfying
E(E(X|Gk)|Gm) = E(X|Gk∧m) a.s., where k∧m denotes componentwise minimum,
{Gk ,k ∈ Zd+} is a family of σ -algebras such that ∀k ≤ n, Gk ⊂ Gn ⊂ G , and X is any
integrable random variable defined on the initial probability space. The aim of this
paper is to obtain some results concerning complete convergence of weighted sums∑

i≤n an,iXi.
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1 Introduction
The concept of complete convergence for sums of independent and identically distributed
randomvariableswas introduced byHsu andRobbins [] as follows:A sequence of random
variables {Xn} is said to be completely to a constant c if

∞∑
n=

P
(|Xn – c| > ε

)
< ∞ for all ε > .

This result has been generalized and extended to the randomfields {Xn,n ∈ Zd
+} of random

variables. For example, Fazekas and Tómács [] and Czerebak-Mrozowicz et al. [] for
fields of pairwise independent random variables, and Gut and Stadtmüller [] for random
fields of i.i.d. random variables.
Let Z+ be the set of positive integers. For fixed d ∈ Z+, set Zd

+ = {n = (n,n, . . . ,nd) : ni ∈
Z+, i = , , . . . ,d} with coordinatewise partial order, ≤, i.e., for m = (m,m, . . . ,md),n =
(n,n, . . . ,nd) ∈ Zd

+,m≤ n if and only ifmi ≤ ni, i = , , . . . ,d. For n = (n,n, . . . ,nd) ∈ Zd
+,

let |n| = ∏d
i= ni. For a field {an,n ∈ Zd

+} of real numbers, the limit superior is defined by
infr≥ sup|n|≥r an and is denoted by lim sup|n|→∞ an.
Note that |n| → ∞ is equivalent to max{n,n, . . . ,nd} → ∞, which is weaker than the

condition min{n,n, . . . ,nd} → ∞ when d ≥ .
Let {Xn,n ∈ Zd

+} be a field of random variables, and let {an,k,n ∈ Zd
+,k ≤ n} be an array

of real numbers. The weighted sums
∑

k≤n an,kXk can play an important role in various
applied and theoretical problems, such as those of the least squares estimators (see Kafles
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and Bhaskara Rao []) andM-estimates (see Rao and Zhao []) in linear models, the non-
parametric regression estimators (see Priestley and Chao []), etc. So, the study of the
limiting behavior of the weighted sums is very important and significant (see Chen and
Hao []).
Now, we consider the notion of martingale differences. Let {Gk,k ∈ Zd

+} be a family of
σ -algebras such that

Gk ⊂ Gn ⊂ G, ∀k ≤ n,

and for any integrable random variable X defined on the initial probability space,

E
(
E(X|Gk)|Gm

)
= E(X|Gk∧m) a.s., (.)

where k∧m denotes the componentwise minimum.
An {Gk,k ∈ Zd

+}-adapted, integrable process {Yk,k ∈ Zd
+} is called a martingale if and

only if

E(Yn|Gm) = Ym∧n a.s.

Let us observe that for martingale {(Yn,Gn),n ∈ Zd
+}, the random variables

Xn =
∑

a∈{,}d
(–)

∑d
i= aiYn–a,

where a = (a,a, . . . ,ad) andn ∈ Zd
+, aremartingale differenceswith respect to {Gn,n ∈ Zd

+}
(see Kuczmaszewska and Lagodowski []).
For the results concerning complete convergence for martingale arrays obtained in the

one-dimensional case, we refer to Lagodowski and Rychlik [], Elton [], Lesigne and
Volny [], Stoica [] and Ghosal and Chandra []. Recently, complete convergence for
martingale difference random fields was proved by Kuczmaszewska and Lagodowski [].
The aim of this paper is to obtain some results concerning complete convergence of

weighted sums
∑

i≤n an,iXi, where {an,i,n ∈ Zd
+, i ≤ n} is an array of real numbers, and

{Xi, i ∈ Zd
+} is the martingale differences with respect to {Gn,n ∈ Zd

+} satisfying (.).

2 Results
The following moment maximal inequality provides us a useful tool to prove the main
results of this section (see Kuczmaszewska and Lagodowski []).

