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1 Introduction
The concept of variational inequalities plays an important role in various kinds of prob-
lems in pure and applied sciences (see, for example, [1-11]). Moreover, the rapid develop-
ment and the prolific growth of the theory of variational inequalities have been made by
many researchers.

In a CAT(0) space, Saejung [12] studied the convergence theorems of the following
Halpern iterations for a nonexpansive mapping 7'. Let u be fixed and x; € C be the unique
fixed point of the contraction x — tu @ (1 - £) Ix; i.e.,

x =tu® (1 —1t)Txy, (1.1)
where ¢ € [0,1] and x, u € C are arbitrarily chosen and
X1 =u® (1 -a,)Tx,, n=>0, (1.2)

where o, € (0,1). It is proved that {x;} converges strongly as £ — 0 to ¥ € F(T') such that
x = Pr(ryu, and {x,} converges strongly as n — oo to ¥ € F(T) under certain appropriate
conditions on «,,, where Pcx is a metric projection from X onto C.

In 2012, Shi and Chen [13] studied the convergence theorems of the following Moudafi
viscosity iterations for a nonexpansive mapping 7' For a contraction f on C and ¢ € (0,1),
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let x; € C be the unique fixed point of the contraction x — tf(x) ® (1 — t) Tx; i.e.,

X =tf (x) ® (1 —£) Ty, 1.3)
and xo € C is arbitrarily chosen and

X1 = f (%) © 1 — ) Tx, 120, (1.4)

where {a,} C (0,1). They proved that {x;} defined by (1.3) converges strongly as ¢ — 0 to
X € F(T) such that X = Pp(1)f (%) in the framework of a CAT(0) space satisfying the property
P, ie., iffor x,u,y,y, € X,

A%, Py w)d(x, y1) < d(x, Py u)d(x, y2) + d(x, u)d(y1, y2).

Furthermore, they also obtained that {x,} defined by (1.4) converges strongly as n — oo
to x € F(T) under certain appropriate conditions imposed on {«,,}.

By using the concept of quasilinearization, which was introduced by Berg and Nikolaev
[14], Wangkeeree and Preechasilp [15] studied the strong convergence theorems of itera-
tive schemes (1.3) and (1.4) in CAT(0) spaces without the property 2. They proved that
iterative schemes (1.3) and (1.4) converge strongly to x such that X = Pr(rf (¥), which is the
unique solution of the variational inequality (VIP)

(7f @), a8 >0, xeF(T). (L5)

In this paper, we are interested in the following so-called hierarchical optimization
problems (HOP). More precisely, let f,g: C — C be two contractions with coefficient
a €(0,1),and let T7, T, : C — C be two nonexpansive mappings such that F(7;) and F(T3)
are nonempty. The class of hierarchical optimization problems (HOP) consists in finding
(%,y) € F(T1) x F(T,) such that the following inequalities hold:

— =
(%f@);x&) > O’ Vx € F(Tl))

— = (1.6)
(7¢(x),yy) =20, ¥y e F(T).
For this purpose, we introduce the following iterative schemes:
Xt = ’;f(szt) @ 1 -18)Tixy, 17)
ye = 1g(Thxy) @ (1 - 1) Toyy,
where ¢ € (0,1), and
%0,¥0 € C,
Xn+l = ar(f(TZyn) @b (l - an)Tlxnr (18)

Vn+1 = ang(Tlxn) @D (1 - Ot,,,)sz,,,, n=> 0,

where {a,} C (0,1) satisfies
(H1) o, — 0,
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(H2) 3% =00,
(H3) either Y02 otus1 — oty | < 00 or limy, o “;;1 =1

We prove that iterative schemes (1.7) and (1.8) converge strongly to (x,y) € F(T1) x F(T)
such that X = Pr(7,)f (%) and ¥ = Prr,)g(%), which is the unique solution of (1.6).

