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Abstract
In this paper, the notion of asymptotic average log-likelihood ratio, as a measure of
the difference between the sequence of random variables and Markov chains, is
introduced, and by constructing a nonnegative martingale, the strong deviation
theorem for discrete-time and continuous-state nonhomogeneous Markov chains is
established.
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1 Introduction
Let (�,F ,P) be the probability space, and let {Xn,n ≥ } be a sequence of continuous
randomvariables taking values inR andwith the joint density function fn(X,X · · ·Xn), n =
, , . . . . LetQ be another probabilitymeasure on (�,F ), and {Xn,n ≥ } be an independent
random sequence on the measure Q, with the joint density function gn(X,X · · ·Xn), n =
, , . . . .
Let

rn(ω) =
gn(X,X · · ·Xn)
fn(X,X · · ·Xn)

,

r(ω) = – lim inf
n→∞


n
ln rn(ω) (ln = –∞), ()

where ω is a sample point. In statistical terms, rn(ω) and r(ω) are called the likeli-
hood ratio and the asymptotic average log-likelihood ratio, respectively []. Obviously,
if fn(x,x · · ·xn) = gn(x,x · · ·xn), n≥ , then rn(ω)≡ , a.s. So r(ω) can be used as a mea-
sure of deviation between fn(x,x · · ·xn) and gn(x,x · · ·xn) when n tends to infinity. The
smaller r(ω) is, the smaller the deviation is.

Definition  [] Let {Xn,n≥ } be a nonhomogeneous Markov chain with the initial dis-
tribution u(x), x ∈ R, and the transition probability density pn = pn(x, y), x, y ∈ R, n ≥ .
If

P(X ∈ B) =
∫
B
u(x)dx, P(Xn+ ∈ B|Xn = x) =

∫
B
pn(x, y)dy,
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this Markov chain is called a discrete-time and continuous-state nonhomogeneous
Markov chain.

Let {Xn,n≥ } be a discrete-time and continuous-state nonhomogeneousMarkov chain
on the measure Q with the initial distribution density u(x), x ∈ R and the transition prob-
ability density pn = pn(x, y), x, y ∈ R, n≥ . Then for any Borel, set B

Q(X ∈ B) =
∫
B
u(x)dx,

Q(Xn+ ∈ B|Xn = x) =
∫
B
pn(x, y)dy,

then

gn(x,x, . . . ,xn) = u(x)p(x,x) · · ·pn–(xn–,xn) = u(x)
n∏
k=

pk–(xk–,xk),

so

rn(ω) =
u(X)

∏n
k= pk–(Xk–,Xk)

fn(X,X · · ·Xn)
. ()

There have been some works on deviation theorem, a kind of strong limit theorem rep-
resented by inequalities. Liu and Yang [] have studied the limit properties of a class of
averages of functions of two variables of arbitrary information sources. Liu and Yang []
investigated the strong deviation theorems for arbitrary information source relative to
Markov information source. Liu [] discussed a class of strong deviation theorems for an
arbitrary stochastic sequence with respect to the marginal distribution by using generat-
ing function method, and also studied the problem above by means of Laplace transform
[]. Liu andWang [] have studied a strong limit theorem expressed by inequalities for the
sequences of absolutely continuous random variables. Recently, Fan [] has studied some
strong deviation theorems for dependent continuous random sequence.
In this paper, by using the notion of asymptotic log-likehood and themartingale conver-

gence theorem, and extending the analytic technique proposed by Liu [], Liu and Yang
[] to the case of discrete-time and continuous-state nonhomogeneousMarkov chains, we
obtain the strong deviation theorem for discrete-time and continuous-state nonhomoge-
neous Markov chains.

2 Main result
Theorem  Let {Xn,n ≥ } be a discrete-time and continuous-state nonhomogeneous
Markov chain on the measure Q, r(ω) and rn(ω) be defined by () and (), respectively.
Let {Bn,n ≥ } be a sequence of Borel set of the real line, and IBn be the indicative function
of Bn. Let

a(ω) = lim sup
n→∞


n

n∑
k=

∫
Bk
pk–(Xk–,xk)dxk ≤ b, ∀ω ∈ �, ()

and

D =
{
ω : r(ω)≤ b

}
, D =

{
ω : r(ω) ≥ b

}
.
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Then

(a) lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≤ 

√
br(ω) + r(ω) a.s.; ()

(b) lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≥ –

√
br(ω) a.s. on D, ()

and

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≥ –b – r(ω) a.s. on D. ()

Proof Let λ be a nonnegative constant, and let

hk(xk–,xk) =

⎧⎨
⎩

λpk–(xk–,xk )
+(λ–)

∫
Bk

pk–(xk–,xk )dxk
, xk ∈ Bk ;

pk–(xk–,xk )
+(λ–)

∫
Bk

pk–(xk–,xk )dxk
, xk /∈ Bk .

