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1 Introduction
The concept of variational inequalities plays an important role in various kinds of prob-
lems in pure and applied sciences (see, for example, [–]). Moreover, the rapid develop-
ment and the prolific growth of the theory of variational inequalities have been made by
many researchers.
In a CAT() space, Saejung [] studied the convergence theorems of the following

Halpern iterations for a nonexpansive mapping T . Let u be fixed and xt ∈ C be the unique
fixed point of the contraction x �→ tu⊕ ( – t)Tx; i.e.,

xt = tu⊕ ( – t)Txt , (.)

where t ∈ [, ] and x,u ∈ C are arbitrarily chosen and

xn+ = αnu⊕ ( – αn)Txn, n≥ , (.)

where αn ∈ (, ). It is proved that {xt} converges strongly as t →  to x̃ ∈ F(T) such that
x̃ = PF(T)u, and {xn} converges strongly as n → ∞ to x̃ ∈ F(T) under certain appropriate
conditions on αn, where PCx is a metric projection from X onto C.
In , Shi and Chen [] studied the convergence theorems of the following Moudafi

viscosity iterations for a nonexpansive mapping T : For a contraction f on C and t ∈ (, ),
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let xt ∈ C be the unique fixed point of the contraction x �→ tf (x)⊕ ( – t)Tx; i.e.,

xt = tf (xt)⊕ ( – t)Txt , (.)

and x ∈ C is arbitrarily chosen and

xn+ = αnf (xn)⊕ ( – αn)Txn, n≥ , (.)

where {αn} ⊂ (, ). They proved that {xt} defined by (.) converges strongly as t →  to
x̃ ∈ F(T) such that x̃ = PF(T)f (x̃) in the framework of aCAT() space satisfying the property
P , i.e., if for x,u, y, y ∈ X,

d(x,P[x,y]u)d(x, y)≤ d(x,P[x,y]u)d(x, y) + d(x,u)d(y, y).

Furthermore, they also obtained that {xn} defined by (.) converges strongly as n → ∞
to x̃ ∈ F(T) under certain appropriate conditions imposed on {αn}.
By using the concept of quasilinearization, which was introduced by Berg and Nikolaev

[], Wangkeeree and Preechasilp [] studied the strong convergence theorems of itera-
tive schemes (.) and (.) in CAT() spaces without the property P . They proved that
iterative schemes (.) and (.) converge strongly to x̃ such that x̃ = PF(T)f (x̃), which is the
unique solution of the variational inequality (VIP)

〈––––→
x̃f (x̃),

–→
xx̃

〉 ≥ , x ∈ F(T). (.)

In this paper, we are interested in the following so-called hierarchical optimization
problems (HOP). More precisely, let f , g : C → C be two contractions with coefficient
α ∈ (, ), and let T,T : C → C be two nonexpansive mappings such that F(T) and F(T)
are nonempty. The class of hierarchical optimization problems (HOP) consists in finding
(x̃, ỹ) ∈ F(T)× F(T) such that the following inequalities hold:

⎧⎨
⎩

〈–––→x̃f (ỹ),
–→
xx̃〉 ≥ , ∀x ∈ F(T),

〈–––→ỹg(x̃),
–→
yỹ〉 ≥ , ∀y ∈ F(T).

(.)

For this purpose, we introduce the following iterative schemes:

⎧⎨
⎩
xt = tf (Tyt)⊕ ( – t)Txt ,

yt = tg(Txt)⊕ ( – t)Tyt ,
(.)

where t ∈ (, ), and

⎧⎪⎪⎨
⎪⎪⎩
x, y ∈ C,

xn+ = αnf (Tyn)⊕ ( – αn)Txn,

yn+ = αng(Txn)⊕ ( – αn)Txn, n≥ ,

(.)

where {αn} ⊂ (, ) satisfies
(H) αn → ,
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(H)
∑∞

n= =∞,
(H) either

∑∞
n= |αn+ – αn| < ∞ or limn→∞ αn+

αn
= .

Weprove that iterative schemes (.) and (.) converge strongly to (x̃, ỹ) ∈ F(T)×F(T)
such that x̃ = PF(T)f (ỹ) and ỹ = PF(T)g(x̃), which is the unique solution of (.).

