Viscosity approximation methods for hierarchical optimization problems in $\operatorname{CAT}(0)$ spaces

Xin-Dong Liu' and Shih-sen Chang ${ }^{2 *}$

"Correspondence:
changss2013@163.com
${ }^{2}$ College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China
Full list of author information is available at the end of the article

Abstract

This paper aims at investigating viscosity approximation methods for solving a system of variational inequalities in a CAT(0) space. Two algorithms are given. Under certain appropriate conditions, we prove that the iterative schemes converge strongly to the unique solution of the hierarchical optimization problem. The result presented in this paper mainly improves and extends the corresponding results of Shi and Chen (J. Appl. Math. 2012:421050, 2012, doi:10.1155/2012/421050), Wangkeeree and Preechasilp (J. Inequal. Appl. 2013:93, 2013, doi:10.1186/1029-242X-2013-93) and others. MSC: 47H09; 47H05

Keywords: viscosity approximation method; variational inequality; hierarchical optimization problems; CAT(0) space; common fixed point

1 Introduction

The concept of variational inequalities plays an important role in various kinds of problems in pure and applied sciences (see, for example, [1-11]). Moreover, the rapid development and the prolific growth of the theory of variational inequalities have been made by many researchers.

In a CAT(0) space, Saejung [12] studied the convergence theorems of the following Halpern iterations for a nonexpansive mapping T. Let u be fixed and $x_{t} \in C$ be the unique fixed point of the contraction $x \mapsto t u \oplus(1-t) T x$; i.e.,

$$
\begin{equation*}
x_{t}=t u \oplus(1-t) T x_{t}, \tag{1.1}
\end{equation*}
$$

where $t \in[0,1]$ and $x_{0}, u \in C$ are arbitrarily chosen and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} u \oplus\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0, \tag{1.2}
\end{equation*}
$$

where $\alpha_{n} \in(0,1)$. It is proved that $\left\{x_{t}\right\}$ converges strongly as $t \rightarrow 0$ to $\tilde{x} \in F(T)$ such that $\tilde{x}=P_{F(T)} u$, and $\left\{x_{n}\right\}$ converges strongly as $n \rightarrow \infty$ to $\tilde{x} \in F(T)$ under certain appropriate conditions on α_{n}, where $P_{C} x$ is a metric projection from X onto C.

In 2012, Shi and Chen [13] studied the convergence theorems of the following Moudafi viscosity iterations for a nonexpansive mapping T : For a contraction f on C and $t \in(0,1)$,
let $x_{t} \in C$ be the unique fixed point of the contraction $x \mapsto t f(x) \oplus(1-t) T x$; i.e.,

$$
\begin{equation*}
x_{t}=t f\left(x_{t}\right) \oplus(1-t) T x_{t}, \tag{1.3}
\end{equation*}
$$

and $x_{0} \in C$ is arbitrarily chosen and

$$
\begin{equation*}
x_{n+1}=\alpha_{n} f\left(x_{n}\right) \oplus\left(1-\alpha_{n}\right) T x_{n}, \quad n \geq 0, \tag{1.4}
\end{equation*}
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$. They proved that $\left\{x_{t}\right\}$ defined by (1.3) converges strongly as $t \rightarrow 0$ to $\tilde{x} \in F(T)$ such that $\tilde{x}=P_{F(T)} f(\tilde{x})$ in the framework of a CAT(0) space satisfying the property \mathscr{P}, i.e., if for $x, u, y_{1}, y_{2} \in X$,

$$
d\left(x, P_{\left[x, y_{1}\right]} u\right) d\left(x, y_{1}\right) \leq d\left(x, P_{\left[x, y_{2}\right]} u\right) d\left(x, y_{2}\right)+d(x, u) d\left(y_{1}, y_{2}\right) .
$$

Furthermore, they also obtained that $\left\{x_{n}\right\}$ defined by (1.4) converges strongly as $n \rightarrow \infty$ to $\tilde{x} \in F(T)$ under certain appropriate conditions imposed on $\left\{\alpha_{n}\right\}$.

By using the concept of quasilinearization, which was introduced by Berg and Nikolaev [14], Wangkeeree and Preechasilp [15] studied the strong convergence theorems of iterative schemes (1.3) and (1.4) in CAT(0) spaces without the property \mathscr{P}. They proved that iterative schemes (1.3) and (1.4) converge strongly to \tilde{x} such that $\tilde{x}=P_{F(T)} f(\tilde{x})$, which is the unique solution of the variational inequality (VIP)

$$
\begin{equation*}
\mid \overrightarrow{\tilde{x} f(\tilde{x})}, \overrightarrow{x \tilde{x}}) \geq 0, \quad x \in F(T) \tag{1.5}
\end{equation*}
$$

In this paper, we are interested in the following so-called hierarchical optimization problems (HOP). More precisely, let $f, g: C \rightarrow C$ be two contractions with coefficient $\alpha \in(0,1)$, and let $T_{1}, T_{2}: C \rightarrow C$ be two nonexpansive mappings such that $F\left(T_{1}\right)$ and $F\left(T_{2}\right)$ are nonempty. The class of hierarchical optimization problems (HOP) consists in finding $(\tilde{x}, \tilde{y}) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$ such that the following inequalities hold:

$$
\begin{cases}\langle\overrightarrow{\tilde{x} f(\vec{y})}, \overrightarrow{x \tilde{x}}\rangle \geq 0, & \forall x \in F\left(T_{1}\right), \tag{1.6}\\ \langle\vec{y} g(\vec{x}), \overrightarrow{y y}\rangle \geq 0, & \forall y \in F\left(T_{2}\right) .\end{cases}
$$

For this purpose, we introduce the following iterative schemes:

$$
\left\{\begin{array}{l}
x_{t}=t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t}, \tag{1.7}\\
y_{t}=\operatorname{tg}\left(T_{1} x_{t}\right) \oplus(1-t) T_{2} y_{t},
\end{array}\right.
$$

where $t \in(0,1)$, and

$$
\left\{\begin{array}{l}
x_{0}, y_{0} \in C \tag{1.8}\\
x_{n+1}=\alpha_{n} f\left(T_{2} y_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n}, \\
y_{n+1}=\alpha_{n} g\left(T_{1} x_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{2} x_{n}, \quad n \geq 0
\end{array}\right.
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ satisfies
(H1) $\alpha_{n} \rightarrow 0$,
(H2) $\sum_{n=0}^{\infty}=\infty$,
(H3) either $\sum_{n=0}^{\infty}\left|\alpha_{n+1}-\alpha_{n}\right|<\infty$ or $\lim _{n \rightarrow \infty} \frac{\alpha_{n+1}}{\alpha_{n}}=1$.
We prove that iterative schemes (1.7) and (1.8) converge strongly to $(\tilde{x}, \tilde{y}) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$ such that $\tilde{x}=P_{F\left(T_{1}\right)} f(\tilde{y})$ and $\tilde{y}=P_{F\left(T_{2}\right) g} g(\tilde{x})$, which is the unique solution of (1.6).

2 Preliminaries

Let (X, d) be a metric space. A geodesic path joining $x \in X$ to $y \in Y$ (or, more briefly, a geodesic from x to y) is a map $c:[0, l] \rightarrow X$ such that $c(0)=x, c(l)=y$, and $d\left(c(t), c\left(t^{\prime}\right)\right)=$ $\left|t-t^{\prime}\right|$ for all $t, t^{\prime} \in[0, l]$. In particular, c is an isometry and $d(x, y)=l$. The image of c is called a geodesic segment joining x and y. When it is unique, this geodesic segment is denoted by $[x, y]$. The space (X, d) is said to be a geodesic space if every two points of X are joined by a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x and y for each $x, y \in X$. A subset $Y \subset X$ is said to be convex if Y includes every geodesic segment joining any two of its points.
A geodesic triangle $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ in a geodesic metric space (X, d) consists of three points x_{1}, x_{2}, and x_{3} in X (the vertices of \triangle) and a geodesic segment between each pair of vertices (the edges of Δ). A comparison triangle for the geodesic triangle $\Delta\left(x_{1}, x_{2}, x_{3}\right)$ in (X, d) is a triangle $\bar{\Delta}\left(x_{1}, x_{2}, x_{3}\right):=\Delta\left(\bar{x}_{1}, \bar{x}_{2}, \bar{x}_{3}\right)$ in the Euclidean plane \mathbb{E}^{2} such that $d_{\mathbb{E}^{2}}\left(\bar{x}_{i}, \bar{x}_{j}\right)=d\left(x_{i}, x_{j}\right)$ for $i, j \in 1,2,3$.
A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following comparison axiom.
CAT(0): Let Δ be a geodesic triangle in X, and let $\bar{\triangle}$ be a comparison triangle for \triangle. Then Δ is said to satisfy the $\operatorname{CAT}(0)$ inequality if for all $x, y \in \Delta$ and all comparison points $\bar{x}, \bar{y} \in \bar{\Delta}$,

$$
d(x, y) \leq d_{\mathbb{E}^{2}}(\bar{x}, \bar{y}) .
$$

Let $x, y \in X$ by [16, Lemma $2.1($ iv $)]$ for each $t \in[0,1]$, then there exists a unique point $z \in[x, y]$ such that

$$
\begin{equation*}
d(x, z)=t d(x, y), \quad d(y, z)=(1-t) d(x, y) . \tag{2.1}
\end{equation*}
$$

From now on, we will use the notation $(1-t) x \oplus t y$ for the unique point z satisfying (2.1).
We now collect some elementary facts about $\operatorname{CAT}(0)$ spaces which will be used in the proofs of our main results.