Lemma . Let {(Yn,Gn),n ∈ Zd
+} be a martingale, and let {(Xn,Gn),n ∈ Zd

+} be the mar-
tingale differences corresponding to it. Let q > . There exists a finite and positive constant
C depending only on q and d such that

E
(
max
k≤n

|Yk|q
)

≤ CE
(∑

k≤n

X
k

)q/

. (.)

Let us denote G∗
i = σ {Gj : j < i}. Now, we are ready to formulate the next result.
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Theorem . Let {an, i,n ∈ Zd
+, i≤ n} be an array of real numbers, and let {Xn,n ∈ Zd

+} be
the martingale differences with respect to {Gn,n ∈ Zd

+} satisfying (.). For αp > , p >  and
α > 

 , we assume that

(i)
∑

n |n|αp– ∑
i≤n P{|an,iXi| > |n|α} < ∞,

(ii)
∑

n |n|α(p–q)–+q/ ∑
i≤n |an,i|qE(|Xi|qI[|an,iXi| ≤ |n|α]) < ∞ for q ≥ ,

(ii)′
∑

n |n|α(p–q)– ∑
i≤n |an,i|qE(|Xi|qI[|an,iXi| ≤ |n|α]) <∞ for  < q <  and

(iii)
∑

n |n|αp–P{maxj≤n |∑i≤j E(an,iXiI[|an,iXi| ≤ |n|α]|G∗
i )| > ε|n|α} <∞ for all ε > .

Then we have

∑
n

|n|αp–P
{
max
j≤n

|Sj| > ε|n|α
}
< ∞ for all ε > , (.)

where Sn =
∑

≤i≤n an,iXi.

Proof Let us notice that the series
∑

n |n|αp– is finite, then (.) always holds. Therefore,
we consider only the case such that

∑
n |n|αp– is divergent. Let Xn,i = XiI[|an,iXi| ≤ |n|α],

X∗
n,i = Xn,i – E(Xn,i|G∗

i ) and S∗
n,j =

∑
i≤j an,iX∗

n,i.
Then

∑
n

|n|αp–P
{
max
j≤n

|Sj| > ε|n|α
}

≤
∑
n

|n|αp–P{|an,iXi| > |n|α}

+
∑
n

|n|αp–P
{
max
j≤n

∣∣∣∣
∑
i≤j

an,iXiI
[|an,iXi| ≤ |n|α]∣∣∣∣ > ε|n|α

}

≤
∑
n

|n|αp–
∑
i≤n

P
{|an,iXi| > |n|α}

+
∑
n

|n|αp–P
{
max
j≤n

∣∣∣∣
∑
i≤j

(
an,iXiI

[|an,iXi| ≤ |n|α]

– E
(
an,iXiI

[|an,iXi| ≤ |n|α]|G∗
i
))∣∣∣∣ > ε


|n|α

}

+
∑
n

|n|αp–P
{
max
j≤n

∣∣∣∣
∑
i≤j

E
(
an,iXiI

[|an,iXi| ≤ |n|α]|G∗
i
)∣∣∣∣ > ε


|n|α

}

= I + I + I.

Clearly, I < ∞ by (i), and I < ∞ by (iii). It remains to prove that I < ∞. Thus, the proof
will be completed by proving that

∑
n

|n|αp–P
{
max
j≤n

∣∣S∗
n,j

∣∣ > ε|n|α
}
<∞.

To prove it, we first observe that {(S∗
n,j,Gj), j≤ n} is a martingale. In fact, if i > j, then Gi∧j ⊂

G∗
i and by (.), we have

E
(
an,iX∗

n,i|Gj
)
= E

(
an,iXn,i – E

(
an,iXn,i|G∗

i
)|Gi

)
= E

(
E
(
an,iXn,i – E

(
an,iXn,i|G∗

i
)|Gi

)|Gj
)
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= E
(
an,iXn,i – E

(
an,iXn,i|G∗

i
)|Gi∧j

)
= .

Then, by the Markov inequality and Lemma ., there exists some constant C such that

P
{
max
j≤n

∣∣S∗
n,j

∣∣ > ε|n|α
}

≤ C
E(maxj≤n |S∗

n,j|q)
|n|αq

≤ C
|n|αq E

(∑
i≤n

an,iX
∗
n,i

)q/

= I.