2 Preliminaries
Let (X,d) be a metric space. A geodesic path joining x ∈ X to y ∈ Y (or, more briefly, a
geodesic from x to y) is a map c : [, l] → X such that c() = x, c(l) = y, and d(c(t), c(t′)) =
|t–t′| for all t, t′ ∈ [, l]. In particular, c is an isometry and d(x, y) = l. The image of c is called
a geodesic segment joining x and y. When it is unique, this geodesic segment is denoted by
[x, y]. The space (X,d) is said to be a geodesic space if every two points of X are joined by
a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x
and y for each x, y ∈ X. A subset Y ⊂ X is said to be convex if Y includes every geodesic
segment joining any two of its points.
A geodesic triangle �(x,x,x) in a geodesic metric space (X,d) consists of three points

x, x, and x in X (the vertices of �) and a geodesic segment between each pair of vertices
(the edges of �). A comparison triangle for the geodesic triangle �(x,x,x) in (X,d) is a
triangle�(x,x,x) := �(x,x,x) in the Euclidean planeE such that dE (xi,xj) = d(xi,xj)
for i, j ∈ , , .
A geodesic space is said to be aCAT() space if all geodesic triangles satisfy the following

comparison axiom.
CAT(): Let � be a geodesic triangle in X, and let � be a comparison triangle for �.

Then � is said to satisfy the CAT() inequality if for all x, y ∈ � and all comparison points
x, y ∈ �,

d(x, y) ≤ dE (x, y).

Let x, y ∈ X by [, Lemma .(iv)] for each t ∈ [, ], then there exists a unique point
z ∈ [x, y] such that

d(x, z) = td(x, y), d(y, z) = ( – t)d(x, y). (.)

From now on, we will use the notation ( – t)x⊕ ty for the unique point z satisfying (.).
We now collect some elementary facts about CAT() spaces which will be used in the

proofs of our main results.

Lemma . Let X be a CAT() space. Then
(i) (see [, Lemma .]) for each x, y, z ∈ X and t ∈ [, ], one has

d
(
( – t)x⊕ ty, z

) ≤ ( – t)d(x, z) + td(y, z); (.)

(ii) (see []) for each x, y, z ∈ X and t, s ∈ [, ], one has

d
(
( – t)x⊕ ty, ( – s)x⊕ sy

) ≤ |t – s|d(x, y); (.)

(iii) (see []) for each x, y, z,w ∈ X and t ∈ [, ], one has

d
(
( – t)x⊕ ty, ( – t)z⊕ tw

) ≤ ( – t)d(x, z) + td(y,w); (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/471
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(iv) (see []) for each x, y, z ∈ X and t ∈ [, ], one has

d
(
( – t)z⊕ tx, ( – t)z⊕ ty

) ≤ td(x, y); (.)

(v) (see []) for each x, y, z ∈ X and t ∈ [, ], one has

d(( – t)x⊕ ty, z
) ≤ ( – t)d(x, z) + td(y, z) – t( – t)d(x, y). (.)

Let C be a nonempty subset of a complete CAT() space X. Recall that a self-mapping
T : C → C is a nonexpansion on C iff d(Tx,Ty) ≤ d(x, y) for all x, y ∈ C. A point x ∈ C
is called a fixed point of T if x = Tx. We denote by F(T) the set of all fixed points of T .
A self-mapping f : C → C is a contraction on C if there exists a constant α ∈ (, ) such
that d(fx, fy) ≤ αd(x, y). Banach’s contraction principle [] guarantees that f has a unique
fixed point when C is a nonempty closed convex subset of a complete metric space.
Fixed-point theory in CAT() spaces was first studied by Kirk (see [, ]). He showed

that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT() space always has a fixed point. Since then, the fixed-point
theory for single-valued and multivalued mappings in CAT() spaces has been rapidly
developed.
Berg and Nikolaev [] introduced the concept of quasilinearization as follows.
Let (X,d) be a metric space. Let us formally denote a pair (a,b) ∈ X × X by

–→
ab and call

it a vector. Then quasilinearization is defined as a mapping 〈·, ·〉 : (X ×X)× (X ×X) →R

defined by

〈–→ab, –→cd〉 = 

(
d(a,d) + d(b, c) – d(a, c) – d(b,d)

)
, a,b, c,d ∈ X. (.)

It is easily seen that 〈–→ab, –→cd〉 = 〈–→cd, –→ab〉, 〈–→ab, –→cd〉 = –〈–→ba, –→cd〉 and 〈–→ax, –→cd〉+ 〈–→xb, –→cd〉 = 〈–→ab, –→cd〉
for all a,b, c,d,x ∈ X.
We say that X satisfies the Cauchy-Schwarz inequality if

〈–→ab, –→cd〉 ≤ d(a,b)d(c,d) (.)

for all a,b, c,d ∈ X.
It is known [, Corollary ] that a geodesically connectedmetric space is aCAT() space

if and only if it satisfies the Cauchy-Schwarz inequality.
Recently, Dehghan and Rooin [] presented a characterization of a metric projection

in CAT() spaces as follows.

Lemma . Let C be a nonempty closed and convex subset of a complete CAT() space X,
x ∈ X and u ∈ C. Then u = PCx if and only if 〈–→yu, –→ux〉 ≥  for all y ∈ C.

Let {xn} be a bounded sequence in a CAT() space X. For x ∈ X, we set

r
(
x, {xn}

)
= lim sup

n→∞
d(x,xn).

