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Abstract
In this paper, we study a two-fluid model of the truncated Euler equations with partial
viscosity. We obtain new blow-up criteria for a solution of the system in terms of
vorticity in the homogeneous Besov space Ḃ–1∞,∞.
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1 Introduction andmain results
In this paper, we are concerned with the regularity of the following two-fluid model of the
truncated Euler equations with partial viscosity:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ut –�u + u · ∇u +∇p = θe, (x; t) ∈ R
 × (; ),

θt + u · ∇θ = |∇u|,
∇ · u = ,
u(x, ) = u, θ (x, ) = θ,

(.)

where u = (u(x, t),u(x, t),u(x, t)) denotes the fluid velocity vector field, p = p(x, t) is the
scalar pressure, e = (, , )T , while u and θ are given initial velocity and initial tem-
perature, respectively, with ∇ · u = . For more detailed background of the system, we
refer the readers to [] and the references therein. When θ = , the system reduces to the
well-known Navier-Stokes equations.
It is well known that the question of global existence or finite time blow-up of smooth

solutions for the D incompressible Navier-Stokes equations is still unsolved. This chal-
lenging problem has attracted significant attention. Therefore, it is interesting to study the
blow-up criterion of the solutions for system (.). Recently, Sun and Fan [] first proved
the following blow-up criterion for system (.):

curlu ∈ L
(
,T ; Ḃ

∞,∞
(
R

)),
u ∈ L

(
,T ; Ḃ

∞,∞
(
R

)).
Our purpose in this paper is to establish blow-up criteria of a strong solution for the

two-fluid model of the truncated Euler equations in terms of vorticity in the homoge-
neous Besov space Ḃ–∞,∞. The main difficulty is without viscosity in the second equation
for system (.).
Now we state our main results as follows.
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Theorem . Let (u, θ) ∈ H(R), (u(·, t), θ (·, t)) be a strong solution to system (.) with
the initial data (u, θ) for  ≤ t < T . If the solution u satisfies the following condition:

curlu ∈ L
(
,T ; Ḃ–

∞,∞
)
, (.)

then the solution (u, θ ) can be extended smoothly beyond t = T .

2 Preliminaries and lemmas
Throughout this paper, we introduce some function spaces, notations and important in-
equalities.
Let et� denote the heat semigroup defined by

et�f = Kt ∗ f , Kt = (π t)–

 exp

(
–

|x|
t

)

for t >  and x ∈R
, where ∗ denotes the convolution of functions defined on R

.
We now recall the definition of the homogeneous Besov space with negative indices

Ḃ–α∞,∞ on R
 and the homogeneous Sobolev space Ḣα

q of exponent α > . It is known
(p. of Ref. []) that f ∈ S ′(R) belongs to Ḃ–α∞,∞ if and only if et�f ∈ L∞ for all t > 
and t α

 ‖et�f ‖∞ ∈ L∞(,∞;L∞). The norm of Ḃ–α∞,∞ is defined, up to equivalence, by

‖f ‖Ḃ–α∞,∞ = sup
t>

(
t

α

∥∥et�f ∥∥∞

)
.

We introduce now the homogeneous Sobolev space Ḣα
q (R), which is defined as the set

of functions f ∈ Lr(R), 
r =


q –

α
 such that (–�) α

 f ∈ Lq(R). This space is endowed with
the norm

‖f ‖Ḣα
q =

∥∥(–�)
α
 f

∥∥
Lq ,

and when q = , we just let Ḣα
 (R) = Ḣα(R).

Lemma . [] Let  < p < q < ∞ and s = α( qp – ) > . Then there exists a constant de-
pending only on α, p and q such that the estimate

‖f ‖Lq ≤ C
∥∥(–�)

s
 f

∥∥ p
q
Lp‖f ‖

– p
q

Ḃ–α∞,∞
(.)

holds for all f ∈ Ḣα
p (R)∩ Ḃ–α∞,∞(R).

In particular, for s = , p =  and q = , we get α =  and

‖f ‖L ≤ C‖f ‖ 

Ḣ‖f ‖



Ḃ–∞,∞

. (.)

Lemma . [] For any function f ∈ W ,s(R) (s≥ ), and r ≥ , we have

‖f ‖Lγ ≤ C‖f ‖–α
L ‖∇f ‖α

L , (.)
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where

α =

r –


γ


 –


s –


r

and C is a constant independent of f .

3 Proof of themain results
In this section, we prove Theorem ..

Proof of Theorem . First, we multiply the both sides of the first equation of (.) by u and
the second equation of (.) by θ , respectively; after integration by parts over R, we get



d
dt

∫
u dx +

∫
|∇u| dx≤

∫
|uθ |dx, (.)



d
dt

∫
θ dx =

∫
θ |∇u| dx. (.)

Next, we multiply the both sides of the first equation of (.) by (–�u); after integration
by parts over R, we get



d
dt

∫
|∇u| dx +

∫
|�u| dx ≤

∫
u · ∇u�udx +

∫
|�u|θ dx. (.)

Using the Young inequality and adding (.) to (.), we obtain

d
dt

(∫
|∇u| dx +

∫
θ dx

)
+

∫
|�u| dx

≤
∫

u · ∇u�udx +
∫

θ |∇u| dx +
∫

θ dx. (.)