()

It is easy to see that u(x)
∏n

k= h(xk–,xk) is a density function of n +  variables. Let

tn(λ,ω) =
u(X)

∏n
k=hk(Xk–,Xk)

fn(X,X · · ·Xn)
, ()

then tn(λ,ω) is a nonnegative supermartingale that converges a.s. Hence there exists
A(λ) ∈F , P(A(λ)) =  such that

lim sup
n→∞


n
ln tn(λ,ω) ≤ , ω ∈ A(λ). ()

Letting λ =  in (), we obtain

lim sup
n→∞


n
ln rn(ω) ≤ , ω ∈ A(). ()

This implies that

r(ω) ≥ , ω ∈ A(). ()

We have by ()

n∏
k=

hk(Xk–,Xk) =
n∏
k=

λ
IBk (Xk )pk–(Xk–,Xk)

 + (λ – )
∫
Bk
pk–(Xk–,xk)dxk

= λ
∑n

k= IBk (Xk )
n∏
k=

pk–(Xk–,Xk)
 + (λ – )

∫
Bk
pk–(Xk–,xk)dxk

. ()

It follows from (), (), and () that

ln tn(λ,ω) =
n∑
k=

IBk (Xk) lnλ –
n∑
k=

ln

[
 + (λ – )

∫
Bk
pk–(Xk–,xk)dxk

]
+ ln rn(ω). ()
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By () and (), we have

lim sup
n→∞


n

( n∑
k=

IBk (Xk) lnλ + ln rn(ω) –
n∑
k=

ln

[
 + (λ – )

∫
Bk
pk–(Xk–,xk)dxk

])

≤ , ω ∈ A(λ). ()

(a) Let λ > . Dividing the two sides of () by lnλ, we obtain

lim sup
n→∞


n

( n∑
k=

IBk (Xk) +
ln rn(ω)
lnλ

–
n∑
k=

ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

)

≤ , ω ∈ A(λ). ()

By () and (), we have

lim sup
n→∞


n

( n∑
k=

IBk (Xk) –
n∑
k=

ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

)

≤ r(ω)
lnλ

, ω ∈ A(λ). ()

By (), (), the property of the superior limit

lim sup
n→∞

(an – bn) ≤ d ⇒ lim sup
n→∞

(an – cn) ≤ lim sup
n→∞

(bn – cn) + d,

and the inequality  ≤ ln( + x) ≤ x (x≥ ), we have

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≤ lim sup
n→∞


n

n∑
k=

[ ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

–
∫
Bk
pk–(Xk–,xk)dxk

]

+
r(ω)
lnλ

≤ lim sup
n→∞


n

n∑
k=

[ (λ – )
∫
Bk
pk–(Xk–,xk)dxk
lnλ

–
∫
Bk
pk–(Xk–,xk)dxk

]
+
r(ω)
lnλ

≤ b
(

λ – 
lnλ

– 
)
+
r(ω)
lnλ

, ω ∈ A(λ). ()

By using the inequality  – 
λ
< lnλ (λ > ), we have by ()

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≤ b(λ – ) +

λr(ω)
λ – 

, ω ∈ A(λ). ()

Let Q* be the set of rational numbers in the interval (, +∞), and let

A* =
⋂
λ∈Q*

A(λ), g(λ, r) = b(λ – ) +
λr

λ – 
. ()
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Then we have by (),

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≤ g

(
λ, r(ω)

)
, ω ∈ A*,λ ∈ Q*. ()

Let b > . It is easy to see if r > , g(λ, r) as a function of λ attains its smallest value
g( +

√
r
b , r) = 

√
br + r on the interval (, +∞), and g(λ, ) is increasing on the interval

(, +∞) and limλ→+ g(λ, ) = . For each ω ∈ A* ∩ A() if r(ω) �= ∞, take λn(ω) ∈ Q*, n =
, , . . . such that λn(ω) →  +

√
r(ω)
b , we have

lim
n→∞ g

(
λn(ω), r(ω)

)
= 

√
br(ω) + r(ω). ()