The asymptotic radius r({xn}) of {xn} is given by

r
({xn}) = inf

{
r
(
x, {xn}

)
: x ∈ X

}
,

http://www.journalofinequalitiesandapplications.com/content/2013/1/471
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and the asymptotic center A({xn}) of {xn} is the set

A
({xn}) = {

x ∈ X : r
(
x, {xn}

)
= r

({xn})}.
It is known from Proposition  of [] that for each bounded sequence {xn} in a com-

plete CAT() space, A({xn}) consists of exactly one point. A sequence {xn} ⊂ X is said to
�-converge to x ∈ X if A({xnk }) = {x} for every subsequence {xnk } of {xn}. We use xn

�−→ x
to denote that {xn} �-converges to x. The uniqueness of an asymptotic center implies that
the CAT() space X satisfies Opial’s property, i.e., for given {xn} ⊂ X such that xn

�−→ x,
then for any given y ∈ X with y �= x, the following holds:

lim sup
n→∞

d(xn,x) < lim sup
n→∞

d(xn, y).

Lemma . [] Assume that X is a complete CAT() space. Then:
(i) Every bounded sequence in X always has a �-convergent subsequence.
(ii) If C is a closed convex subset of X and T : C → X is a nonexpansive mapping, then

the conditions xn
�−→ x and d(xn,Txn) →  imply x ∈ C and Tx = x.

The following lemma shows a characterization of �-convergence.

Lemma . [] Let X be a complete CAT() space, {xn} be a sequence in X, and x ∈ X.
Then xn

�−→ x if and only if lim supn→∞〈––→xxn, –→xy〉 ≤  for all y ∈ X.

Lemma. [] Let {an} be a sequence of nonnegative real numbers satisfying the property

an+ ≤ ( – αn)an + αnβn, n ≥ ,

where {αn} ⊂ (, ) and {βn} ⊂R such that
.

∑∞
n= αn =∞;

. lim supn→∞ βn ≤  or
∑∞

n= |αnβn| < ∞.
Then {an} converges to zero as n→ ∞.

Lemma . [] Let X be a complete CAT() space. Then,
(i) for each u,x, y ∈ X , one has

d(x,u) ≤ d(y,u) + 〈–→xy, –→xu〉; (.)

(ii) for any u, v ∈ X and t ∈ [, ], letting ut = tu⊕ ( – t)v for all x, y ∈ X , we have:
(a) 〈––→utx, ––→uty〉 ≤ t〈–→ux, ––→uty〉 + ( – t)〈–→vx, ––→uty〉;
(b) 〈––→utx, –→uy〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→uy〉;
(c) 〈––→utx, ––→uty〉 ≤ t〈–→ux, –→uy〉 + ( – t)〈–→vx, –→vy〉.

3 Main results
Now we are ready to give our main results in this paper.
Let (X,d) be a metric space. Define a mapping d̂ : (X ×X)× (X ×X) →R

+ by

d̂
(
(x, y), (x, y)

)
= d(x,x) + d(y, y)

http://www.journalofinequalitiesandapplications.com/content/2013/1/471
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for all x,x, y, y ∈ X. Then it is easy to verify that (X × X, d̂) is a metric space, and (X ×
X, d̂) is complete if and only if (X,d) is complete.

Lemma . Let C be a closed convex subset of a complete CAT() space. Let f , g : C → C
be two contractions with coefficient α ∈ (, ), and let T,T : C → C be two nonexpansive
mappings. For any t ∈ (, ), define another mapping Gt : C ×C → C ×C by

Gt(x, y) =
(
tf (Ty)⊕ ( – t)Tx, tg(Tx)⊕ ( – t)Ty

)
.

Then Gt is a contraction on C ×C.

Proof For any (x, y), (x, y) ∈ C ×C and t ∈ (, ), we have

d̂
(
Gt(x, y),Gt(x, y)

)
= d

(
tf (Ty)⊕ ( – t)Tx, tf (Ty)⊕ ( – t)Tx

)
+ d

(
tg(Tx)⊕ ( – t)Ty, tg(Tx)⊕ ( – t)Ty

)
≤ td

(
f (Ty), f (Ty)

)
+ ( – t)d(Tx,Tx)

+ td
(
g(Tx), g(Tx)

)
+ ( – t)d(Ty,Ty)

≤ (
 – t( – α)

)(
d(x,x) + d(y, y)

)
=

(
 – t( – α)

)
d̂
(
(x, y), (x, y)

)
.

This implies that Gt is a contraction mapping. Therefore there exists a unique fixed point
(xt , yt) ∈ C ×C of Gt such that

⎧⎨
⎩
xt = tf (Tyt)⊕ ( – t)Txt ,

yt = tg(Txt)⊕ ( – t)Tyt . �

Theorem. Let C be a closed convex subset of a completeCAT() space X, and let T,T :
C → C be two nonexpansive mappings such that F(T) and F(T) are nonempty. Let f , g be
two contractions on C with coefficient  < α < . For each t ∈ (, ], let {xt} and {yt} be given
by (.). Then xt → x̃ and yt → ỹ as t →  such that x̃ = PF(T)f (ỹ), ỹ = PF(T)g(x̃) which is
the unique solution of HOP (.).