Case q ≥ ; we get

I ≤ C
|n|αq |n|q/–

∑
i≤n

E
∣∣an,iX∗

n,i
∣∣q

≤ C|n|q/––αq
∑
i≤n

E
(|an,iXi|qI

[|an,iXi| ≤ |n|α])
.

Note that the last estimation follows from the Jensen inequality. Thus, we have
∑
n

|n|αp–P
{
max
j≤n

∣∣S∗
n,j

∣∣ > ε|n|α
}

≤ C
∑
n

|n|αp––q(α–/)
∑
i≤n

E
(|an,iXi|qI

[|an,iXi| ≤ |n|α])
< ∞

by assumption (ii).
Case  < q < ; we get

I ≤ C
|n|αq

∑
i≤n

E
∣∣an,iX∗

n,i
∣∣q

≤ C|n|–αq
∑
i≤n

E
(|an,iXi|qI

[|an,iXi| ≤ |n|α])
.

Therefore, for  < q < , we obtain
∑
n

|n|αp–P
{
max
j≤n

∣∣S∗
n,j

∣∣ > ε|n|α
}

≤ C
∑
n

|n|α(p–q)–
∑
i≤n

E
(|an,iXi|qI

[|an,iXi| ≤ |n|α])
< ∞

by assumption (ii)′. Thus, I < ∞ for all q > , and the proof of Theorem . is complete.
�

Corollary . Let {an, i,n ∈ Zd
+, i ≤ n} be an array of real numbers. Let {Xn,n ∈ Zd

+} be
martingale differences with respect to {Gn,n ∈ Zd

+} satisfying (.), and EXn =  for n ∈ Zd
+.

Let p ≥ , α > 
 and αp > .Assume that (i) and for some q > , (ii) or (ii)′ hold respectively. If

max
j≤n

∑
i≤j

E
(
an,iXiI

[|an,iXi| ≤ |n|α]|G∗
i
)
= o

(|n|α)
, (.)

then (.) holds.
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Proof It is easy to see that (.) implies (iii). We omit details that prove it. �

The following corollary shows that assumption (iii) in Theorem . is natural, and in the
case of independent random fields, it reduces to the known one.

Corollary . Let {an, i,n ∈ Zd
+, i ≤ n} be an array of real numbers. Let {Xn,n ∈ Zd

+} be a
field of independent random variables such that EXn =  for n ∈ Zd

+. Let p ≥ , α > 
 and

αp > . Assume that (i) and for some q > , (ii) or (ii)′ hold respectively. If


|n|α max

j≤n

∑
i≤j

E
(
an,iXiI

[|an,iXi| ≤ |n|α]) →  as |n| → ∞, (.)

then (.) holds.

Proof Since {Xn,n ∈ Zd
+} is a field of independent random variables, we have


|n|α max

j≤n

∑
i≤j

E
(
an,iXiI

[|an,iXi| ≤ |n|α]|G∗
i
)
=


|n|α max

j≤n

∑
i≤j

E
(
an,iXiI

[|an,iXi| ≤ |n|α])
.

Now, it is easy to see that (.) implies (iii) of Theorem .. Thus, by Theorem ., result
(.) follows. �

Remark Theorem . and Corollary . are extensions of Theorem . and Corollary .
in Kuczmaszewska and Lagodowski [] to the weighted sums case, respectively.

Corollary . Let {an, i,n ∈ Zd
+, ≤ i ≤ n} be an array of real numbers. Let {Xn,n ∈ Zd

+}
be the martingale differences with respect to {Gn,n ∈ Zd

+} satisfying (.) and EXn = . Let
p≥ , α > 

 and αp >  and E|Xn|+λn <∞ for λn with  < λn <  for n ∈ Zd
+. If

∑
n

|n|αp–|n|–α(+λn)
∑
i≤n

|an,i|+λnE|Xi|+λn < ∞, (.)

max
≤j≤n

∑
i≤j

E
(|an,iXi|I

[|an,iXi| ≤ |n|α]|G∗
i
)
= o

(|n|α)
, (.)

then (.) holds.