By (), we have

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≤ g

(
λn(ω), r(ω)

)
, n = , , . . . . ()

By () and (), we have

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≤ 
√
br(ω) + r(ω), ω ∈ A* ∩A(). ()

If r(ω) = ∞, () holds obviously. Since P(A* ∩A()) = , () holds by () when b > .
When b = , letting λ = e in (), we have

lim sup
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≤ r(ω), ω ∈ A(e). ()

Since P(A(e)) = , () also holds by () when b = .
(b) Let  < λ < . Dividing the two sides of () by lnλ, we have

lim inf
n→∞


n

( n∑
k=

IBk (Xk) –
n∑
k=

ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

+
ln rn(ω)
lnλ

)

≥ , ω ∈ A(λ). ()

By () and (), we have

lim inf
n→∞


n

( n∑
k=

IBk (Xk) –
n∑
k=

ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

)

≥ r(ω)
lnλ

, ω ∈ A(λ). ()

By (), (), the property of the inferior limit

lim inf
n→∞ (an – bn) ≥ d ⇒ lim inf

n→∞ (an – cn) ≥ lim inf
n→∞ (bn – cn) + d,
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and the inequality ln( + x) ≤ x (– < x ≤ ), we have

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≥ lim inf
n→∞


n

n∑
k=

[ ln[ + (λ – )
∫
Bk
pk–(Xk–,xk)dxk]
lnλ

–
∫
Bk
pk–(Xk–,xk)dxk

]

+
r(ω)
lnλ

≥ lim inf
n→∞


n

n∑
k=

[ (λ – )
∫
Bk
pk–(Xk–,xk)dxk
lnλ

–
∫
Bk
pk–(Xk–,xk)dxk

]
+
r(ω)
lnλ

≥ b
(

λ – 
lnλ

– 
)
+
r(ω)
lnλ

, ω ∈ A(λ). ()

By using the inequality  – 
λ
< lnλ <  and lnλ < λ –  <  ( < λ < ), we have by ()

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≥ b(λ – ) +
r(ω)
λ – 

, ω ∈ A(λ)∩A(). ()

Let Q* be the set of rational numbers in the interval (, ), and let

A* =
⋂
λ∈Q*

A(λ), h(λ, r) = b(λ – ) +
r

λ – 
. ()

Then we have by ()

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≥ h
(
λ, r(ω)

)
, ω ∈ A* ∩A(),λ ∈ Q*. ()

Let b > . It is easy to see that if  < r < b, then h(λ, r) as a function of λ attains its largest
value h( –

√
r
b , r) = –

√
br on the interval (, ), and h(λ, ) is increasing on the interval

(, ) and limλ→– h(λ, ) = , and h(λ,b) = b(λ–+ 
λ– ) is decreasing on the interval (, )

and limλ→+ h(λ,b) = –b. For each ω ∈ A* ∩ A() ∩ D, take τn(ω) ∈ Q*, n = , , . . . such
that τn(ω)→  –

√
r(ω)
b . Then we have

lim
n→∞h

(
τn(ω), r(ω)

)
= –

√
br(ω). ()

By (), we have

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≥ h

(
τn(ω), r(ω)

)
, n = , , . . . . ()
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By () and (),

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≥ –
√
br(ω), ω ∈ A* ∩A()∩D. ()

Since P(A* ∩A()) = , () holds by () when b > .
When b = , r(ω) =  for ω ∈D ∩A(), hence we have by ()

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≥ , ω ∈ A(λ)∩A()∩D, ()

since P(A(λ)∩A()) = , () also holds by () when b = .
It is easy to see that when ≤ b < r, h(λ, r) as a function of λ is decreasing on the interval

(, ) and limλ→+ h(λ, r) = –(r + b). For each ω ∈ A* ∩ A() ∩ D, when r(ω) �= ∞, take
λn(ω) ∈Q*, n = , , . . . , such that λn(ω)→ . We have

lim
n→∞h

(
λn(ω), r(ω)

)
= –r(ω) – b. ()

By (), we have

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]
≥ h

(
λn(ω), r(ω)

)
, n = , , . . . . ()

It follows from () and () that

lim inf
n→∞


n

n∑
k=

[
IBk (Xk) –

∫
Bk
pk–(Xk–,xk)dxk

]

≥ –r(ω) – b, ω ∈ A* ∩A()∩D ()

when r(ω) = ∞, () also holds obviously. Since P(A* ∩ A()) = , () follows from ()
directly. �
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