2 Preliminaries

Let (X, d) be a metric space. A geodesic path joining x € X to y € Y (or, more briefly, a
geodesic from x to y) is a map c: [0,/] — X such that ¢(0) = x, c(l) = y, and d(c(¢), c(t')) =
|t—t'| forallt, ¢’ € [0,1]. In particular, c is an isometry and d(x, y) = [. The image of c is called
a geodesic segment joining x and y. When it is unique, this geodesic segment is denoted by
[x,y]. The space (X, d) is said to be a geodesic space if every two points of X are joined by
a geodesic, and X is said to be uniquely geodesic if there is exactly one geodesic joining x
and y for each x,y € X. A subset Y C X is said to be convex if Y includes every geodesic
segment joining any two of its points.

A geodesic triangle A(x1,%5,%3) in a geodesic metric space (X, d) consists of three points
%1, %2, and x3 in X (the vertices of A) and a geodesic segment between each pair of vertices
(the edges of A). A comparison triangle for the geodesic triangle A(x;,x;,x3) in (X, d) is a
triangle A (x;, %2, %3) := A(X1, %2, %3) in the Euclidean plane [E? such that dj» (x5, %) = d(x;, %))
forij€1,2,3.

A geodesic space is said to be a CAT(0) space if all geodesic triangles satisfy the following
comparison axiom.

CAT(0): Let A be a geodesic triangle in X, and let A be a comparison triangle for A.
Then A is said to satisfy the CAT(0) inequality if for all x,y € A and all comparison points
%yen,

d(x,y) < dg2 (%, ).

Let x,y € X by [16, Lemma 2.1(iv)] for each ¢ € [0,1], then there exists a unique point
z € [x,7] such that

d(x,z) = td(x,y), d(y,z) =1 -t)d(x,y). (2.1)

From now on, we will use the notation (1 — £)x @ ¢y for the unique point z satisfying (2.1).
We now collect some elementary facts about CAT(0) spaces which will be used in the
proofs of our main results.

Lemma 2.1 Let X be a CAT(0) space. Then
(i) (see [16, Lemma 2.4]) for each x,y,z € X and t € [0,1], one has

d((l —-bHx D ty, z) <(1-8d(x,z) + td(y,z); (2.2)
(ii) (see [17]) for each x,y,z € X and t,s € [0,1], one has

d((1-t)x@ty,(1-s)x D sy) < |t —sld(x,y); (2.3)
(ili) (see [18]) for each x,y,z,w € X and t € [0,1], one has

d((1-tx@ty,(1- )z @ tw) < (1 - d(x,2) + td(y, w); (2.4)
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(iv) (see [19]) for each x,y,z € X and t € [0,1], one has

d(1-1)z @ tx, (1 - )z ® ty) < td(x,); (2.5)
(v) (see [16]) for each x,y,z € X and t € [0,1], one has

P ((1-1)x @ ty,2) < (1 - )d>(x,2) + td*(y,2) — t(1 - D)d (x, ). (2.6)

Let C be a nonempty subset of a complete CAT(0) space X. Recall that a self-mapping
T :C — C is a nonexpansion on C iff d(Tx, Ty) < d(x,y) for all x,y € C. A point x € C
is called a fixed point of T if x = Tx. We denote by F(T) the set of all fixed points of T.
A self-mapping f : C — C is a contraction on C if there exists a constant o € (0,1) such
that d(fx, fy) < ad(x,y). Banach’s contraction principle [20] guarantees that f has a unique
fixed point when C is a nonempty closed convex subset of a complete metric space.

Fixed-point theory in CAT(0) spaces was first studied by Kirk (see [19, 21]). He showed
that every nonexpansive (single-valued) mapping defined on a bounded closed convex
subset of a complete CAT(0) space always has a fixed point. Since then, the fixed-point
theory for single-valued and multivalued mappings in CAT(0) spaces has been rapidly
developed.

Berg and Nikolaev [14] introduced the concept of quasilinearization as follows.