Lemma 2.1 Let X be a $\operatorname{CAT}(0)$ space. Then
(i) (see [16, Lemma 2.4]) for each $x, y, z \in X$ and $t \in[0,1]$, one has

$$
\begin{equation*}
d((1-t) x \oplus t y, z) \leq(1-t) d(x, z)+t d(y, z) ; \tag{2.2}
\end{equation*}
$$

(ii) (see [17]) for each $x, y, z \in X$ and $t, s \in[0,1]$, one has

$$
\begin{equation*}
d((1-t) x \oplus t y,(1-s) x \oplus s y) \leq|t-s| d(x, y) ; \tag{2.3}
\end{equation*}
$$

(iii) (see [18]) for each $x, y, z, w \in X$ and $t \in[0,1]$, one has

$$
\begin{equation*}
d((1-t) x \oplus t y,(1-t) z \oplus t w) \leq(1-t) d(x, z)+t d(y, w) ; \tag{2.4}
\end{equation*}
$$

(iv) (see [19]) for each $x, y, z \in X$ and $t \in[0,1]$, one has

$$
\begin{equation*}
d((1-t) z \oplus t x,(1-t) z \oplus t y) \leq t d(x, y) \tag{2.5}
\end{equation*}
$$

(v) (see [16]) for each $x, y, z \in X$ and $t \in[0,1]$, one has

$$
\begin{equation*}
d^{2}((1-t) x \oplus t y, z) \leq(1-t) d^{2}(x, z)+t d^{2}(y, z)-t(1-t) d^{2}(x, y) \tag{2.6}
\end{equation*}
$$

Let C be a nonempty subset of a complete $\mathrm{CAT}(0)$ space X. Recall that a self-mapping $T: C \rightarrow C$ is a nonexpansion on C iff $d(T x, T y) \leq d(x, y)$ for all $x, y \in C$. A point $x \in C$ is called a fixed point of T if $x=T x$. We denote by $F(T)$ the set of all fixed points of T. A self-mapping $f: C \rightarrow C$ is a contraction on C if there exists a constant $\alpha \in(0,1)$ such that $d(f x, f y) \leq \alpha d(x, y)$. Banach's contraction principle [20] guarantees that f has a unique fixed point when C is a nonempty closed convex subset of a complete metric space.

Fixed-point theory in CAT(0) spaces was first studied by Kirk (see [19, 21]). He showed that every nonexpansive (single-valued) mapping defined on a bounded closed convex subset of a complete CAT(0) space always has a fixed point. Since then, the fixed-point theory for single-valued and multivalued mappings in $\mathrm{CAT}(0)$ spaces has been rapidly developed.

Berg and Nikolaev [14] introduced the concept of quasilinearization as follows.
Let (X, d) be a metric space. Let us formally denote a pair $(a, b) \in X \times X$ by $\overrightarrow{a b}$ and call it a vector. Then quasilinearization is defined as a mapping $\langle\cdot, \cdot\rangle:(X \times X) \times(X \times X) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle=\frac{1}{2}\left(d^{2}(a, d)+d^{2}(b, c)-d^{2}(a, c)-d^{2}(b, d)\right), \quad a, b, c, d \in X \tag{2.7}
\end{equation*}
$$

It is easily seen that $\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle=\langle\overrightarrow{c d}, \overrightarrow{a b}\rangle,\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle=-\langle\overrightarrow{b a}, \overrightarrow{c d}\rangle$ and $\langle\overrightarrow{a x}, \overrightarrow{c d}\rangle+\langle\overrightarrow{x b}, \overrightarrow{c d}\rangle=\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle$ for all $a, b, c, d, x \in X$.

We say that X satisfies the Cauchy-Schwarz inequality if

$$
\begin{equation*}
\langle\overrightarrow{a b}, \overrightarrow{c d}\rangle \leq d(a, b) d(c, d) \tag{2.8}
\end{equation*}
$$

for all $a, b, c, d \in X$.
It is known [14, Corollary 3] that a geodesically connected metric space is a CAT(0) space if and only if it satisfies the Cauchy-Schwarz inequality.

Recently, Dehghan and Rooin [22] presented a characterization of a metric projection in CAT(0) spaces as follows.

Lemma 2.2 Let C be a nonempty closed and convex subset of a complete CAT(0) space X, $x \in X$ and $u \in C$. Then $u=P_{C} x$ if and only if $\langle\overrightarrow{y u}, \overrightarrow{u x}\rangle \geq 0$ for all $y \in C$.

Let $\left\{x_{n}\right\}$ be a bounded sequence in a $\operatorname{CAT}(0)$ space X. For $x \in X$, we set

$$
r\left(x,\left\{x_{n}\right\}\right)=\limsup _{n \rightarrow \infty} d\left(x, x_{n}\right) .
$$

The asymptotic radius $r\left(\left\{x_{n}\right\}\right)$ of $\left\{x_{n}\right\}$ is given by

$$
r\left(\left\{x_{n}\right\}\right)=\inf \left\{r\left(x,\left\{x_{n}\right\}\right): x \in X\right\}
$$

and the asymptotic center $A\left(\left\{x_{n}\right\}\right)$ of $\left\{x_{n}\right\}$ is the set

$$
A\left(\left\{x_{n}\right\}\right)=\left\{x \in X: r\left(x,\left\{x_{n}\right\}\right)=r\left(\left\{x_{n}\right\}\right)\right\} .
$$

It is known from Proposition 7 of [23] that for each bounded sequence $\left\{x_{n}\right\}$ in a complete $\mathrm{CAT}(0)$ space, $A\left(\left\{x_{n}\right\}\right)$ consists of exactly one point. A sequence $\left\{x_{n}\right\} \subset X$ is said to Δ-converge to $x \in X$ if $A\left(\left\{x_{n_{k}}\right\}\right)=\{x\}$ for every subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$. We use $x_{n} \xrightarrow{\Delta} x$ to denote that $\left\{x_{n}\right\} \Delta$-converges to x. The uniqueness of an asymptotic center implies that the CAT(0) space X satisfies Opial's property, i.e., for given $\left\{x_{n}\right\} \subset X$ such that $x_{n} \xrightarrow{\Delta} x$, then for any given $y \in X$ with $y \neq x$, the following holds:

$$
\limsup _{n \rightarrow \infty} d\left(x_{n}, x\right)<\limsup _{n \rightarrow \infty} d\left(x_{n}, y\right) .
$$

Lemma 2.3 [24] Assume that X is a complete CAT(0) space. Then:
(i) Every bounded sequence in X always has a \triangle-convergent subsequence.
(ii) If C is a closed convex subset of X and $T: C \rightarrow X$ is a nonexpansive mapping, then the conditions $x_{n} \xrightarrow{\Delta} x$ and $d\left(x_{n}, T x_{n}\right) \rightarrow 0$ imply $x \in C$ and $T x=x$.

The following lemma shows a characterization of Δ-convergence.

Lemma 2.4 [23] Let X be a complete $\mathrm{CAT}(0)$ space, $\left\{x_{n}\right\}$ be a sequence in X, and $x \in X$. Then $x_{n} \xrightarrow{\Delta} x$ if and only if $\lim \sup _{n \rightarrow \infty}\left\langle\overrightarrow{x x_{n}}, \overrightarrow{x y}\right\rangle \leq 0$ for all $y \in X$.