Proof We first show that {xt} and {yt} are bounded. Indeed, take (p,q) ∈ F(T)× F(T) to
derive that

d(xt ,p) + d(yt ,q) = d
(
tf (Tyt)⊕ ( – t)Txt ,p

)
+ d

(
tg(Txt)⊕ ( – t)Tyt ,q

)
≤ td

(
f (Tyt),p

)
+ ( – t)d(Txt ,p) + td

(
g(Txt),q

)
+ ( – t)d(Tyt ,q)

≤ td
(
f (Tyt), f (q)

)
+ td

(
f (q),p

)
+ ( – t)d(Txt ,p)

+ td
(
g(Txt), g(p)

)
+ td

(
g(p),q

)
+ ( – t)d(Tyt ,q)

≤ tαd(yt ,q) + td
(
f (q),p

)
+ ( – t)d(xt ,p)

+ tαd(xt ,p) + td
(
g(p),q

)
+ ( – t)d(yt ,q).

http://www.journalofinequalitiesandapplications.com/content/2013/1/471
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After simplifying, we have

d(xt ,p) + d(yt ,q) ≤ 
 – α

(
d
(
f (q),p

)
+ d

(
g(p),q

))
.

Hence {xt} and {yt} are bounded, so are {Txt}, {Tyt}, {f (Tyt)} and {g(Txt)}. Conse-
quently,

d(xt ,Txt) + d(yt ,Tyt) = d
(
tf (Tyt)⊕ ( – t)Txt ,Txt

)
+ d

(
tg(Txt)⊕ ( – t)Tyt ,Tyt

)
= td

(
f (Tyt),Tyt

)
+ td

(
g(Txt),Tyt

) →  (as t → ).

In particular, we have

d(xt ,Txt) → , d(yt ,Tyt) →  (as t → ). (.)

Next we prove that {xt} is relatively compact as t → .
In fact, let {tn} ⊂ (, ) be any subsequence such that tn →  as n→ ∞. Put xn := xtn and

yn := ytn . Now we prove that {(xn, yn)} contains a subsequence converging strongly to (x̃, ỹ)
where x̃ = PF(T)f (ỹ), ỹ = PF(T)g(x̃) and it is a solution of HOP (.).
In fact, since {xn} and {yn} are both bounded, by Lemma .(i), (ii) and (.), we may

assume that xn
�−→ x̃ and yn

�−→ ỹ, and x̃ ∈ F(T), ỹ ∈ F(T). Hence it follows fromLemma.
that

d(xn, x̃) + d(yn, ỹ) = 〈––→xnx̃, ––→xnx̃〉 + 〈––→ynỹ, ––→ynỹ〉
≤ tn

〈–––––––→
f (Tyn)x̃,

––→
xnx̃

〉
+ ( – tn)

〈––––––→
(Txn)x̃,

––→
xnx̃

〉

+ tn
〈–––––––→
g(Txn)ỹ,

––→
ynỹ

〉
+ ( – tn)

〈––––––→
(Tyn)ỹ,

––→
ynỹ

〉

≤ tn
〈–––––––→
f (Tyn)x̃,

––→
xnx̃

〉
+ ( – tn)d(Txn, x̃)d(xn, x̃)

+ tn
〈–––––––→
g(Txn)ỹ,

––→
ynỹ

〉
+ ( – tn)d(Tyn, ỹ)d(yn, ỹ)

≤ tn
〈–––––––→
f (Tyn)x̃,

––→
xnx̃

〉
+ ( – tn)d(xn, x̃)

+ tn
〈–––––––→
g(Txn)ỹ,

––→
ynỹ

〉
+ ( – tn)d(yn, ỹ). (.)

After simplifying, we have

d(xn, x̃) + d(yn, ỹ) ≤
〈–––––––→
f (Tyn)x̃,

––→
xnx̃

〉
+

〈–––––––→
g(Txn)ỹ,

––→
ynỹ

〉

=
〈––––––––––→
f (Tyn)f (ỹ),

––→
xnx̃

〉
+

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉

+
〈––––––––––→
g(Txn)g(x̃),

––→
ynỹ

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉

≤ d
(
f (Tyn), f (ỹ)

)
d(xn, x̃) +

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉

+ d
(
g(Txn), g(x̃)

)
d(yn, ỹ) +

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉

≤ αd(xn, x̃)d(yn, ỹ) +
〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉

≤ α
(
d(xn, x̃) + d(yn, ỹ)

)
+

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉

http://www.journalofinequalitiesandapplications.com/content/2013/1/471
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and thus

d(xn, x̃) + d(yn, ỹ) ≤ 
 – α

[〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉]
. (.)