Let (X, d) be a metric space. Let us formally denote a pair (4,b) € X x X by @b and call
it a vector. Then quasilinearization is defined as a mapping (-,-) : (X x X) x (X x X) -> R
defined by

1
(@b, cd) = 5([@@d+ 1,0~ -d(b,d), abedeX. 2.7)
— — B — — e T — —

It is easily seen that (ab, cd) = (cd, ab), (ab,cd) = —(ba, cd) and (aXx, cd) + (xb, cd) = (ab, cd)
foralla,b,c,d,x € X.
We say that X satisfies the Cauchy-Schwarz inequality if

— —
(ab, cd) < d(a, b)d(c, d) (2.8)

foralla,b,c,d € X.

Itis known [14, Corollary 3] that a geodesically connected metric space is a CAT(0) space
if and only if it satisfies the Cauchy-Schwarz inequality.

Recently, Dehghan and Rooin [22] presented a characterization of a metric projection
in CAT(0) spaces as follows.

Lemma 2.2 Let C be a nonempty closed and convex subset of a complete CAT(0) space X,
x€X and u € C. Then u = Pcx if and only if (yir, ux) > 0 forall y € C.

Let {x,,} be a bounded sequence in a CAT(0) space X. For x € X, we set

r(x, {x,,}) = limsup d(x, x,,).

n— 00

The asymptotic radius r({x,}) of {x,} is given by

r({xa}) = inf{r(x, {x.}) :x € X},
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and the asymptotic center A({x,}) of {x,} is the set

A({xa)) = {x € X i r(x o)) = r({xa}) }.

It is known from Proposition 7 of [23] that for each bounded sequence {x,} in a com-
plete CAT(0) space, A({x,}) consists of exactly one point. A sequence {x,} C X is said to
A-converge to x € X if A({x,, }) = {x} for every subsequence {x,, } of {x,}. We use x, A%
to denote that {x,} A-converges to x. The uniqueness of an asymptotic center implies that
the CAT(0) space X satisfies Opial’s property, i.e., for given {x,} C X such that x, = x,
then for any given y € X with y # x, the following holds:

lim sup d(x,, x) < limsup d(x,, y).

n—00 n—00

Lemma 2.3 [24] Assume that X is a complete CAT(0) space. Then:
(i) Every bounded sequence in X always has a A-convergent subsequence.
(ii) If Cis a closed convex subset of X and T : C — X is a nonexpansive mapping, then

the conditions x, 5 x and d(x,, Tx,) — 0 imply x € C and Tx = x.
The following lemma shows a characterization of A-convergence.

Lemma 2.4 [23] Let X be a complete CAT(0) space, {x,} be a sequence in X, and x € X.
Then x, S if and only if limsup,_, (%%, %y) <O forall y € X.

Lemma 2.5 [23] Let {a,} be a sequence of nonnegative real numbers satisfying the property
ann <1 —ap)ay +anfy, n=>0,

where {a,,} C (0,1) and {B,} C R such that
L Y 02 ay =00;
2. limsup,,_, o B <0 0r > oo latnBul < 00.

Then {a,} converges to zero as n — oo.

Lemma 2.6 [15] Let X be a complete CAT(0) space. Then,
(i) foreach u,x,y € X, one has

d*(x,u) < d*(y,u) + 2(%, Xik); (2.9)

(ii) forany u,ve X and t € [0,1], letting u, = tu ® (1 — t)v for all x,y € X, we have:
(@) (e, Ury) < t(uk, 1)) + (1= ) (V&, 4y);
(b) (%, 1) < t(x, uy) + (1 - £)(v&, 10y);
(© (U, iy) < t(ux, uy) + (1 - 1) (V&, V).

3 Main results
Now we are ready to give our main results in this paper.
Let (X, d) be a metric space. Define a mapping d: (X x X) x (X x X) > R* by

d((x1,01), (42,92)) = d(x1,%2) + d(y1,92)
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for all x1,x5,1,72 € X. Then it is easy to verify that (X x X, Zi) is a metric space, and (X x
X, 21) is complete if and only if (X, d) is complete.