Lemma 2.5 [23] Let $\left\{a_{n}\right\}$ be a sequence of nonnegative real numbers satisfying the property

$$
a_{n+1} \leq\left(1-\alpha_{n}\right) a_{n}+\alpha_{n} \beta_{n}, \quad n \geq 0
$$

where $\left\{\alpha_{n}\right\} \subset(0,1)$ and $\left\{\beta_{n}\right\} \subset \mathbb{R}$ such that

1. $\sum_{n=0}^{\infty} \alpha_{n}=\infty$;
2. $\lim \sup _{n \rightarrow \infty} \beta_{n} \leq 0$ or $\sum_{n=0}^{\infty}\left|\alpha_{n} \beta_{n}\right|<\infty$.

Then $\left\{a_{n}\right\}$ converges to zero as $n \rightarrow \infty$.

Lemma 2.6 [15] Let X be a complete CAT(0) space. Then,
(i) for each $u, x, y \in X$, one has

$$
\begin{equation*}
d^{2}(x, u) \leq d^{2}(y, u)+2\langle\overrightarrow{x y}, \overrightarrow{x u}\rangle ; \tag{2.9}
\end{equation*}
$$

(ii) for any $u, v \in X$ and $t \in[0,1]$, letting $u_{t}=t u \oplus(1-t) v$ for all $x, y \in X$, we have:
(a) $\left\langle\overrightarrow{u_{t} x}, \overrightarrow{u_{t} y}\right\rangle \leq t\left\langle\overrightarrow{u_{x}}, \overrightarrow{u_{t} y}\right\rangle+(1-t)\left\langle\overrightarrow{v x}, \overrightarrow{u_{t} y}\right\rangle$;
(b) $\left\langle\overrightarrow{u_{t} x}, \overrightarrow{u y}\right\rangle \leq t\langle\overrightarrow{u x}, \overrightarrow{u y}\rangle+(1-t)\langle\overrightarrow{v x}, \overrightarrow{u y}\rangle$;
(c) $\left\langle\overrightarrow{u_{t} x}, \overrightarrow{u_{t} y}\right\rangle \leq t\langle\overrightarrow{u x}, \overrightarrow{u y}\rangle+(1-t)\langle\overrightarrow{v x}, \overrightarrow{v y}\rangle$.

3 Main results

Now we are ready to give our main results in this paper.
Let (X, d) be a metric space. Define a mapping $\hat{d}:(X \times X) \times(X \times X) \rightarrow \mathbb{R}^{+}$by

$$
\hat{d}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right)=d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right)
$$

for all $x_{1}, x_{2}, y_{1}, y_{2} \in X$. Then it is easy to verify that $(X \times X, \hat{d})$ is a metric space, and ($X \times$ $X, \hat{d})$ is complete if and only if (X, d) is complete.

Lemma 3.1 Let C be a closed convex subset of a complete CAT(0) space. Let f,g:C C be two contractions with coefficient $\alpha \in(0,1)$, and let $T_{1}, T_{2}: C \rightarrow C$ be two nonexpansive mappings. For any $t \in(0,1)$, define another mapping $G_{t}: C \times C \rightarrow C \times C$ by

$$
G_{t}(x, y)=\left(t f\left(T_{2} y\right) \oplus(1-t) T_{1} x, \operatorname{tg}\left(T_{1} x\right) \oplus(1-t) T_{2} y\right) .
$$

Then G_{t} is a contraction on $C \times C$.

Proof For any $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in C \times C$ and $t \in(0,1)$, we have

$$
\begin{aligned}
\hat{d}\left(G_{t}\left(x_{1}, y_{1}\right), G_{t}\left(x_{2}, y_{2}\right)\right)= & d\left(t f\left(T_{2} y_{1}\right) \oplus(1-t) T_{1} x_{1}, t f\left(T_{2} y_{2}\right) \oplus(1-t) T_{1} x_{2}\right) \\
& +d\left(t g\left(T_{1} x_{1}\right) \oplus(1-t) T_{2} y_{1}, t g\left(T_{1} x_{2}\right) \oplus(1-t) T_{2} y_{2}\right) \\
\leq & t d\left(f\left(T_{2} y_{1}\right), f\left(T_{2} y_{2}\right)\right)+(1-t) d\left(T_{1} x_{1}, T_{1} x_{2}\right) \\
& +t d\left(g\left(T_{1} x_{1}\right), g\left(T_{1} x_{2}\right)\right)+(1-t) d\left(T_{2} y_{1}, T_{2} y_{2}\right) \\
\leq & (1-t(1-\alpha))\left(d\left(x_{1}, x_{2}\right)+d\left(y_{1}, y_{2}\right)\right) \\
= & (1-t(1-\alpha)) \hat{d}\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)\right) .
\end{aligned}
$$

This implies that G_{t} is a contraction mapping. Therefore there exists a unique fixed point $\left(x_{t}, y_{t}\right) \in C \times C$ of G_{t} such that

$$
\left\{\begin{array}{l}
x_{t}=t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t} \\
y_{t}=\operatorname{tg}\left(T_{1} x_{t}\right) \oplus(1-t) T_{2} y_{t}
\end{array}\right.
$$

Theorem 3.2 Let C be a closed convex subset of a complete CAT(0) space X, and let T_{1}, T_{2} : $C \rightarrow C$ be two nonexpansive mappings such that $F\left(T_{1}\right)$ and $F\left(T_{2}\right)$ are nonempty. Letf f, g be two contractions on C with coefficient $0<\alpha<1$. For each $t \in(0,1]$, let $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ be given by (1.7). Then $x_{t} \rightarrow \tilde{x}$ and $y_{t} \rightarrow \tilde{y}$ as $t \rightarrow 0$ such that $\tilde{x}=P_{F\left(T_{1}\right)} f(\tilde{y}), \tilde{y}=P_{F\left(T_{2}\right)} g(\tilde{x})$ which is the unique solution of HOP (1.6).

Proof We first show that $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are bounded. Indeed, take $(p, q) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$ to derive that

$$
\begin{aligned}
d\left(x_{t}, p\right)+d\left(y_{t}, q\right)= & d\left(t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t}, p\right)+d\left(t g\left(T_{1} x_{t}\right) \oplus(1-t) T_{2} y_{t}, q\right) \\
\leq & t d\left(f\left(T_{2} y_{t}\right), p\right)+(1-t) d\left(T_{1} x_{t}, p\right)+\operatorname{td}\left(g\left(T_{1} x_{t}\right), q\right)+(1-t) d\left(T_{2} y_{t}, q\right) \\
\leq & t d\left(f\left(T_{2} y_{t}\right), f(q)\right)+\operatorname{td}(f(q), p)+(1-t) d\left(T_{1} x_{t}, p\right) \\
& +t d\left(g\left(T_{1} x_{t}\right), g(p)\right)+\operatorname{td}(g(p), q)+(1-t) d\left(T_{2} y_{t}, q\right) \\
\leq & t \alpha d\left(y_{t}, q\right)+t d(f(q), p)+(1-t) d\left(x_{t}, p\right) \\
& +\operatorname{t\alpha d}\left(x_{t}, p\right)+t d(g(p), q)+(1-t) d\left(y_{t}, q\right) .
\end{aligned}
$$

After simplifying, we have

$$
d\left(x_{t}, p\right)+d\left(y_{t}, q\right) \leq \frac{1}{1-\alpha}(d(f(q), p)+d(g(p), q))
$$

Hence $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ are bounded, so are $\left\{T_{1} x_{t}\right\},\left\{T_{2} y_{t}\right\},\left\{f\left(T_{2} y_{t}\right)\right\}$ and $\left\{g\left(T_{1} x_{t}\right)\right\}$. Consequently,

$$
\begin{aligned}
d\left(x_{t}, T_{1} x_{t}\right)+d\left(y_{t}, T_{2} y_{t}\right)= & d\left(t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t}, T_{1} x_{t}\right) \\
& +d\left(\operatorname{tg}\left(T_{1} x_{t}\right) \oplus(1-t) T_{2} y_{t}, T_{2} y_{t}\right) \\
= & t d\left(f\left(T_{2} y_{t}\right), T_{2} y_{t}\right)+t d\left(g\left(T_{1} x_{t}\right), T_{2} y_{t}\right) \rightarrow 0 \quad(\text { as } t \rightarrow 0) .
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
d\left(x_{t}, T_{1} x_{t}\right) \rightarrow 0, \quad d\left(y_{t}, T_{2} y_{t}\right) \rightarrow 0 \quad(\text { as } t \rightarrow 0) . \tag{3.1}
\end{equation*}
$$

Next we prove that $\left\{x_{t}\right\}$ is relatively compact as $t \rightarrow 0$.
In fact, let $\left\{t_{n}\right\} \subset(0,1)$ be any subsequence such that $t_{n} \rightarrow 0$ as $n \rightarrow \infty$. Put $x_{n}:=x_{t_{n}}$ and $y_{n}:=y_{t_{n}}$. Now we prove that $\left\{\left(x_{n}, y_{n}\right)\right\}$ contains a subsequence converging strongly to (\tilde{x}, \tilde{y}) where $\tilde{x}=P_{F\left(T_{1}\right)} f(\tilde{y}), \tilde{y}=P_{F\left(T_{2}\right)} g(\tilde{x})$ and it is a solution of HOP (1.6).