Since xn
�−→ x̃ and yn

�−→ ỹ, by Lemma .,

lim sup
n→∞

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉 ≤  and lim sup
n→∞

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉 ≤ .

Hence we have

lim sup
n→∞

[〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉] ≤ lim sup
n→∞

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+ lim sup

n→∞
〈–––→
g(x̃)ỹ,

––→
ynỹ

〉 ≤ . (.)

It follows from (.) that d(xn, x̃) + d(yn, ỹ) → . Hence xn → x̃ and yn → ỹ.
Next we show that (x̃, ỹ) ∈ F(T)× F(T), which solves HOP (.).
Indeed, for each x ∈ F(T), y ∈ F(T), we have

d(xt ,x) = d(tf (Tyt)⊕ ( – t)Txt ,x
)

≤ td(f (Tyt),x
)
+ ( – t)d(Txt ,x) – t( – t)d(f (Tyt),Txt

)
≤ td(f (Tyt),x

)
+ ( – t)d(xt ,x) – t( – t)d(f (Tyt),Txt

)
.

This implies that

d(xt ,x)≤ d(f (Tyt),x
)
– ( – t)d(f (Tyt),Txt

)
.

Letting t = tn →  and taking the limit and noting that d(yt ,Tyt) →  and d(xt ,Txt) →
, we have

d(x̃,x) ≤ d(f (ỹ),x) – d(f (ỹ), x̃).
Hence

〈–––→
x̃f (ỹ),

–→
xx̃

〉
=


[
x̃ + d(f (ỹ),x) – d(f (ỹ), x̃) – d(x̃,x)

] ≥ .

It is similar to proving that

〈–––→
ỹg(x̃),

–→
yỹ

〉 ≥ .

That is, (x̃, ỹ) solves inequality (.).
Finally, we show that the entire net {xt} converges to x̃, and {yt} converges to ỹ. In fact,

for any subsequence {sn} ⊂ (, ) such that sn →  (as n → ∞), assume that xsn → x̂ and
ysn → ŷ. By the same argument as above, we get that (x̂, ŷ) ∈ F(T) × F(T) and solves
inequality (.). Hence we have

⎧⎨
⎩

〈–––→x̃f (ỹ),
–→̃
xx̂〉 ≤ ,

〈–––→ỹg(x̃),
–→̃
yŷ〉 ≤ 

(.)
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and
⎧⎨
⎩

〈–––→x̂f (ŷ),
–→̂
xx̃〉 ≤ ,

〈–––→ŷg(x̂),
–→̂
yỹ〉 ≤ .

(.)

Adding up (.) and (.), we get that

 ≥ 〈–––→
x̃f (ỹ),

–→̃
xx̂

〉
+

〈–––→
ỹg(x̃),

–→̃
yŷ

〉
–

〈–––→
x̂f (ŷ),

–→̃
xx̂

〉
–

〈–––→
ŷg(x̂),

–→̃
yŷ

〉

=
〈–––→
x̃f (ŷ),

–→̃
xx̂

〉
+

〈––––––→
f (ŷ)f (ỹ),

–→̃
xx̂

〉
– 〈–→̂xx̃, –→̃xx̂〉 – 〈–––→

x̃f (ŷ),
–→̃
xx̂

〉

+
〈–––→
ỹg(x̂),

–→̃
yŷ

〉
+

〈–––––––→
g(x̂)g(x̃),

–→̃
yŷ

〉
– 〈–→̂yỹ, –→̃yŷ〉 – 〈–––→

ỹg(x̂),
–→̃
yŷ

〉

= 〈–→̃xx̂, –→̃xx̂〉 + 〈–→̃yŷ, –→̃yŷ〉 – 〈––––––→
f (ỹ)f (ŷ),

–→̃
xx̂

〉
–

〈–––––––→
g(x̃)g(x̂),

–→̃
yŷ

〉
≥ d(x̃, x̂) + d(ỹ, ŷ) – d

(
f (ỹ), f (ŷ)

)
d(x̃, x̂) – d

(
g(x̃), g(x̂)

)
d(ỹ, ŷ)

≥ d(x̃, x̂) + d(ỹ, ŷ) – αd(ỹ, ŷ)d(x̃, x̂)

≥ ( – α)
[
d(x̃, x̂) + d(ỹ, ŷ)

]
.