Lemma 3.1 Let C be a closed convex subset of a complete CAT(0) space. Let f,g: C — C
be two contractions with coefficient « € (0,1), and let Ty, T, : C — C be two nonexpansive
mappings. For any t € (0,1), define another mapping G, : C x C — C x C by

Gi(x,y) = (tf(sz) O A-t)Tix, tg(Tix)d (1 - t)Tgy).
Then G; is a contraction on C x C.

Proof For any (x1,y1), (x2,¥,) € C x C and t € (0,1), we have

d(Gy(x1,71), G (%2, ¥2)) = d(tf (Toy) ® (1= O) Toxr, tf (Toyn) @ (1 - ) Trxz)
+d(tg(Tix1) ® (1 - ) Toyn, tg(Thx) @ (1= ) Toyn)
< td(f(Toy), f(Toya)) + (1 — )d(T1x1, Tix,)
+td(g(Tyx), g(Tixa)) + (1~ )d(Ty, Toya)
< (1= 201 - ) (A1, x2) + d(y1,3))
=(1-e1- a))Zi((xl,yl), (2,52))-

This implies that G; is a contraction mapping. Therefore there exists a unique fixed point
(1, 9:) € C x C of G; such that

% = tf (Toy) ® 1 - ) Tixy,
¥ = tg(T1x;) ® (1 - £) Toys. 0

Theorem 3.2 Let C be a closed convex subset of a complete CAT(0) space X, and let T1, T
C — C be two nonexpansive mappings such that F(Ty) and F(T,) are nonempty. Let f, g be
two contractions on C with coefficient 0 < « < 1. For each t € (0,1], let {x;} and {y;} be given
by (1.7). Then x; — X and y — y as t — 0 such that x = Prirpf(9), ¥ = Pr(ry)g(%) which is
the unique solution of HOP (1.6).

Proof We first show that {x;} and {y,} are bounded. Indeed, take (p,q) € F(T1) x F(T3) to
derive that

d(xe,p) + dye,q) = d(tf (Toy) ® (1 - 6) Toixe, p) + d(tg(Trx,) & (1 - O Toy.q)
<td(f(Toye),p) + A — )d(Tix, p) + td(g(Tix,), q) + A = )d(Taye, q)
< td(f(Toye).f (@) + td(f(q), p) + A - )d(T1xs, p)
+td(g(T1x,), g(p)) + td (g(p), q) + (1 - )d(T1y1,q)
< tad(y, q) + td(f(q),p) + 1 - )d(x,, p)
+ tad(x,,p) + td(g(p), q) + 1 - )d(ys, ).
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After simplifying, we have

d(x,,p) +d(y:,q) < %(d(f(q)»P) +d(g(p).q)).

Hence {x;} and {y;} are bounded, so are {T1x;}, {T2y:}, {f(T>y:)} and {g(T1x;)}. Conse-
quently,

d(xs, Trxe) + d(ys, Toys) = d(’ff(szt) @ (1 -1)Tixy, Tlxt)

+ d(tg(Tlxt) & (1-)Toy, Tz)’t)

= td(f(szt), szt) + td(g(Tlxt), szt) —0 (ast—0).
In particular, we have
d(x, Tixg) — 0, A, Toys) —> 0 (ast— 0). (3.1)

Next we prove that {x,} is relatively compact as £ — 0.

In fact, let {t,} C (0,1) be any subsequence such that ¢, — 0 as n — co. Put x,, := x;, and
Yn := Y1, Now we prove that {(x,,y,)} contains a subsequence converging strongly to (%, )
where X = Pr(r,)f (%), ¥ = Pr(r,)g(%) and it is a solution of HOP (1.6).