In fact, since $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are both bounded, by Lemma 2.3(i), (ii) and (3.1), we may assume that $x_{n} \xrightarrow{\Delta} \tilde{x}$ and $y_{n} \xrightarrow{\Delta} \tilde{y}$, and $\tilde{x} \in F\left(T_{1}\right), \tilde{y} \in F\left(T_{2}\right)$. Hence it follows from Lemma 2.6 that

$$
\begin{align*}
d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)= & \left\langle\overrightarrow{x_{n}} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n} \tilde{x}}\right\rangle+\left\langle\overrightarrow{y_{n}} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right\rangle \\
\leq & t_{n}\left|\overrightarrow{f\left(T_{2} y_{n}\right)} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left(1-t_{n}\right)\left\langle\overrightarrow{\left(T_{1} x_{n}\right)} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle \\
& +t_{n}\left|\overrightarrow{g\left(T_{1} x_{n}\right)} \tilde{y}, \overrightarrow{y_{n} \tilde{y}}\right\rangle+\left(1-t_{n}\right)\left\langle\overrightarrow{\left(T_{2} y_{n}\right) \tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right\rangle \\
\leq & t_{n}\left|\overrightarrow{f\left(T_{2} y_{n}\right) \tilde{x},} \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left(1-t_{n}\right) d\left(T_{1} x_{n}, \tilde{x}\right) d\left(x_{n}, \tilde{x}\right) \\
& +t_{n}\left|\overrightarrow{g\left(T_{1} x_{n}\right)} \tilde{y}, \overrightarrow{y_{n} \tilde{y}}\right\rangle+\left(1-t_{n}\right) d\left(T_{2} y_{n}, \tilde{y}\right) d\left(y_{n}, \tilde{y}\right) \\
\leq & t_{n}\left|\overrightarrow{f\left(T_{2} y_{n}\right) \tilde{x},} \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left(1-t_{n}\right) d^{2}\left(x_{n}, \tilde{x}\right) \\
& +t_{n}\left|\overrightarrow{g\left(T_{1} x_{n}\right)} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle+\left(1-t_{n}\right) d^{2}\left(y_{n}, \tilde{y}\right) . \tag{3.2}
\end{align*}
$$

After simplifying, we have

$$
\begin{aligned}
& d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right) \leq\left\langle\overrightarrow{f\left(T_{2} y_{n}\right)} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g\left(T_{1} x_{n}\right)} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle \\
& =\left\langle\overrightarrow{f\left(T_{2} y_{n}\right) f(\tilde{y})}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{f(\tilde{y})} \vec{x}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle \\
& +\left\langle\overrightarrow{g\left(T_{1} x_{n}\right) g(\vec{x})}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle \\
& \leq d\left(f\left(T_{2} y_{n}\right), f(\tilde{y})\right) d\left(x_{n}, \tilde{x}\right)+\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle \\
& +d\left(g\left(T_{1} x_{n}\right), g(\tilde{x})\right) d\left(y_{n}, \tilde{y}\right)+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle \\
& \leq 2 \alpha d\left(x_{n}, \tilde{x}\right) d\left(y_{n}, \tilde{y}\right)+\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle \\
& \leq \alpha\left(d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right)+\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle
\end{aligned}
$$

and thus

$$
\begin{equation*}
d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right) \leq \frac{1}{1-\alpha}\left[\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right\rangle\right] . \tag{3.3}
\end{equation*}
$$

Since $x_{n} \xrightarrow{\Delta} \tilde{x}$ and $y_{n} \xrightarrow{\Delta} \tilde{y}$, by Lemma 2.4,

$$
\limsup _{n \rightarrow \infty}\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n} \tilde{x}}\right\rangle \leq 0 \quad \text { and } \quad \limsup _{n \rightarrow \infty}\left|\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right| \leq 0 .
$$

Hence we have

$$
\begin{equation*}
\limsup _{n \rightarrow \infty}\left[\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n} \tilde{y}}\right]\right] \leq \limsup _{n \rightarrow \infty}\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\limsup _{n \rightarrow \infty}\left|\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right\rangle \leq 0 \tag{3.4}
\end{equation*}
$$

It follows from (3.3) that $d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right) \rightarrow 0$. Hence $x_{n} \rightarrow \tilde{x}$ and $y_{n} \rightarrow \tilde{y}$.
Next we show that $(\tilde{x}, \tilde{y}) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$, which solves HOP (1.6).
Indeed, for each $x \in F\left(T_{1}\right), y \in F\left(T_{2}\right)$, we have

$$
\begin{aligned}
d^{2}\left(x_{t}, x\right) & =d^{2}\left(t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t}, x\right) \\
& \leq t d^{2}\left(f\left(T_{2} y_{t}\right), x\right)+(1-t) d^{2}\left(T_{1} x_{t}, x\right)-t(1-t) d^{2}\left(f\left(T_{2} y_{t}\right), T_{1} x_{t}\right) \\
& \leq t d^{2}\left(f\left(T_{2} y_{t}\right), x\right)+(1-t) d^{2}\left(x_{t}, x\right)-t(1-t) d^{2}\left(f\left(T_{2} y_{t}\right), T_{1} x_{t}\right)
\end{aligned}
$$

This implies that

$$
d^{2}\left(x_{t}, x\right) \leq d^{2}\left(f\left(T_{2} y_{t}\right), x\right)-(1-t) d^{2}\left(f\left(T_{2} y_{t}\right), T_{1} x_{t}\right)
$$

Letting $t=t_{n} \rightarrow 0$ and taking the limit and noting that $d\left(y_{t}, T_{2} y_{t}\right) \rightarrow 0$ and $d\left(x_{t}, T_{1} x_{t}\right) \rightarrow$ 0 , we have

$$
d^{2}(\tilde{x}, x) \leq d^{2}(f(\tilde{y}), x)-d^{2}(f(\tilde{y}), \tilde{x})
$$

Hence

$$
\langle\overrightarrow{\tilde{x} f(\tilde{y}),} \overrightarrow{x \tilde{x}}\rangle=\frac{1}{2}\left[\tilde{x}+d^{2}(f(\tilde{y}), x)-d^{2}(f(\tilde{y}), \tilde{x})-d^{2}(\tilde{x}, x)\right] \geq 0 .
$$

It is similar to proving that

$$
\langle\overrightarrow{\tilde{y} g(\tilde{x})}, \overrightarrow{y \tilde{y}}\rangle \geq 0
$$

That is, (\tilde{x}, \tilde{y}) solves inequality (1.6).
Finally, we show that the entire net $\left\{x_{t}\right\}$ converges to \tilde{x}, and $\left\{y_{t}\right\}$ converges to \tilde{y}. In fact, for any subsequence $\left\{s_{n}\right\} \subset(0,1)$ such that $s_{n} \rightarrow 0$ (as $\left.n \rightarrow \infty\right)$, assume that $x_{s_{n}} \rightarrow \hat{x}$ and $y_{s_{n}} \rightarrow \hat{y}$. By the same argument as above, we get that $(\hat{x}, \hat{y}) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$ and solves inequality (1.6). Hence we have

$$
\left\{\begin{array}{l}
\langle\overrightarrow{\tilde{x} f(\tilde{y})}, \overrightarrow{\tilde{x} \hat{x}}\rangle \leq 0, \tag{3.5}\\
\langle\overrightarrow{\tilde{y} g(\vec{x})}, \overrightarrow{\tilde{y} \hat{y}}\rangle \leq 0
\end{array}\right.
$$

and

$$
\left\{\begin{array}{l}
\langle\overrightarrow{\hat{x} f(\hat{y})}, \overrightarrow{\hat{x} \tilde{x}}\rangle \leq 0, \tag{3.6}\\
\langle\overrightarrow{\hat{y} g(\vec{x})}, \overrightarrow{\hat{y} \tilde{y}}\rangle \leq 0 .
\end{array}\right.
$$

