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Abstract
In this study, using the notion of (V ,λ)-summability and λ-statistical convergence, we
introduce the concepts of strong (V ,λ,p)-summability and λ-statistical convergence
of order α of real-valued functions which are measurable (in the Lebesgue sense) in
the interval (1,∞). Also some relations between λ-statistical convergence of order α
and strong (V ,λ,p)-summability of order β are given.
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1 Introduction
The idea of statistical convergence was given by Zygmund [] in the first edition of his
monograph published in Warsaw in . The concept of statistical convergence was in-
troduced by Steinhaus [] and Fast [] and then reintroduced by Schoenberg [] inde-
pendently. Over the years and under different names, statistical convergence has been
discussed in the theory of Fourier analysis, ergodic theory, number theory, measure the-
ory, trigonometric series, turnpike theory and Banach spaces. Later on it was further in-
vestigated from the sequence space point of view and linked with summability theory by
Alotaibi and Alroqi [], Belen and Mohiuddine [], Connor [], Dutta et al. [–], Et et
al. [–], Fridy [], Güngör et al. [, ], Kolk [], Mohiuddine et al. [–], Mur-
saleen et al. [–], Nuray [], Rath and Tripathy [], Salat [], Savaş et al. [, ],
Tripathy [] and many others. In recent years, generalizations of statistical convergence
have appeared in the study of strong integral summability and the structure of ideals of
bounded continuous functions on locally compact spaces. Statistical convergence and its
generalizations are also connected with subsets of the Stone-Čech compactification of
the natural numbers. Moreover, statistical convergence is closely related to the concept of
convergence in probability.

2 Definition and preliminaries
The definitions of statistical convergence and strong p-Cesàro convergence of a sequence
of real numbers were introduced in the literature independently of one another and fol-
lowed different lines of development since their first appearance. It turns out, however,
that the two definitions can be simply related to one another in general and are equiva-
lent for bounded sequences. The idea of statistical convergence depends on the density of
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subsets of the set N of natural numbers. The density of a subset E of N is defined by

δ(E) = lim
n→∞


n

n∑
k=

χE(k) provided the limit exists,

where χE is the characteristic function of E. It is clear that any finite subset of N has zero
natural density and δ(Ec) =  – δ(E).
A sequence x = (xk) is said to be statistically convergent to L if for every ε > , δ({k ∈N :

|xk – L| ≥ ε}) = . In this case we write xk
stat−→ L or S- limxk = L. The set of all statistically

convergent sequences will be denoted by S.
The order of statistical convergence of a sequence of numbers was given by Gadjiev

and Orhan in [] and after then statistical convergence of order α and strong p-Cesàro
summability of order α were studied by Çolak [, ] and generalized by Çolak and
Bektaş [].
Let λ = (λn) be a non-decreasing sequence of positive real numbers tending to ∞ such

that λn+ ≤ λn + , λ = . The generalized de la Vallée-Poussin mean is defined by tn(x) =


λn

∑
k∈In xk , where In = [n–λn+,n] for n = , , . . . . A sequence x = (xk) is said to be (V ,λ)-

summable to a number L if tn(x)→ L as n→ ∞ []. If λn = n, then (V ,λ)-summability is
reduced to Cesàro summability. By � we denote the class of all non-decreasing sequence
of positive real numbers tending to ∞ such that λn+ ≤ λn + , λ = .
In [] Borwein introduced and studied strongly summable functions. A real-valued

function x(t), measurable (in the Lebesgue sense) in the interval (,∞), is said to be
strongly summable to L = Lx if

lim
n→∞


n

∫ n



∣∣x(t) – L
∣∣p dt = ,  ≤ p < ∞.

[Wp] will denote the space of real-valued function x, measurable (in the Lebesgue sense)
in the interval (,∞). The space [Wp] is a normed space with the norm

‖x‖ = sup
n≥

(

n

∫ n



∣∣x(t)∣∣p dt) 
p
.