In fact, since {x,} and {y,} are both bounded, by Lemma 2.3(i), (ii) and (3.1), we may
assume that x,, 4 %and Vu =y y,and x € F(T1),y € F(T3). Hence it follows from Lemma 2.6
that

B2 (s 7) + A2y §) = (s 2n %) + sy
s wY) = (Xn¥s XnX) + (V) V)
S —_— —
S tn(f(T2yn)9~Cx xn&> + (1 - tn)((Tlxn)&; xn&>
—Z 2 —_— 2
+ tn<g(Tlxn)y’yny> +(1- tn)((TZyn)y»yny>
N
=< tn(f(TZyn)%’ xn%> + (1 - tn)d(Tlxm k)d(xm 5&)
—Z 2 - -~
+ tn@(Tlxn)yryny> + (1 - tn)d(TZymy)d(yn:y)
2 2 -~
< tulf (Toym)%, %) + (1 = b,)d> (3, %)

— > >
+ talg(T120)3, yn) + (1= tn)d* (3, 7). (3.2)

After simplifying, we have

2 ~ 2 ~ T2 T2 2 2
A (%, %) + d”* O §) < F(T2yn)%, %0%) + (g(T1%)7, YY)
s s
= {f(Toyn)f 3), %u%) + (f ()%, 2,%)
ey s —
+(g(Thx,)g(%), yu3) + (g(®)y, y07)
< d(F(T39,).f§)) s ) + [F G, 30%)
T
+d(g(T1x4), g(%))d(yu, §) + (g(%)y, yn7)
< 2ad(x,, X)d(y,,5) + mﬁ) + mﬁ)

< (@ ®) + d2(y,5)) + [FG) 50%) + (@) )
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and thus

1

(50,3 + d90,5) = —— ([ %23) + [gE3 7)) (33)

Since x;, 2 %and Vn 5 ¥, by Lemma 2.4,

=2 T2 —=Z 2
lim sup(f )=, xnx) <0 and lim sup(g(x)y, y,,y) <0.

Hence we have

lim sup[(f )%, xnx) + (g(x)y, y,,y)] <lim sup(f )x, x,,x) +lim sup<g(x)y, y,,y) <0. (34)

n—>00 Hn— 00 n— 00

It follows from (3.3) that d?(x,,, %) + d*(y,, %) — 0. Hence x,, — x and y,, — 7.
Next we show that (%,%) € F(T;) x F(T,), which solves HOP (1.6).
Indeed, for each x € F(T}), y € F(T,), we have
d* (1, %) = d*(tf (Toys) ® (1 — 1) Ty, x)
<td*(f(Toye),x) + (1L - )d*(T1xe, %) — t(1 = O)d> (F(Taye), Tixe)

<td”(f(Toye),x) + (1 = £)d (%, %) — t(1 = )d> (f(Toye), Taxe).
This implies that
A (%, %) < d* (f(Tays),x) — (L= 0> (f(Toye), Tixy).

Letting ¢ = t, — 0 and taking the limit and noting that d(y;, T»y;) — 0 and d(x;, Tix;) —

0, we have
d*(%,x) < d*(f(),x) — d*(f (), %).

Hence
(% (), xx) = %[5« +d(F§),x) - d*(F(), &) - d* (& x)] = 0.

It is similar to proving that

— —

(3g(®),97) = 0.

That is, (%,y) solves inequality (1.6).

Finally, we show that the entire net {x,} converges to X, and {y;} converges to y. In fact,
for any subsequence {s,} C (0,1) such that s, — 0 (as n — 00), assume that x;, — * and
¥s, — . By the same argument as above, we get that (%,7) € F(T1) x F(T) and solves

inequality (1.6). Hence we have

& () ix) <0,

RGN (3.5)
(g(x),59) <0
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and
— =
(xf (3),%x) <0,
TR
(vg(x),yy) < 0.