Adding up (3.5) and (3.6), we get that

$$
\begin{aligned}
& 0 \geq\langle\overrightarrow{\tilde{x} f(\vec{y})}, \vec{x} \vec{x}\rangle+\langle\vec{y} g(\vec{x}), \overrightarrow{\tilde{y} \hat{y}}\rangle-\langle\overrightarrow{\hat{x} f(\vec{y})}, \overrightarrow{\tilde{x} \hat{x}}\rangle-\langle\overrightarrow{\hat{y} g(\vec{x})}, \overrightarrow{\tilde{y} \hat{y}}\rangle \\
& =\langle\overrightarrow{\tilde{x} f(\vec{y}), \vec{x} \hat{x}}\rangle+\langle\overrightarrow{f(\hat{y}) f(\vec{y})}, \overrightarrow{\tilde{x} \hat{x}}\rangle-\langle\overrightarrow{\hat{x} \tilde{x}}, \overrightarrow{\tilde{x} \hat{x}}\rangle-\langle\overrightarrow{\tilde{x} f(\hat{y})}, \overrightarrow{\tilde{x} \hat{x}}\rangle \\
& +\langle\overrightarrow{\tilde{y} g(\hat{x})}, \overrightarrow{\tilde{y} \hat{y}}\rangle+\langle\overrightarrow{g(\hat{x}) g(\tilde{x})}, \overrightarrow{\tilde{y} \hat{y}}\rangle-\langle\overrightarrow{\hat{y} \tilde{y}}, \overrightarrow{\tilde{y} \hat{y}}\rangle-\langle\overrightarrow{\tilde{y} g(\hat{x})}, \overrightarrow{\tilde{y} \hat{y}}\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \geq d^{2}(\tilde{x}, \hat{x})+d^{2}(\tilde{y}, \hat{y})-d(f(\tilde{y}), f(\hat{y})) d(\tilde{x}, \hat{x})-d(g(\tilde{x}), g(\hat{x})) d(\tilde{y}, \hat{y}) \\
& \geq d^{2}(\tilde{x}, \hat{x})+d^{2}(\tilde{y}, \hat{y})-2 \alpha d(\tilde{y}, \hat{y}) d(\tilde{x}, \hat{x}) \\
& \geq(1-\alpha)\left[d^{2}(\tilde{x}, \hat{x})+d^{2}(\tilde{y}, \hat{y})\right] \text {. }
\end{aligned}
$$

Since $0<\alpha<1$, we have that $d^{2}(\tilde{x}, \hat{x})+d^{2}(\tilde{y}, \hat{y})=0$, and so $\tilde{x}=\hat{x}, \tilde{y}=\hat{y}$. Hence the entire net $\left\{x_{t}\right\}$ converges to \tilde{x} and $\left\{y_{t}\right\}$ converges to \tilde{y}, which (\hat{x}, \hat{y}) solves HOP (1.6). This completes the proof of Theorem 3.2.

Theorem 3.3 Let C be a closed convex subset of a complete CAT(0) space X, and let T_{1}, T_{2} : $C \rightarrow C$ be two nonexpansive mappings such that $F\left(T_{1}\right)$ and $F\left(T_{2}\right)$ are nonempty. Letf f, $b e$ two contractions on C with coefficient $0<\alpha<1$. Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be the sequences defined by (1.8). If conditions (H1)-(H3) are satisfied, then $x_{n} \rightarrow \tilde{x}$ and $y_{n} \rightarrow \tilde{y}$ as $n \rightarrow \infty$, where $\tilde{x}=P_{F\left(T_{1}\right)} f(\tilde{y}), \tilde{y}=P_{F\left(T_{2}\right)} g(\tilde{x})$, which solves HOP (1.6).

Proof First we show that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded. Indeed, taking $(p, q) \in F\left(T_{1}\right) \times F\left(T_{2}\right)$, it follows that

$$
\begin{aligned}
d\left(x_{n+1}, p\right)+d\left(y_{n+1}, q\right)= & d\left(\alpha_{n} f\left(T_{2} y_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n}, p\right) \\
& +d\left(\alpha_{n} g\left(T_{1} x_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{2} y_{n}, q\right) \\
\leq & \alpha_{n} d\left(f\left(T_{2} y_{n}\right), p\right)+\left(1-\alpha_{n}\right) d\left(T_{1} x_{n}, p\right) \\
& +\alpha_{n} d\left(g\left(T_{1} x_{n}\right), q\right)+\left(1-\alpha_{n}\right) d\left(T_{2} y_{n}, q\right) \\
\leq & \alpha_{n} d\left(f\left(T_{2} y_{n}\right), f(q)\right)+\alpha_{n} d(f(q), p)+\left(1-\alpha_{n}\right) d\left(T_{1} x_{n}, p\right) \\
& +\alpha_{n} d\left(g\left(T_{1} x_{n}\right), g(p)\right)+\alpha_{n} d(g(p), q)+\left(1-\alpha_{n}\right) d\left(T_{2} y_{n}, q\right) \\
\leq & \alpha_{n} \alpha d\left(y_{n}, q\right)+\alpha_{n} d(f(q), p)+\left(1-\alpha_{n}\right) d\left(x_{n}, p\right) \\
& +\alpha_{n} \alpha d\left(x_{n}, p\right)+\alpha_{n} d(g(p), q)+\left(1-\alpha_{n}\right) d\left(y_{n}, q\right) \\
= & \left(1-\alpha_{n}(1-\alpha)\right)\left[d\left(x_{n}, p\right)+d\left(y_{n}, q\right)\right] \\
& +\alpha_{n}(1-\alpha) \frac{d(f(q), p)+d(g(p), q)}{1-\alpha} \\
\leq & \max \left\{d\left(x_{n}, p\right)+d\left(y_{n}, q\right), \frac{d(f(q), p)+d(g(p), q)}{1-\alpha}\right\} .
\end{aligned}
$$

By induction, we can prove that

$$
\begin{equation*}
d\left(x_{n}, p\right)+d\left(y_{n}, q\right) \leq \max \left\{d\left(x_{0}, p\right)+d\left(y_{0}, q\right), \frac{d(f(q), p)+d(g(p), q)}{1-\alpha}\right\} \tag{3.7}
\end{equation*}
$$

for all $n \in \mathbb{N}$. This implies that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are bounded, so are $\left\{T_{1} x_{n}\right\},\left\{T_{2} y_{n}\right\},\left\{f\left(T_{2} y_{n}\right)\right\}$ and $\left\{g\left(T_{1} x_{n}\right)\right\}$.
We claim that $d\left(x_{n+1}, x_{n}\right) \rightarrow 0$ and $d\left(y_{n+1}, y_{n}\right) \rightarrow 0$. Indeed, we have (for some appropriate constant $M>0$)