Since  < α < , we have that d(x̃, x̂) + d(ỹ, ŷ) = , and so x̃ = x̂, ỹ = ŷ. Hence the entire net
{xt} converges to x̃ and {yt} converges to ỹ, which (x̂, ŷ) solves HOP (.). This completes
the proof of Theorem .. �

Theorem. Let C be a closed convex subset of a completeCAT() space X, and let T,T :
C → C be two nonexpansive mappings such that F(T) and F(T) are nonempty. Let f , g be
two contractions on C with coefficient  < α < . Let {xn} and {yn} be the sequences defined
by (.). If conditions (H)-(H) are satisfied, then xn → x̃ and yn → ỹ as n → ∞, where
x̃ = PF(T)f (ỹ), ỹ = PF(T)g(x̃), which solves HOP (.).

Proof First we show that {xn} and {yn} are bounded. Indeed, taking (p,q) ∈ F(T)× F(T),
it follows that

d(xn+,p) + d(yn+,q) = d
(
αnf (Tyn)⊕ ( – αn)Txn,p

)
+ d

(
αng(Txn)⊕ ( – αn)Tyn,q

)
≤ αnd

(
f (Tyn),p

)
+ ( – αn)d(Txn,p)

+ αnd
(
g(Txn),q

)
+ ( – αn)d(Tyn,q)

≤ αnd
(
f (Tyn), f (q)

)
+ αnd

(
f (q),p

)
+ ( – αn)d(Txn,p)

+ αnd
(
g(Txn), g(p)

)
+ αnd

(
g(p),q

)
+ ( – αn)d(Tyn,q)

≤ αnαd(yn,q) + αnd
(
f (q),p

)
+ ( – αn)d(xn,p)

+ αnαd(xn,p) + αnd
(
g(p),q

)
+ ( – αn)d(yn,q)

=
(
 – αn( – α)

)[
d(xn,p) + d(yn,q)

]

+ αn( – α)
d(f (q),p) + d(g(p),q)

 – α

≤ max

{
d(xn,p) + d(yn,q),

d(f (q),p) + d(g(p),q)
 – α

}
.
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By induction, we can prove that

d(xn,p) + d(yn,q) ≤max

{
d(x,p) + d(y,q),

d(f (q),p) + d(g(p),q)
 – α

}
(.)

for all n ∈ N. This implies that {xn} and {yn} are bounded, so are {Txn}, {Tyn}, {f (Tyn)}
and {g(Txn)}.
We claim that d(xn+,xn) →  and d(yn+, yn) → . Indeed,we have (for some appropriate

constantM > )

d(xn+,xn) + d(yn+, yn)

= d
(
αnf (Tyn)⊕ ( – αn)Txn,αn–f (Tyn–)⊕ ( – αn–)Txn–

)
+ d

(
αng(Txn)⊕ ( – αn)Tyn,αn–g(Txn–)⊕ ( – αn–)Tyn–

)
≤ d

(
αnf (Tyn)⊕ ( – αn)Txn,αnf (Tyn–)⊕ ( – αn)Txn–

)
+ d

(
αnf (Tyn–)⊕ ( – αn)Txn–,αn–f (Tyn–)⊕ ( – αn–)Txn–

)
+ d

(
αng(Txn)⊕ ( – αn)Tyn,αng(Txn–)⊕ ( – αn)Tyn–

)
+ d

(
αng(Txn–)⊕ ( – αn)Tyn–,αn–g(Txn–)⊕ ( – αn–)Tyn–

)
≤ αnd

(
f (Tyn), f (Tyn–)

)
+ ( – αn)d(Txn,Txn–)

+ |αn – αn–|d
(
f (Tyn–),Txn–

)
+ αnd

(
g(Txn), g(Txn–)

)
+ ( – αn)d(Tyn,Tyn–)

+ |αn – αn–|d
(
g(Txn–),Tyn–

)
≤ αnαd(Tyn,Tyn–) + ( – αn)d(Txn,Txn–) + |αn – αn–|d

(
f (Tyn–),Txn–

)
+ αnαd(Txn,Txn–) + ( – αn)d(Tyn,Tyn–) + |αn – αn–|d

(
g(Txn–),Tyn–

)
≤ (

 – αn( – α)
)[
d(xn,xn–) + d(yn, yn–)

]
+M|αn – αn–|.

By conditions (H) and (H) and Lemma ., we have

d(xn+,xn) + d(yn+, yn) → , (.)

and thus d(xn+,xn) → , d(yn+, yn) → .
Consequently, by condition (H), we have

d(xn,Txn) + d(yn,Tyn) ≤ d(xn,xn+) + d(xn+,Txn)

+ d(yn, yn+) + d(yn+,Tyn)

= d(xn,xn+) + d
(
αnf (Tyn)⊕ ( – αn)Txn,Txn

)
+ d(yn, yn+) + d

(
αng(Txn)⊕ ( – αn)Tyn,Tyn

)
= d(xn,xn+) + αnd

(
f (Tyn),Txn

)
+ d(yn, yn+) + αnd

(
g(Txn),Tyn

)
→  (n→ ∞). (.)
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This implies that

d(xn,Txn)→ , d(yn,Tyn) →  (as n→ ∞). (.)