Adding up (3.5) and (3.6), we get that

l

0> (& G), &%) + (5@, 39) - (xf@»%c) - (5@,
~ A ~A 9 ~'A
= (% (), %x) + (fG) (), xx) (xf(y) xx)
+ (&g(fc),m (@@, 7) - 3359) - (723), )
- = — =
- @58 + 55 79) - (G 6), %) - [g@g®, 7)
> d*(%,%) + d*(3,9) - d(f5).f 9))d(% %) - d(g(%),g&))d(3,5)
> d*(%,%) + d*(5,9) - 20d(3,9)d(%, %)
> (1-a)[d* %) + d2(5,9)].

¢

Since 0 < a < 1, we have that d?(%, %) + d%(¥,9) = 0, and so X = X, ¥ = 7. Hence the entire net
{x:} converges to X and {y;} converges to y, which (%, ) solves HOP (1.6). This completes
the proof of Theorem 3.2. d

Theorem 3.3 Let C be a closed convex subset of a complete CAT(0) space X, and let Ty, T, :
C — C be two nonexpansive mappings such that F(T,) and F(T,) are nonempty. Let f, g be
two contractions on C with coefficient 0 < « < 1. Let {x,} and {y,} be the sequences defined
by (1.8). If conditions (H1)-(H3) are satisfied, then x, — X and y,, — ¥ as n — oo, where
X = Prerpf ), ¥ = Ppr,)g(X), which solves HOP (1.6).

Proof First we show that {x,} and {y,} are bounded. Indeed, taking (p,q) € F(T1) x F(T3),
it follows that

A1, p) + AWni1, @) = d(@f (Toyn) ® (1 - @) Tixn, p)
+ d(ng(T1%4) ® (1 = o) Tayns q)
< o, d(f(Toyn),p) + A = atn)d(T1, p)
+ 0 (¢(Tixn), q) + (1= )d(Tayn, q)
< aud(f(Toyn).f (@) + 0tud (f (@), p) + (1 — 0)d(T1 %, p)
+ @, d(g(T1x,),g(p)) + ud (), q) + (1 — 2)d(Toyn, q)
< ,@d(yu, q) + 0ud(f(q), p) + A = ct)d(x,, p)
+ @, 0d(%n, p) + ud(g(p), ) + (1 - )y, q)
= (1= au(1 - ) [d(xnp) + A )]

+ a1 - )d(f(q)’l’l):rj(g(p),q)
< max{d(xm )+ ), U@ 1A }
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By induction, we can prove that

A p) + dOmq) < max{d(xo,p) + dlyo,q), WP+ 4e).9) }

o (3.7)

for all n € N. This implies that {x,} and {y,} are bounded, so are {T1x,}, {T2y,}, {f (T2y,)}
and {g(Ti%,)).

We claim that d(x,,1,%,) — 0and d(y,,1,y,) — 0.Indeed, we have (for some appropriate
constant M > 0)

A1, %) + A1 Yn)

= d(f (Toyn) & (1= ) Ti, iyt f (Toyn-1) & (1 = 1) Ti61)
+ d(0tug(T1%,) ® (1= ) Ty 1 (T1%n1) B (1 = 2y1) Toynt)

< d(anf (Toyn) © A = ) Ti, Of (Toyn1) ® (1= @) Ti% 1)
+ d(0tuf (Tayn-1) @ (1= ) T, o f (ToYna1) @ (1= tyy) T1%1)
+d(ctug(Tixn) ® (1 — ) Toym, otug(T1%,-1) D (1 — Oln)szn—l)
+ d(0tug(T1%p1) © (1= ) ToYn1, n1@(T1%-1) & (1= &tum1) Toyur)

< aud(f(Toyn),f(Tayu-1)) + (1 = n)d(T1%, Ti%y1)
+ oty = @ |d(f (Toyuar), Ti%n-r)
+ o, d (g(T1), g(T1%4-1)) + (1 = 0t)A(ToY > oY1)
+ oty — @1 |d(g(T1%1), ToYn-)

< 0y d(Toyn Toyn-1) + (1 = )d(T1%, T1xn1) + oty — 1 1A (f (Toyn1), T1%n1)
+oyad(T1%y, Tixg1) + (1 — 0)d(Toyu, Toyu-1) + |ty — 2y |d(g(T1x,,_1), Tgy,,_l)