$$
\begin{aligned}
& d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right) \\
&= d\left(\alpha_{n} f\left(T_{2} y_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n}, \alpha_{n-1} f\left(T_{2} y_{n-1}\right) \oplus\left(1-\alpha_{n-1}\right) T_{1} x_{n-1}\right) \\
&+d\left(\alpha_{n} g\left(T_{1} x_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} y_{n}, \alpha_{n-1} g\left(T_{1} x_{n-1}\right) \oplus\left(1-\alpha_{n-1}\right) T_{2} y_{n-1}\right) \\
& \leq d\left(\alpha_{n} f\left(T_{2} y_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n}, \alpha_{n} f\left(T_{2} y_{n-1}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n-1}\right) \\
&+d\left(\alpha_{n} f\left(T_{2} y_{n-1}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n-1}, \alpha_{n-1} f\left(T_{2} y_{n-1}\right) \oplus\left(1-\alpha_{n-1}\right) T_{1} x_{n-1}\right) \\
&+d\left(\alpha_{n} g\left(T_{1} x_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{2} y_{n}, \alpha_{n} g\left(T_{1} x_{n-1}\right) \oplus\left(1-\alpha_{n}\right) T_{2} y_{n-1}\right) \\
&+d\left(\alpha_{n} g\left(T_{1} x_{n-1}\right) \oplus\left(1-\alpha_{n}\right) T_{2} y_{n-1}, \alpha_{n-1} g\left(T_{1} x_{n-1}\right) \oplus\left(1-\alpha_{n-1}\right) T_{2} y_{n-1}\right) \\
& \leq \alpha_{n} d\left(f\left(T_{2} y_{n}\right), f\left(T_{2} y_{n-1}\right)\right)+\left(1-\alpha_{n}\right) d\left(T_{1} x_{n}, T_{1} x_{n-1}\right) \\
&+\left|\alpha_{n}-\alpha_{n-1}\right| d\left(f\left(T_{2} y_{n-1}\right), T_{1} x_{n-1}\right) \\
&+\alpha_{n} d\left(g\left(T_{1} x_{n}\right), g\left(T_{1} x_{n-1}\right)\right)+\left(1-\alpha_{n}\right) d\left(T_{2} y_{n}, T_{2} y_{n-1}\right) \\
&+\left|\alpha_{n}-\alpha_{n-1}\right| d\left(g\left(T_{1} x_{n-1}\right), T_{2} y_{n-1}\right) \\
& \leq \alpha_{n} \alpha d\left(T_{2} y_{n}, T_{2} y_{n-1}\right)+\left(1-\alpha_{n}\right) d\left(T_{1} x_{n}, T_{1} x_{n-1}\right)+\left|\alpha_{n}-\alpha_{n-1}\right| d\left(f\left(T_{2} y_{n-1}\right), T_{1} x_{n-1}\right) \\
&+\alpha_{n} \alpha d\left(T_{1} x_{n}, T_{1} x_{n-1}\right)+\left(1-\alpha_{n}\right) d\left(T_{2} y_{n}, T_{2} y_{n-1}\right)+\left|\alpha_{n}-\alpha_{n-1}\right| d\left(g\left(T_{1} x_{n-1}\right), T_{2} y_{n-1}\right) \\
& \leq\left(1-\alpha_{n}(1-\alpha)\right)\left[d\left(x_{n}, x_{n-1}\right)+d\left(y_{n}, y_{n-1}\right)\right]+M\left|\alpha_{n}-\alpha_{n-1}\right| .
\end{aligned}
$$

By conditions (H2) and (H3) and Lemma 2.5, we have

$$
\begin{equation*}
d\left(x_{n+1}, x_{n}\right)+d\left(y_{n+1}, y_{n}\right) \rightarrow 0, \tag{3.8}
\end{equation*}
$$

and thus $d\left(x_{n+1}, x_{n}\right) \rightarrow 0, d\left(y_{n+1}, y_{n}\right) \rightarrow 0$.
Consequently, by condition (H1), we have

$$
\begin{align*}
d\left(x_{n}, T_{1} x_{n}\right)+d\left(y_{n}, T_{2} y_{n}\right) \leq & d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, T_{1} x_{n}\right) \\
& +d\left(y_{n}, y_{n+1}\right)+d\left(y_{n+1}, T_{2} y_{n}\right) \\
= & d\left(x_{n}, x_{n+1}\right)+d\left(\alpha_{n} f\left(T_{2} y_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{1} x_{n}, T_{1} x_{n}\right) \\
& +d\left(y_{n}, y_{n+1}\right)+d\left(\alpha_{n} g\left(T_{1} x_{n}\right) \oplus\left(1-\alpha_{n}\right) T_{2} y_{n}, T_{2} y_{n}\right) \\
= & d\left(x_{n}, x_{n+1}\right)+\alpha_{n} d\left(f\left(T_{2} y_{n}\right), T_{1} x_{n}\right) \\
& +d\left(y_{n}, y_{n+1}\right)+\alpha_{n} d\left(g\left(T_{1} x_{n}\right), T_{2} y_{n}\right) \\
\rightarrow & 0 \quad(n \rightarrow \infty) . \tag{3.9}
\end{align*}
$$

This implies that

$$
\begin{equation*}
d\left(x_{n}, T_{1} x_{n}\right) \rightarrow 0, \quad d\left(y_{n}, T_{2} y_{n}\right) \rightarrow 0 \quad(\text { as } n \rightarrow \infty) . \tag{3.10}
\end{equation*}
$$

Let $\left\{x_{t}\right\}$ and $\left\{y_{t}\right\}$ be two nets in C such that

$$
\left\{\begin{array}{l}
x_{t}=t f\left(T_{2} y_{t}\right) \oplus(1-t) T_{1} x_{t}, \\
y_{t}=\operatorname{tg}\left(T_{1} x_{t}\right) \oplus(1-t) T_{2} y_{t} .
\end{array}\right.
$$

By Theorem 3.2, we have that $x_{t} \rightarrow \tilde{x}$ and $y_{t} \rightarrow \tilde{y}$ as $t \rightarrow 0$ such that $\tilde{x}=P_{F\left(T_{1}\right)} f(\tilde{y}), \tilde{y}=$ $P_{F\left(T_{2}\right)} g(\tilde{x})$, which solves the variational inequality (1.6). Now, we claim that

$$
\limsup _{n \rightarrow \infty}\left[\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right|\right] \leq 0 .
$$

From Lemma 2.5, we have

$$
\begin{aligned}
& d^{2}\left(x_{t}, x_{n}\right)+d^{2}\left(y_{t}, y_{n}\right) \\
& =\left\langle\overrightarrow{x_{t} x_{n}}, \overrightarrow{x_{t} x_{n}}\right\rangle+\left\langle\overrightarrow{y_{t} y_{n}}, \overrightarrow{y_{t} y_{n}}\right\rangle \\
& \leq t\left|\overrightarrow{f\left(T_{2} y_{t}\right) x_{n}}, \overrightarrow{x_{t} x_{n}}\right\rangle+(1-t)\left\langle\overrightarrow{T_{1}\left(x_{t}\right) x_{n}}, \overrightarrow{x_{t} x_{n}}\right\rangle \\
& +t\left|\overrightarrow{g\left(T_{1} x_{t}\right) y_{n}}, \overrightarrow{y_{t} y_{n}}\right\rangle+(1-t)\left\langle\overrightarrow{T_{2}\left(y_{t}\right) y_{n}}, \overrightarrow{y_{t} y_{n}}\right\rangle \\
& =t\left\langle\overrightarrow{f\left(T_{2} y_{t}\right) f(\tilde{y})}, \overrightarrow{x_{t} x_{n}}\right\rangle+t\left|\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{t} x_{n}}\right\rangle+t\left\langle\overrightarrow{\tilde{x} x_{t}}, \overrightarrow{x_{t} x_{n}}\right\rangle+t\left\langle\overrightarrow{x_{t} x_{n}}, \overrightarrow{x_{t} x_{n}}\right\rangle \\
& +t\left\langle\overrightarrow{g\left(T_{1} x_{t}\right) g(\vec{x})}, \overrightarrow{y_{t} y_{n}}\right\rangle+t\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{t} y_{n}}\right\rangle+t\left\langle\overrightarrow{\tilde{y} y_{t}}, \overrightarrow{y_{t} y_{n}}\right\rangle+t\left\langle\overrightarrow{y_{t} y_{n}}, \overrightarrow{y_{t} y_{n}}\right\rangle \\
& +(1-t)\left\langle\overrightarrow{T_{1}\left(x_{t}\right) T_{1}\left(x_{n}\right)}, \overrightarrow{x_{t} x_{n}}\right\rangle+(1-t)\left\langle\overrightarrow{T_{1}\left(x_{n}\right) x_{n}}, \overrightarrow{x_{t} x_{n}}\right\rangle \\
& +(1-t)\left\langle\overrightarrow{T_{2}\left(y_{t}\right) T_{2}\left(y_{n}\right)}, \overrightarrow{y_{t} y_{n}}\right\rangle+(1-t)\left\langle\overrightarrow{T_{2}\left(y_{n}\right) y_{n}}, \overrightarrow{y_{t} y_{n}}\right\rangle \\
& \leq t \alpha d\left(y_{t}, \tilde{y}\right) d\left(x_{t}, x_{n}\right)+t\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{t} x_{n}}\right\rangle+t d\left(\tilde{x}, x_{t}\right) d\left(x_{t}, x_{n}\right)+t d^{2}\left(x_{t}, x_{n}\right) \\
& +t \alpha d\left(x_{t}, \tilde{x}\right) d\left(y_{t}, y_{n}\right)+t\left|\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{t} y_{n}}\right\rangle+t d\left(\tilde{y}, y_{t}\right) d\left(y_{t}, y_{n}\right)+t d^{2}\left(y_{t}, y_{n}\right) \\
& +(1-t) d^{2}\left(x_{t}, x_{n}\right)+(1-t) d\left(T_{1}\left(x_{n}\right), x_{n}\right) d\left(x_{t} x_{n}\right) \\
& +(1-t) d^{2}\left(y_{t}, y_{n}\right)+(1-t) d\left(T_{2}\left(y_{n}\right), y_{n}\right) d\left(y_{t} y_{n}\right) \\
& \leq t \alpha d\left(y_{t}, \tilde{y}\right) M+t\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{t} x_{n}}\right\rangle+t d\left(\tilde{x}, x_{t}\right) M+t d^{2}\left(x_{t}, x_{n}\right) \\
& +t \alpha d\left(x_{t}, \tilde{x}\right) M+t\left|\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{t} y_{n}}\right\rangle+t d\left(\tilde{y}, y_{t}\right) M+t d^{2}\left(y_{t}, y_{n}\right) \\
& +(1-t) d^{2}\left(x_{t}, x_{n}\right)+(1-t) d\left(T_{1}\left(x_{n}\right), x_{n}\right) M \\
& +(1-t) d^{2}\left(y_{t}, y_{n}\right)+(1-t) d\left(T_{2}\left(y_{n}\right), y_{n}\right) M \\
& \leq\left[d^{2}\left(x_{t}, x_{n}\right)+d^{2}\left(y_{t}, y_{n}\right)\right]+t M \alpha\left[d\left(x_{t}, \tilde{x}\right)+d\left(y_{t}, \tilde{y}\right)\right] \\
& +t M\left[d\left(\tilde{x}, x_{t}\right)+d\left(\tilde{y}, y_{t}\right)\right] \\
& +M\left[d\left(T_{1}\left(x_{n}\right), x_{n}\right)+d\left(T_{2}\left(y_{n}\right), y_{n}\right)\right]+t\left[\left|\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{t} x_{n}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{t} y_{n}}\right\rangle\right],
\end{aligned}
$$