Let {xt} and {yt} be two nets in C such that

⎧⎨
⎩
xt = tf (Tyt)⊕ ( – t)Txt ,

yt = tg(Txt)⊕ ( – t)Tyt .

By Theorem ., we have that xt → x̃ and yt → ỹ as t →  such that x̃ = PF(T)f (ỹ), ỹ =
PF(T)g(x̃), which solves the variational inequality (.). Now, we claim that

lim sup
n→∞

[〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉] ≤ .

From Lemma ., we have

d(xt ,xn) + d(yt , yn)

= 〈–––→xtxn, –––→xtxn〉 + 〈––→ytyn, ––→ytyn〉
≤ t

〈––––––––→
f (Tyt)xn, –––→xtxn

〉
+ ( – t)

〈–––––––→
T(xt)xn, –––→xtxn

〉

+ t
〈––––––––→
g(Txt)yn, ––→ytyn

〉
+ ( – t)

〈–––––––→
T(yt)yn, ––→ytyn

〉

= t
〈––––––––––→
f (Tyt)f (ỹ), –––→xtxn

〉
+ t

〈–––→
f (ỹ)x̃, –––→xtxn

〉
+ t〈–→̃xxt , –––→xtxn〉 + t〈–––→xtxn, –––→xtxn〉

+ t
〈––––––––––→
g(Txt)g(x̃), ––→ytyn

〉
+ t

〈–––→
g(x̃)ỹ, ––→ytyn

〉
+ t〈–→̃yyt , ––→ytyn〉 + t〈––→ytyn, ––→ytyn〉

+ ( – t)
〈–––––––––––→
T(xt)T(xn), –––→xtxn

〉
+ ( – t)

〈–––––––→
T(xn)xn, –––→xtxn

〉

+ ( – t)
〈–––––––––––→
T(yt)T(yn), ––→ytyn

〉
+ ( – t)

〈–––––––→
T(yn)yn, ––→ytyn

〉

≤ tαd(yt , ỹ)d(xt ,xn) + t
〈–––→
f (ỹ)x̃, –––→xtxn

〉
+ td(x̃,xt)d(xt ,xn) + td(xt ,xn)

+ tαd(xt , x̃)d(yt , yn) + t
〈–––→
g(x̃)ỹ, ––→ytyn

〉
+ td(ỹ, yt)d(yt , yn) + td(yt , yn)

+ ( – t)d(xt ,xn) + ( – t)d
(
T(xn),xn

)
d(xtxn)

+ ( – t)d(yt , yn) + ( – t)d
(
T(yn), yn

)
d(ytyn)

≤ tαd(yt , ỹ)M + t
〈–––→
f (ỹ)x̃, –––→xtxn

〉
+ td(x̃,xt)M + td(xt ,xn)

+ tαd(xt , x̃)M + t
〈–––→
g(x̃)ỹ, ––→ytyn

〉
+ td(ỹ, yt)M + td(yt , yn)

+ ( – t)d(xt ,xn) + ( – t)d
(
T(xn),xn

)
M

+ ( – t)d(yt , yn) + ( – t)d
(
T(yn), yn

)
M

≤ [
d(xt ,xn) + d(yt , yn)

]
+ tMα

[
d(xt , x̃) + d(yt , ỹ)

]
+ tM

[
d(x̃,xt) + d(ỹ, yt)

]

+M
[
d
(
T(xn),xn

)
+ d

(
T(yn), yn

)]
+ t

[〈–––→
f (ỹ)x̃, –––→xtxn

〉
+

〈–––→
g(x̃)ỹ, ––→ytyn

〉]
,
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where M ≥ max{sup{d(xt ,xn) : t ∈ (, ),n ≥ }, sup{d(yt , yn) : t ∈ (, ),n ≥ }}. Simplify-
ing this, we have

〈–––→
f (ỹ)x̃, –––→xnxt

〉
+

〈–––→
g(x̃)ỹ, ––→ynyt

〉
≤M( + α)

[
d(xt , x̃) + d(yt , ỹ)

]

+
M
t

[
d
(
T(xn),xn

)
+ d

(
T(yn), yn

)]
. (.)

Taking the limit as n→ ∞ first and then letting t →  on both sides of (.), we have

lim sup
t→

lim sup
n→∞

[〈–––→
f (ỹ)x̃, –––→xnxt

〉
+

〈–––→
g(x̃)ỹ, ––→ynyt

〉] ≤ .

Since xt → x̃ and yt → ỹ as t → , by the continuity of a metric d, it follows that

lim sup
t→

[〈–––→
f (ỹ)x̃, –––→xnxt

〉
+

〈–––→
g(x̃)ỹ, ––→ynyt

〉]
=

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉
.