Proof If the series
∑

n |n|αp– < ∞, then (.) always holds. Hence, we only consider the
case

∑
n |n|αp– =∞. It follows from (.) that

|n|–α(+λn)
∑
i≤n

|an,i|+λnE|Xi|+λn < .

By (.) and the Markov inequality,

∑
n

|n|αp–P(|an,iXi| > |n|α)

≤
∑
n

|n|αp–|n|–α(+λn)
∑
i≤n

|an,i|+λnE|Xi|+λn < ∞, (.)

which satisfies (i) of Theorem ..
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As the proof of Corollary ., (.) implies (iii) of Theorem ..
It remains to show that Theorem .(ii) or (ii)′ is satisfied.
For  < q < , take  + λn < q. Then we have

∑
n

|n|α(p–q)–
∑
i≤n

|an,i|qE
(|Xi|qI

[|an,iXi| ≤ |n|α])

≤
∑
n

|n|αp–|n|–α(+λn)|n|–αq+α(+λn)|n|αq–α(+λn)
∑
i≤n

|an,i|+λnE|Xi|+λn

=
∑
n

|n|αp–|n|–α(+λn)
∑
i≤n

|an,i|+λnE|Xi|+λn < ∞ by (.),

which satisfies Theorem .(ii)′. Hence, the proof is complete. �

Corollary . Let {an, i,n ∈ Zd
+, ≤ i ≤ n} be an array of real numbers, and let {Xn,n ∈

Zd
+} be the martingale differences with respect to {Gn,n ∈ Zd

+} satisfying (.), EXn =  and
E|Xn|p < ∞ for  < p < . Let α > 

 , αp >  and  < p < . If

∑
≤i≤n

|an,i|pE|Xi|p =O
(|n|δ) for  < δ < , (.)

and Theorem .(iii) hold, then (.) holds.

Proof By (.) and the Markov inequality,

∑
n

|n|αp–
∑
i≤n

P
(|an,iXi| > |n|α)

≤
∑
n

|n|αp–
∑
i≤n

|an,i|pE|Xi|p
|n|αp

≤ C
∑
n

|n|–+δ < ∞. (.)

By taking q < p, we have

∑
n

|n|α(p–q)–
∑
i≤n

|an,i|qE
(|Xi|qI

[|an,iXi| ≤ ε|n|α])

≤
∑
n

|n|–
∑
i≤n

|an,i|pE|Xi|p

≤ C
∑
n

|n|–+δ < ∞. (.)

Hence, by (.) and (.), conditions (i) and (ii)′ in Theorem . are satisfied, respectively.
To complete the proof, it is enough to note that by EXn =  for n ∈ Zd

+ and by (.), we
get for j ≤ n

|n|–α
∑
i≤j

|an,i|E|Xi|I
[|an,iXi| ≤ ε|n|α] →  as |n| → ∞. (.)

Hence, the proof is complete. �
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Corollary . Let {Xn,n ∈ Zd
+} be the martingale differences with respect to {Gn,n ∈ Zd

+}
satisfying (.), let EXn =  and E|Xn|p < ∞ for  < p <  and be stochastically dominated
by a random variable X , i.e., there is a constant D such that P(|Xn| > x) ≤ DP(|X| > x) for
all x≥  and n ∈ Zd

+. Let {an, i,n ∈ Zd
+, i≤ n} be an array of real numbers satisfying

∑
i≤n

|an,i|p =O
(|n|δ) for  < δ < . (.)

If Theorem .(iii) holds, then (.) holds.

Proof From (.), (.) follows. Hence, by Corollary ., we obtain (.). �

Remark Linear random fields are of great importance in time series analysis. They arise
in a wide variety of context. Applications to economics, engineering, and physical science
are extremely broad (see Kim et al. []).

Let Yk =
∑

i≥ ak+iXi, where {ai, i ∈ Zd
+} is a field of real numbers with

∑
i ≥ |ai| < ∞,

and {Xi, i ∈ Zd
+} is a field of the martingale difference random variables.

Define an,i =
∑

≤k≤n ai+k. Then we have

∑
≤k≤n

Yk =
∑

≤k≤n

∑
i≥

ai+kXi =
∑
i≥

∑
≤k≤n

ai+kXi =
∑
i≥

an,iXi.

Hence, we can use the above results to investigate the complete convergence for linear
random fields.
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