E (]- - C(,,(l - (X)) [d(xm xn—l) + d(ymyn—l)] + M|0l,, - c(n—l|-
By conditions (H2) and (H3) and Lemma 2.5, we have

d(xm-lrxn) + d(ynﬂyyn) g 0; (38)

and thus d(x,41,%,) = 0, d(¥y41,¥0) — O.
Consequently, by condition (H1), we have
A Tixn) + AW, Toyn) < AXns Xni1) + A1, T1x)

+ AW Yns1) + AWni1, Toyn)

= A %ni1) + d(nf (Toyn) & (= o) Tixn, Tix,)
+ AV yna1) + d(0ng(T1xn) @ (1= 000) ToY, Toyn)

= d(@n %ni1) + nd (f (Toyn)s T1%n)
+ AWy Yna1) + 0ud (g(T1%), Tayn)

-0 (n— 00). (3.9)
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This implies that
d(x,, Tix,) — 0, AW, Toyy) > 0 (as n — 00). (3.10)

Let {x;} and {y;} be two nets in C such that

Xt = !f(szt) ® (1 -1)T1x,
¥e = tg(T1x) ® (1 - 1) Tays.

By Theorem 3.2, we have that x; — &% and y, — ¥y as ¢t — 0 such that X = Pr(1)f(9), ¥ =
Pr(r,)g(%), which solves the variational inequality (1.6). Now, we claim that

lim sup[(}_”—(i/—);?,ﬁ) + (E(fc_)}/,ﬁ)] =0.

n— 00

From Lemma 2.5, we have

d* (1, 2,) + d* (1, Y1)

= (%, Xe3on) + (T Yo

< U (Tayam i) + (1= Ty )n, Ko
+ tg(Ti )y 3i73) + (- 0T 0090 773

= (T ), ) + L GV, i) + E e, By + Ly )
+ tle(Tiw)g(), 5] + e, i) + G T) + G )
+ (L= O(TaGe) T ), T + (1 = )T Cene, T
+ (1= 0(T200) 20, 5i70) + (L~ T, 727)

< tad(y,H)d(xy x,) + GV T) + td(x)d (6, ) + td? (31, 3,)
+ tad(x, Dy y) + 1@, 77) + Gy A0 yi) + 1d(31,7,)
+ (1= O (v 2) + (= ) (T3 (6), %) d x,%,)
+ (=) Ve ) + (L= )A(To (), ) AYeYn)

< tad(y, 5)M + f G)F, 5oxy) + td(%, %)M + td* (x,,%,)
+ tad (e, M + t{gR)5,77,) + td (5, y)M + td (31, y,)
+ (L= O)d> (e, 20) + (1= ) ( Ty (%), 260 ) M
+ (1 =)Ao yn) + (L= )d(To (), yu) M

< [ %0) + A2y )] + EMa[d(x, B) + d (3 )]
+ tM[dGx,) +dG, )]

+ M[d(Ty(n), %) + d(Talyn), )] + L[(F V% Tn) + [&@D, 7l
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where M > max{sup{d(x;,x,) : t € (0,1),n > 0},sup{d(y,y,) : t € (0,1),n > 0}}. Simplify-
ing this, we have

(F&% 5) + 2G5 577%)
<M1+ a)[d(x,,ic) + d(yt,y)]

M
+ T[d(Tl(xn),x,,) +d(To(¥n),yn) |- (3.11)
Taking the limit as # — oo first and then letting ¢ — 0 on both sides of (3.11), we have

lim sup lim sup [W’ m> + (g_(fc)—)%,mﬂ <0.

t—0 n—00

Since x; — x and y; — y as ¢t — 0, by the continuity of a metric d, it follows that

hr;n s;lp[mm) + (mmﬂ = m a) + (@ﬁ)

This implies that, for any € > 0, there exists § > 0 such that for any ¢ € (0, 5), we have
TR T2 Tk T2 Tk —=Z
(F3)% %,%) + (g®)7, yu3) < (f 5)%, %) + (gR)5, Vne) + €. (3.12)

First letting t — 0 and taking limit, and then letting # — oo and taking the upper limit
on (3.12), we obtain

lim sup[m, 9;;2) + (g_(fgjz/,ﬁ/)] <e€.