This implies that, for any ε > , there exists δ >  such that for any t ∈ (, δ), we have

〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉 ≤ 〈–––→
f (ỹ)x̃, –––→xnxt

〉
+

〈–––→
g(x̃)ỹ, ––→ynyt

〉
+ ε. (.)

First letting t →  and taking limit, and then letting n → ∞ and taking the upper limit
on (.), we obtain

lim sup
n→∞

[〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉] ≤ ε.

Since ε >  is arbitrary, we have

lim sup
n→∞

[〈–––→
f (ỹ)x̃,

––→
xnx̃

〉
+

〈–––→
g(x̃)ỹ,

––→
ynỹ

〉] ≤ .

Finally, we prove that xn → x̃ and yn → ỹ as n → ∞. Indeed, taking un = αnx̃ ⊕ ( –
αn)Txn, vn = αnỹ⊕ ( – αn)Tyn for any n ∈N, it follows from Lemma .(i) that

d(xn+, x̃) + d(yn+, ỹ)

≤ d(un, x̃) + d(vn, ỹ) + 〈–––––→xn+un,
––––→
xn+x̃〉 + 〈–––––→yn+vn,

–––→
yn+ỹ〉

≤ ( – αn)
[
d(xn, x̃) + d(yn, ỹ)

]
+ 

[
αn

〈–––––––––→
f (Tyn)un,

––––→
xn+x̃

〉

+ ( – αn)
〈–––––––→
T(xn)un,

––––→
xn+x̃

〉]

+ 
[
αn

〈––––––––→
g(Txn)vn,

–––→
yn+ỹ

〉
+ ( – αn)

〈–––––––→
T(yn)vn,

–––→
yn+ỹ

〉]

≤ ( – αn)
[
d(xn, x̃) + d(yn, ỹ)

]
+ 

[
αn

〈–––––––→f (Tyn)x̃,
––––→
xn+x̃

〉

+ αn( – αn)
〈–––––––––––––→
f (Tyn)T(xn),

––––→
xn+x̃

〉

+ ( – αn)αn
〈––––––→
T(xn)x̃,

––––→
xn+x̃

〉
+ ( – αn)

〈–––––––––––→
T(xn)T(xn),

––––→
xn+x̃

〉]

+ 
[
αn

〈–––––––→g(Txn)ỹ,
–––→
yn+ỹ

〉
+ αn( – αn)

〈–––––––––––––→
g(Txn)T(yn),

–––→
yn+ỹ

〉
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+ ( – αn)
〈––––––→
T(yn)ỹ,

–––→
yn+ỹ

〉
+ αn( – αn)

〈––––––––––––→
T(yn)T(yn),

–––→
yn+ỹ

〉]

= ( – αn)
[
d(xn, x̃) + d(yn, ỹ)

]
+ αn

[〈–––––––→
f (Tyn)x̃,

––––→
xn+x̃

〉
+

〈–––––––→
g(Txn)ỹ,

–––→
yn+ỹ

〉]

= ( – αn)
[
d(xn, x̃) + d(yn, ỹ)

]
+ αn

[〈––––––––––→
f (Tyn)f (ỹ),

––––→
xn+x̃

〉
+

〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉

+
〈––––––––––→
g(Txn)g(x̃),

–––→
yn+ỹ

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]
≤ ( – αn)

[
d(xn, x̃) + d(yn, ỹ)

]
+ αnα

[
d(yn, ỹ)d(xn+, x̃) + d(xn, x̃)d(yn+, ỹ)

]

+ αn
[〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]
≤ ( – αn)

[
d(xn, x̃) + d(yn, ỹ)

]
+ αnα

[
d(yn, ỹ) + d(xn+, x̃) + d(xn, x̃) + d(yn+, ỹ)

]

+ αn
[〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]
, (.)

which implies that

d(xn+, x̃) + d(yn+, ỹ)

≤  – ( – α)αn + α
n

 – ααn

[
d(xn, x̃) + d(yn, ỹ)

]
+

αn

 – ααn

[〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]

≤  – ( – α)αn

 – ααn

[
d(xn, x̃) + d(yn, ỹ)

]

+
αn

 – ααn

[〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]
+

α
n

 – α
M, (.)

whereM > supn≥[d(xn, x̃) + d(yn, ỹ)]. Thus,

d(xn+, x̃) + d(yn+, ỹ) ≤
(
 – α′

n
)[
d(xn, x̃) + d(yn, ỹ)

]
+ α′

nβ
′
n, (.)

where

α′
n =

( – α)αn

 – ααn
and β ′

n =
( – ααn)αn

( – α)
M +


 – α

[〈–––→
f (ỹ)x̃,

––––→
xn+x̃

〉
+

〈–––→
g(x̃)ỹ,

–––→
yn+ỹ

〉]
.

Applying Lemma ., we have d(xn, x̃) + d(yn, ỹ) → . Hence xn → x̃ and yn → ỹ as
n→ ∞. This completes the proof of Theorem .. �
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