In this paper, using the notion of (V ,λ)-summability and λ-statistical convergence, we
introduce and study the concepts of strong (V ,λ,p)-summability and λ-statistical conver-
gence of order α of real-valued functions x(t), measurable (in the Lebesgue sense) in the
interval (,∞).
Throughout the paper, unless stated otherwise, by ‘for all n ∈ Nno ’ we mean ‘for all n ∈

N except finite numbers of positive integers’ where Nno = {no,no + ,no + , . . .} for some
no ∈ N = {, , , . . .}.

3 Main results
In this section we give the main results of this paper. In Theorem . we give the inclusion
relations between λ-statistically convergent functions of order α for different α’s of real-
valued functions which are measurable (in the Lebesgue sense) in the interval (,∞). In
Theorem . we give the relationship between the strong (V ,λ,p)-summability of order α

for different α’s of real-valued functions which are measurable (in the Lebesgue sense) in
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the interval (,∞). In Theorem . we give the relationship between the strong [W β

λp]-
summability and [Sα

λ ]-statistical convergence of real-valued functions which are measur-
able (in the Lebesgue sense) in the interval (,∞).

Definition . Let the sequence λ = (λn) be as above, α ∈ (, ] and x(t) be a real-valued
function which is measurable (in the Lebesgue sense) in the interval (,∞). A real-valued
function x(t) is said to be strongly (V ,λ,p)-summable of order α (or [W α

λp]-summable) if
there is a number L = Lx such that

lim
n→∞


λα
n

∫ n

n–λn+

∣∣x(t) – L
∣∣p dt = ,  ≤ p < ∞,

where In = [n – λn + ,n] and λα
n denote the αth power (λn)α of λn, that is, λα = (λα

n) =
(λα

 ,λα
 , . . . ,λα

n , . . .). In this case we write [Wα
λp]- limx(t) = L. The set of all strongly (V ,λ,p)-

summable functions of order α will be denoted by [W α
λp]. For λn = n for all n ∈ N, we shall

write [W α
p ] instead of [Wα

λp] and in the special case α =  we shall write [Wλp] instead of
[W α

λp], and also in the special case α =  and λn = n for all n ∈Nwe shall write [Wp] instead
of [W α

λp].

Definition . Let the sequence λ = (λn) be as above, α ∈ (, ] and x(t) be a real-valued
function which is measurable (in the Lebesgue sense) in the interval (,∞). A real-valued
function x(t) is said to be λ-statistically convergent of order α (or [Sα

λ ]-statistical conver-
gence) to a number L = Lx for every ε > ,

lim
n


λα
n

∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ = .

The set of all λ-statistically convergent functions of order α will be denoted by [Sα
λ ]. In this

case we write [Sα
λ ]- limx(t) = L. For λn = n, for all n ∈N, we shall write [Sα] instead of [Sα

λ ]
and in the special case α = , we shall write [Sλ] instead of [Sα

λ ].

The λ-statistical convergence of order α is well defined for  < α ≤ , but it is not well
defined for α >  in general. For this let λn = n for all n ∈ N and x(t) be defined as follows:

x(t) =

{
 if t = n,
 if t �= n,

n = , , , . . . ,

then both

lim
n→∞


λα
n

∣∣{t ∈ In :
∣∣x(t) – 

∣∣ ≥ ε
}∣∣ ≤ lim

n→∞
[λn] + 
λα

n
= 

and

lim
n→∞


λα
n

∣∣{t ∈ In :
∣∣x(t) – 

∣∣ ≥ ε
}∣∣ ≤ lim

n→∞
([λn] + )

λα
n

= 

for α > , and so λ-statistically converges of order α both to  and , i.e., [Sα
λ ]- limx(t) = 

and [Sα
λ ]- limx(t) = . But this is impossible.