It is easy to see that

∫
u · ∇u�udx = –

∑
i,k

∫
∂ku · ∂iu · ∂kudx

≤ ‖∇u‖L‖∇u∇u‖L
≤ ‖∇u‖L‖∇u‖L
≤ ‖∇u‖L‖∇u‖Ḃ–∞,∞‖�u‖L

≤ C‖∇u‖L‖∇ × u‖Ḃ–∞,∞
+


‖�u‖L , (.)

where we use the Hölder inequality, the Young inequality and (.).
Similarly,

∫
θ |∇u| dx ≤ ‖θ‖L‖∇u∇u‖L

≤ ‖θ‖L‖∇u‖L
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≤ ‖θ‖L‖∇u‖Ḃ–∞,∞‖�u‖L

≤ C‖θ‖L‖∇ × u‖Ḃ–∞,∞
+


‖�u‖L . (.)

Putting (.) and (.) into (.) and applying the Gronwall inequality yields

u ∈ L∞(
,T ;H) ∩ L

(
,T ;H), θ ∈ L∞(

,T ;L
)
.

Multiplying the both sides of the second equation of (.) by |θ |p–θ ( < p < ∞), after
integration by parts over R, we deduce that


p
d
dt

∫
θp dx ≤

∫
|θ |p–|∇u| dx ≤ ‖θ‖p–Lp ‖∇u‖Lp ≤ ‖θ‖p–Lp ‖u‖H ,

which implies that

θ ∈ L∞(
,T ;Lp

)
( < p < ∞). (.)

Taking curl on the both sides of the first equation of (.), we obtain the following vorticity
formulation for the vorticity field ω = curlu:

∂tω + u · ∇ω –�ω = curl(θe) +ω · ∇u, (.)

and then multiplying the both sides of the vorticity equation by |ω|p–ω (p > ), after inte-
gration by parts over R, we infer that

d
dt

∫
v dx +

∫
|∇v| dx≤ C

∫
|θ |∇∣∣|ω|p–ω∣∣dx +C

∫
∇u|ω|p dx

≤ C
∫

|θ ||v| p–p |∇v|dx +C
∫

∇u|ω| p |ω| p dx

≤ C‖θ‖
L

p
p+

‖v‖–

p

L ‖∇v‖L +C‖∇u‖L‖v‖L

≤ C‖v‖–

p

L ‖∇v‖L +C‖v‖ 

L‖∇v‖ 


L

≤ C‖v‖

 –


p

L ‖∇v‖

 –


p

L +C‖v‖ 

L‖∇v‖ 


L

≤ C‖v‖L +


‖∇v‖L , (.)

where v := |ω| p . Using the Gronwall inequality, we obtain

ω ∈ L∞(
,T ;Lp

)
(p > ),

which implies that

∇u ∈ L∞(
,T ;Lp

)
(p > ). (.)
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On the other hand, since u is a solution of the Stokes system

ut –�u +∇p = –u · ∇u + θe ∈ L∞(
,T ;Lp

)
,

it follows from theW ,p-theory of the Stokes system that

u ∈ Lp
(
,T ;W ,p) (p > ). (.)

So,

∇u ∈ Lp
(
,T ;L∞)

(p > ). (.)

Differentiating the second equation of (.) with respect to xi ( ≤ i ≤ ) and multiplying
the resulting equation by ∂iθ , and then integrating by parts over R, we get



d
dt

∫
|∇θ | dx ≤ C

∫
|∇u||∇θ | dx +C

∫
|∇u||�u||∇θ |dx

≤ C‖∇u‖L∞‖∇θ‖L +C‖∇u‖L∞‖�u‖L‖∇θ‖L .

By (.) and the Gronwall inequality, we have

θ ∈ L∞(
,T ;H). (.)

We multiply the both sides of the equation of (.) by (–�ω); after integration by parts
over R, we get



d
dt

∫
|∇ω| dx +

∫
|�ω| dx ≤

∫
|u||∇ω||�ω|dx +

∫
|�ω||∇θ |dx

≤ ‖u‖L‖�ω‖L‖∇ω‖L + ‖∇θ‖L‖�ω‖L

≤ C‖�ω‖ 

L‖∇ω‖ 


L +C‖�ω‖L

≤ C‖∇ω‖L +


‖�ω‖L +C,

the Gronwall inequality yields

u ∈ L∞(
,T ;H) ∩ L

(
,T ;H). (.)

In the following calculations, we use the following commutator estimate and bilinear es-
timate []:

∥∥	s(fg) – f	sg
∥∥
Lp ≤ (‖∇f ‖Lp

∥∥	s–g
∥∥
Lq +

∥∥	sf
∥∥
Lp ‖g‖Lq

)
, (.)

∥∥	s(fg)
∥∥
Lp ≤ (‖f ‖Lp∥∥	sg

∥∥
Lq +

∥∥	sf
∥∥
Lp ‖g‖Lq

)
, (.)

with s > , 	s = (–�) s and 
p =


p
+ 

q
= 

p
+ 

q
. Taking the operation 	 on both sides of

the second equation of (.), then multiplying them by 	θ , and integrating by parts over
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R
, we have



d
dt

∫ ∣∣	θ
∣∣ dx ≤

∣∣∣∣
∫ (

	(u · ∇θ ) – u∇	θ
)
dx

∣∣∣∣ +
∫

	(|∇u|)	θ dx

≤ C
(‖∇u‖L∞

∥∥	θ
∥∥
L + ‖‖∇u‖L∞‖	θ‖Lu‖L‖∇θ‖L

)∥∥	θ
∥∥
L

+C‖∇u‖L∞
∥∥	u

∥∥
L

∥∥	θ
∥∥
L .

Combining (.) with (.) and using the Gronwall inequality, we obtain

θ ∈ L∞(
,T ;H).

This completes the proof. �
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