Since € > 0 is arbitrary, we have

lim sup[m, ﬁc) + (g_(ﬁ/,ﬁﬂ <o.

n—0o0

Finally, we prove that x, — % and y, — y as n — oo. Indeed, taking u, = o,x ® (1 —
an)T1%y, Vi = 0y & (1 — 0y) Ty, for any n € N, it follows from Lemma 2.6(i) that

dz(xm—l,;c) + dz(yn+1¢5/)
E dz(un’%) + dz(ij;) + 2<xn+lun’xn+155> + Z(J/n+1men+1J~/)
<Q1- an)z [dz(xm;c) + dz(ymj’)] + 2[Oln<f(T2)’n)men+15€)
_ ——
+ (1= o) T2 (0t 2n11%) |
— T2 T T2
+ 2[an<g(T1xn)men+1y) +(1- an)(TZ(,yn)menJrly)]

< (1= ) [d (0, 8) + A2y, 3)] + 2[ 02 {F(Toy)i Hmer)

+a,(l- an)(f(szn) Tl(xn),xn+1~’~5>

— — ) >
+ (1 - O[rz)ohfz(Tl (xn)xr xn+1x> + (1 - an) <T1(xn)T1(xn)rxn+1x>]

2 — T2 ~
+ 2[0(,1 <g(T1xn)y:yn+1y> + an(l - an)(g(Tlxn)TZ(yn):yn+1y)
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+ (1= )2 (To0m) ymerd) + @l — ) TaOm T 0, i)
=(1- an)z [dz(xnr x) + d (ij’)] + 20y [{f(TZyn);Cr xn+15&> + (g(Tlxn)ji,ynJrlj})]

= (1 - an)z [dz(xnr 5&) + dz()/n’j;)] + 20[;1 [(f(szn)f@)’anrl;C> + (f@)&: xn+156)

+ (g(Tlxn)g(i),me’) + (g(;c)j’rymlj’)]
< (- o)’ [d* 0 %) + d* (o 9)] + 2000 [d Y 7)d K11, 7) + A0 2)A(G11,5)]

+ 20(,, [(f@)‘;@ xn+155> + (g(i)jj:ynﬂj})]
< (1- @)’ [0 %) + &> (. 7)]
+ ana[dz(,ij;) + dz(x;ﬁl:jz) + dz(xntjz) + dz(yn+1:5/)]

+ 20[,, [m’ xn+17‘2> + <g(5c)5/7yn+15/>], (313)

which implies that

d? (%ns1,X) + d? (Yn+1:5’)

1—(2—oc)a,,+oc£ - - 20, — > — >
e [d* (0, %) + d* (s 9)] + T ao, [[f )%, %s1%) + (€(X)Y, Yne17)]
I ) 4 (0 7)]
1-aa,
o 2 [ ) + G5 )]+ M 1)
1 _ O[Oln yvn+ r)n+ 1 —a ’
where M > sup,..., [d? (%, %) + d*(y,9)]. Thus,
dZ(xVHl) 5&) + d2(,)’n+1,5’) S (1 - Ot;/q) [dz(xm 5&) + dz(ymj})] + Ot;/,,ﬁ;;, (3'15)
where
o = g g L, [(FG)%, per) + (g @)5 yme1d)]
"]l —aa, 21 -a)? l-« rnl g Y1 Y]]

Applying Lemma 2.6, we have d?(x,,%) + d*(y,,%) — 0. Hence x, — X and y, — y as
n — 00o. This completes the proof of Theorem 3.3. g
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