The proof of the following two results is easy, so we state without proof.
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Theorem . Let  < α ≤  and x(t) and y(t) be real-valued functions which are measur-
able (in the Lebesgue sense) in the interval (,∞), then

(i) If [Sα
λ ]- limx(t) = L and c ∈R, then [Sα

λ ]- lim cx(t) = cL;
(ii) If [Sα

λ ]- limx(t) = L and [Sα
λ ]- lim y(t) = L, then [Sα

λ ]- lim(x(t) + y(t)) = L + L.

Theorem . Let λ = (λn) ∈ � ( < α ≤ β ≤ ) and x(t) be a real-valued function which is
measurable (in the Lebesgue sense) in the interval (,∞), then [Sα

λ ] ⊆ [Sβ

λ ].

From Theorem . we have the following.

Corollary . If x(t) is λ-statistically convergent of order α to L, then it is statistically
convergent to L for each α ∈ (, ].

Theorem . Let λ = (λn) ∈ � ( < α ≤ ) and x(t) be a real-valued function which is
measurable (in the Lebesgue sense) in the interval (,∞), then [Sα] ⊆ [Sα

λ ] if

lim
n→∞ inf

λα
n

nα
> . ()

Proof For given ε > , we have

{
t ≤ n :

∣∣x(t) – L
∣∣ ≥ ε

} ⊃ {
t ∈ In :

∣∣x(t) – L
∣∣ ≥ ε

}
,

and so


nα

∣∣{t ≤ n :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ ≥ λα

n
nα


λα
n

∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣.

Taking the limit as n→ ∞ and using (), we get [Sα]- limxk = L�⇒ [Sα
λ ]- limxk = L. �

From Theorem . we have the following result.

Corollary . Let λ = (λn) ∈ � ( < α ≤ ) and x(t) be a real-valued function which is
measurable (in the Lebesgue sense) in the interval (,∞), then [S]⊆ [Sα

λ ] if

lim
n→∞ inf

λα
n
n

> .

Theorem . Let λ = (λn) ∈ �,  < α ≤ β ≤ , p be a positive real number and x(t) be a
real-valued function which ismeasurable (in the Lebesgue sense) in the interval (,∞), then
[W α

λp]⊆ [W β

λp].

Proof Omitted. �

From Theorem . we have the following result.

Corollary . Let λ = (λn) ∈ � and p be a positive real number and x(t) be a real-valued
function which is measurable (in the Lebesgue sense) in the interval (,∞), then [W α

λp] ⊆
[Wλp].
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Theorem . Let λ = (λn) ∈ �,  < α ≤ β ≤ , p be a positive real number and x(t) be a
real-valued function which is measurable (in the Lebesgue sense) in the interval (,∞). If a
function x(t) is [W α

λp]-summable, then it is λ-statistically convergent of order β .

Proof For any sequence x(t) ∈ [W α
λp] and ε > , we have

∫ n

n–λn+

∣∣x(t) – L
∣∣p dt = ∫ n

n–λn+
|x(t)–L|≥ε

∣∣x(t) – L
∣∣p dt + ∫ n

n–λn+
|x(t)–L|<ε

∣∣x(t) – L
∣∣p dt

≥
∫ n

n–λn+
|x(t)–L|≥ε

∣∣x(t) – L
∣∣p dt

≥ ∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ · εp

and so that


λα
n

∫ n

n–λn+

∣∣x(t) – L
∣∣p dt ≥ 

λ
β
n

∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ · εp.

From this it follows that if x(t) is [W α
λp]-summable, then it is λ-statistically convergent of

order β . �

From Theorem . we have the following results.

Corollary . Let α be a fixed real number such that  < α ≤  and  < p < ∞. The fol-
lowing statements hold:

(i) If x(t) is strongly [W α
λp]-summable of order α, then it is λ-statistically convergent of

order α.
(ii) If x(t) is strongly [W α

λp]-summable of order α, then it is λ-statistically convergent.