where $M \geq \max \left\{\sup \left\{d\left(x_{t}, x_{n}\right): t \in(0,1), n \geq 0\right\}, \sup \left\{d\left(y_{t}, y_{n}\right): t \in(0,1), n \geq 0\right\}\right\}$. Simplifying this, we have

$$
\begin{align*}
& \left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n} \vec{x}_{t}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} y_{t}}\right\rangle \\
& \quad \leq M(1+\alpha)\left[d\left(x_{t}, \tilde{x}\right)+d\left(y_{t}, \tilde{y}\right)\right] \\
& \quad+\frac{M}{t}\left[d\left(T_{1}\left(x_{n}\right), x_{n}\right)+d\left(T_{2}\left(y_{n}\right), y_{n}\right)\right] . \tag{3.11}
\end{align*}
$$

Taking the limit as $n \rightarrow \infty$ first and then letting $t \rightarrow 0$ on both sides of (3.11), we have

$$
\limsup _{t \rightarrow 0} \limsup _{n \rightarrow \infty}\left[\left|\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n} x_{t}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n} y_{t}}\right\rangle\right] \leq 0 .
$$

Since $x_{t} \rightarrow \tilde{x}$ and $y_{t} \rightarrow \tilde{y}$ as $t \rightarrow 0$, by the continuity of a metric d, it follows that

$$
\limsup _{t \rightarrow 0}\left[\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n} x_{t}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n} y_{t}}\right\rangle\right]=\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right\rangle .
$$

This implies that, for any $\epsilon>0$, there exists $\delta>0$ such that for any $t \in(0, \delta)$, we have

$$
\begin{equation*}
\left\langle\overrightarrow{f(\tilde{y})} \vec{x}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right\rangle \leq\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n} \vec{x}_{t}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n} y_{t}}\right\rangle+\epsilon . \tag{3.12}
\end{equation*}
$$

First letting $t \rightarrow 0$ and taking limit, and then letting $n \rightarrow \infty$ and taking the upper limit on (3.12), we obtain

$$
\limsup _{n \rightarrow \infty}\left[\left\langle\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n} \tilde{y}}\right|\right] \leq \epsilon .
$$

Since $\epsilon>0$ is arbitrary, we have

$$
\limsup _{n \rightarrow \infty}\left[\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n}} \overrightarrow{\tilde{y}}\right|\right] \leq 0 .
$$

Finally, we prove that $x_{n} \rightarrow \tilde{x}$ and $y_{n} \rightarrow \tilde{y}$ as $n \rightarrow \infty$. Indeed, taking $u_{n}=\alpha_{n} \tilde{x} \oplus(1-$ $\left.\alpha_{n}\right) T_{1} x_{n}, v_{n}=\alpha_{n} \tilde{y} \oplus\left(1-\alpha_{n}\right) T_{2} y_{n}$ for any $n \in \mathbb{N}$, it follows from Lemma 2.6(i) that

$$
\begin{aligned}
& d^{2}\left(x_{n+1}, \tilde{x}\right)+d^{2}\left(y_{n+1}, \tilde{y}\right) \\
& \leq d^{2}\left(u_{n}, \tilde{x}\right)+d^{2}\left(v_{n}, \tilde{y}\right)+2\left\langle\overrightarrow{x_{n+1} u_{n}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+2\left\langle\overrightarrow{y_{n+1} v_{n}}, \overrightarrow{y_{n+1}} \overrightarrow{\tilde{y}}\right\rangle \\
& \leq\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+2\left[\alpha_{n}\left|\overrightarrow{f\left(T_{2} y_{n}\right) u_{n}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle\right. \\
& \left.+\left(1-\alpha_{n}\right)\left\langle\overrightarrow{T_{1}\left(x_{n}\right) u_{n}}, \overrightarrow{x_{n+1} \tilde{x}}\right\rangle\right] \\
& \left.\left.+2\left[\alpha_{n} \mid \overrightarrow{g\left(T_{1} x_{n}\right) v_{n}}, \overrightarrow{y_{n+1} \tilde{y}}\right)+\left(1-\alpha_{n}\right) \mid \overrightarrow{T_{2}\left(y_{n}\right) v_{n}}, \overrightarrow{y_{n+1} \tilde{y}}\right)\right] \\
& \leq\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+2\left[\alpha_{n}^{2}\left\langle\overrightarrow{f\left(T_{2} y_{n}\right)} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle\right. \\
& +\alpha_{n}\left(1-\alpha_{n}\right)\left\langle\overrightarrow{f\left(T_{2} y_{n}\right) T_{1}\left(x_{n}\right)}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle \\
& \left.+\left(1-\alpha_{n}\right) \alpha_{n}\left\langle\overrightarrow{T_{1}\left(x_{n}\right)} \vec{x}, \overrightarrow{x_{n+1}} \vec{x}\right\rangle+\left(1-\alpha_{n}\right)^{2}\left\langle\overrightarrow{T_{1}\left(x_{n}\right) T_{1}\left(x_{n}\right)}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle\right] \\
& +2\left[\alpha_{n}{ }^{2}\left|\overrightarrow{g\left(T_{1} x_{n}\right)} \vec{y}, \overrightarrow{y_{n+1} \tilde{y}}\right\rangle+\alpha_{n}\left(1-\alpha_{n}\right)\left|\overrightarrow{g\left(T_{1} x_{n}\right) T_{2}\left(y_{n}\right)}, \overrightarrow{y_{n+1} \tilde{y}}\right\rangle\right.
\end{aligned}
$$

$$
\begin{align*}
& \left.+\left(1-\alpha_{n}\right)^{2}\left\langle\overrightarrow{T_{2}\left(y_{n}\right)} \tilde{y}, \overrightarrow{y_{n+1}} \tilde{y}\right\rangle+\alpha_{n}\left(1-\alpha_{n}\right)\left|\overrightarrow{T_{2}\left(y_{n}\right) T_{2}\left(y_{n}\right)}, \overrightarrow{y_{n+1}} \tilde{y}\right\rangle\right] \\
& =\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+2 \alpha_{n}\left[\left\langle\overrightarrow{f\left(T_{2} y_{n}\right)} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g\left(T_{1} x_{n}\right)} \tilde{y}, \overrightarrow{y_{n+1}} \overrightarrow{\tilde{y}}\right\rangle\right] \\
& =\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+2 \alpha_{n}\left[\left|\overrightarrow{f\left(T_{2} y_{n}\right) f(\tilde{y})}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle\right. \\
& \left.+\left\langle\overrightarrow{g\left(T_{1} x_{n}\right) g(\tilde{x})}, \overrightarrow{y_{n+1}} \tilde{\tilde{y}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n+1} \tilde{y}}\right\rangle\right] \\
& \leq\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+2 \alpha_{n} \alpha\left[d\left(y_{n}, \tilde{y}\right) d\left(x_{n+1}, \tilde{x}\right)+d\left(x_{n}, \tilde{x}\right) d\left(y_{n+1}, \tilde{y}\right)\right] \\
& +2 \alpha_{n}\left[\left|\overrightarrow{f(\tilde{y}) \vec{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \overrightarrow{\tilde{y}}, \overrightarrow{y_{n+1} \tilde{y}}\right\rangle\right] \\
& \leq\left(1-\alpha_{n}\right)^{2}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right] \\
& +\alpha_{n} \alpha\left[d^{2}\left(y_{n}, \tilde{y}\right)+d^{2}\left(x_{n+1}, \tilde{x}\right)+d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n+1}, \tilde{y}\right)\right] \\
& +2 \alpha_{n}\left[\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n+1}} \overrightarrow{\tilde{y}}\right\rangle\right] \text {, } \tag{3.13}
\end{align*}
$$

which implies that

$$
\begin{align*}
& d^{2}\left(x_{n+1}, \tilde{x}\right)+d^{2}\left(y_{n+1}, \tilde{y}\right) \\
& \quad \leq \frac{1-(2-\alpha) \alpha_{n}+\alpha_{n}^{2}}{1-\alpha \alpha_{n}}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left[\left\langle\overrightarrow{\left.\left.f(\tilde{y}) \vec{x}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n+1}} \overrightarrow{\tilde{y}}\right\rangle\right]}\right.\right. \\
& \quad \leq \frac{1-(2-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right] \\
& \quad+\frac{2 \alpha_{n}}{1-\alpha \alpha_{n}}\left[\left|\overrightarrow{f(\tilde{y})} \vec{x}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n+1} \vec{y}}\right\rangle\right]+\frac{\alpha_{n}^{2}}{1-\alpha} M, \tag{3.14}
\end{align*}
$$

where $M>\sup _{n \geq 0}\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]$. Thus,

$$
\begin{equation*}
d^{2}\left(x_{n+1}, \tilde{x}\right)+d^{2}\left(y_{n+1}, \tilde{y}\right) \leq\left(1-\alpha_{n}^{\prime}\right)\left[d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right)\right]+\alpha_{n}^{\prime} \beta_{n}^{\prime}, \tag{3.15}
\end{equation*}
$$

where

$$
\alpha_{n}^{\prime}=\frac{2(1-\alpha) \alpha_{n}}{1-\alpha \alpha_{n}} \quad \text { and } \quad \beta_{n}^{\prime}=\frac{\left(1-\alpha \alpha_{n}\right) \alpha_{n}}{2(1-\alpha)^{2}} M+\frac{1}{1-\alpha}\left[\left\langle\overrightarrow{f(\tilde{y})} \overrightarrow{\tilde{x}}, \overrightarrow{x_{n+1}} \overrightarrow{\tilde{x}}\right\rangle+\left\langle\overrightarrow{g(\tilde{x})} \vec{y}, \overrightarrow{y_{n+1} \tilde{y}}\right\rangle\right] .
$$

Applying Lemma 2.6, we have $d^{2}\left(x_{n}, \tilde{x}\right)+d^{2}\left(y_{n}, \tilde{y}\right) \rightarrow 0$. Hence $x_{n} \rightarrow \tilde{x}$ and $y_{n} \rightarrow \tilde{y}$ as $n \rightarrow \infty$. This completes the proof of Theorem 3.3.

Competing interests

The authors declare that they have no competing interests

Authors' contributions

All the authors participated in this article's design and coordination. And they read and approved the final manuscript.

Author details

${ }^{1}$ Department of Mathematics, Yibin University, Yibin, Sichuan 644007, China. ${ }^{2}$ College of Statistics and Mathematics, Yunnan University of Finance and Economics, Kunming, Yunnan 650221, China.

Acknowledgements

The authors would like to express their thanks to the referees for their helpful suggestions and comments. This work was supported by the Scientific Research Fund of Sichuan Provincial Education Department (11ZA221) and the Scientific Research Fund of Science Technology Department of Sichuan Province 2011JYZ010.

References

1. Buzogany, E, Mezei, I, Varga, V: Two-variable variational-hemivariational inequalities. Stud. Univ. Babeş-Bolyai, Math. 47, 31-41 (2002)
2. Kassay, G, Kolumban, J, Pales, Z: On Nash stationary points. Publ. Math. (Debr.) 54, 267-279 (1999)
3. Kassay, G, Kolumban, J, Pales, Z: Factorization of Minty and Stampacchia variational inequality systems. Eur. J. Oper. Res. 143, 377-389 (2002)
4. Kassay, G, Kolumban, J: System of multi-valued variational inequalities. Publ. Math. (Debr.) 56, 185-195 (2000)
5. Verma, RU: Projection methods, algorithms, and a new system of nonlinear variational inequalities. Comput. Math. Appl. 41, 1025-1031 (2001)
6. Kinderlehrer, D, Stampacchia, G: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)
7. Yamada, I, Ogura, N: Hybrid steepest descent method for variational inequality problem over the fixed point set of certain quasi-nonexpansive mappings. Numer. Funct. Anal. Optim. 25, 619-655 (2004)
8. Xu, HK: Viscosity approximation methods for nonexpansive mappings. J. Math. Anal. Appl. 298, 279-291 (2004)
9. Zegeye, H, Shahzad, N: Strong convergence theorem for a common point of solution of variational inequality and fixed point problem. Adv. Fixed Point Theory 2, 374-397 (2012)
10. Luo, H, Wang, Y: Iterative approximation for the common solutions of a infinite variational inequality system for inverse-strongly accretive mappings. J. Math. Comput. Sci. 2, 1660-1670 (2012)
11. Dhompongsa, S, Kaewkhao, A, Panyanak, B: On Kirk's strong convergence theorem for multivalued nonexpansive mappings on CAT(0) spaces. Nonlinear Anal., Theory Methods Appl. 75(2), 459-468 (2012)
12. Saejung, S: Halpern's iteration in CAT(0) spaces. Fixed Point Theory Appl. 2010, 471781 (2010). doi:10.1155/2010/471781
13. Shi, LY, Chen, RD: Strong convergence of viscosity approximation methods for nonexpansive mappings in CAT(0) spaces. J. Appl. Math. 2012, 421050 (2012). doi:10.1155/2012/421050
14. Berg, ID, Nikolaev, IG: Quasilinearization and curvature of Alexandrov spaces. Geom. Dedic. 133, 195-218 (2008)
15. Wangkeeree, R, Preechasilp, P: Viscosity approximation methods for nonexpansive mappings in CAT(0) spaces. J. Inequal. Appl. 2013, 93 (2013). doi:10.1186/1029-242X-2013-93
16. Dhompongsa, S, Panyanak, B: On \triangle-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 56(10), 2572-2579 (2008)
17. Chaoha, P, Phon-on, A: A note on fixed point sets in CAT(0) spaces. J. Math. Anal. Appl. 320(2), 983-987 (2006)
18. Bridson, MR, Haefliger, A: Metric Spaces of Non-Positive Curvature. Grundlehren der Mathematischen Wissenschaften, vol. 319. Springer, Berlin (1999)
19. Kirk, WA: Geodesic geometry and fixed point theory. II. In: International Conference on Fixed Point Theory and Applications, pp. 113-142. Yokohama, Yokohama (2004)
20. Banach, S: Sur les o'pration dans les ensembles abstraits et leur applications aux 'equations int'egrales. Fundam. Math. 3, 133-181 (1922)
21. Kirk, WA: Geodesic geometry and fixed point theory. In: Seminar of Mathematical Analysis (Malaga/Seville, 2002/2003). Colecc. Abierta, vol. 64, pp. 195-225. University of Seville, Secretary Publication, Seville (2003)
22. Dehghan, H, Rooin, J: A characterization of metric projection in CAT(0) spaces. In: International Conference on Functional Equation, Geometric Functions and Applications (ICFGA 2012), Payame Noor University, Tabriz, Iran, 10-12 May 2012, pp. 41-43 (2012)
23. Kakavandi, BA: Weak topologies in complete CAT(0) metric spaces. Proc. Am. Math. Soc. 141, 1029-1039 (2013)
24. Kirk, WA, Panyanak, B: A concept of convergence in geodesic spaces. Nonlinear Anal., Theory Methods Appl. 68(12), 3689-3696 (2008)

10.1186/1029-242X-2013-471

Cite this article as: Liu and Chang: Viscosity approximation methods for hierarchical optimization problems in CAT(0) spaces. Journal of Inequalities and Applications 2013, 2013:471

Submit your manuscript to a SpringerOpen ${ }^{\ominus}$ journal and benefit from:

- Convenient online submission
- Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