Theorem . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈ Nno ( < α ≤ β ≤ ), and let x(t) be a real-valued function which is measurable (in the
Lebesgue sense) in the interval (,∞). If

lim inf
n→∞

λα
n

μ
β
n
> , ()

then [Sβ
μ] ⊆ [Sα

λ ].

Proof Suppose that λn ≤ μn for all n ∈Nno and let () be satisfied. Then In ⊂ Jn and so that
ε >  we may write

{
t ∈ Jn :

∣∣x(t) – L
∣∣ ≥ ε

} ⊃ {
t ∈ In :

∣∣x(t) – L
∣∣ ≥ ε

}

and so


μ

β
n

∣∣{t ∈ Jn :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ ≥ λα

n

μ
β
n


λα
n

∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣
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for all n ∈ Nno , where Jn = [n – μn + ,n]. Now, taking the limit as n → ∞ in the last in-
equality and using (), we get [Sβ

μ] ⊆ [Sα
λ ]. �

From Theorem . we have the following results.

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno , and let x(t) be a real-valued function which is measurable (in the Lebesgue sense)
in the interval (,∞). If () holds, then

(i) [Sα
μ] ⊆ [Sα

λ ] for each α ∈ (, ],
(ii) [Sμ] ⊆ [Sα

λ ] for each α ∈ (, ],
(iii) [Sμ] ⊆ [Sλ].

Theorem . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈ Nno ( < α ≤ β ≤ ), and let x(t) be a real-valued function which is measurable (in the
Lebesgue sense) in the interval (,∞). If () holds, then [W β

μp]⊆ [W α
λp].

Proof Omitted. �

Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno , and let x(t) be a real-valued function which is measurable (in the Lebesgue sense)
in the interval (,∞). If () holds, then

(i) [W α
μp] ⊆ [W α

λp] for each α ∈ (, ],
(ii) [Wμp] ⊆ [W α

λp] for each α ∈ (, ],
(iii) [Wμp] ⊆ [Wλp].

Theorem . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈ Nno ( < α ≤ β ≤ ), and let x(t) be a real-valued function which is measurable (in the
Lebesgue sense) in the interval (,∞) and () holds. If a real-valued function x(t) is strongly
(V ,μ,p)-summable of order β to L, then it is λ-statistically convergent of order α to L.

Proof Let x(t) be a real-valued function such that x(t) is strongly (V ,μ,p)-summable of
order β to L and ε > . Then we have

∫
t∈Jn

∣∣x(t) – L
∣∣p dt = ∫

t∈Jn
|x(t)–L|≥ε

∣∣x(t) – L
∣∣p dt + ∫

t∈Jn
|x(t)–L|<ε

∣∣x(t) – L
∣∣p dt

≥
∫
t∈In

|x(t)–L|≥ε

∣∣x(t) – L
∣∣p dt

≥ ∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ · εp

and so that


μ

β
n

∫
t∈Jn

∣∣x(t) – L
∣∣p dt ≥ λα

n

μ
β
n


λα
n

∣∣{t ∈ In :
∣∣x(t) – L

∣∣ ≥ ε
}∣∣ · εp.

Since () holds, it follows that if x(t) is strongly (V ,μ,p)-summable of order β to L, then
it is λ-statistically convergent of order α to L. �
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Corollary . Let λ = (λn) and μ = (μn) be two sequences in � such that λn ≤ μn for all
n ∈Nno , and let x(t) be a real-valued function which is measurable (in the Lebesgue sense)
in the interval (,∞). If () holds, then

(i) A real-valued function x(t) is strongly (V ,μ,p)-summable of order α to L, then it is
λ-statistically convergent of order α to L;

(ii) A real-valued function x(t) is strongly (V ,μ,p)-summable to L, then it is
λ-statistically convergent of order α to L;

(iii) A real-valued function x(t) is strongly (V ,μ,p)-summable to L, then it is
λ-statistically convergent to L.
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