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1 Introduction
Variational inclusions are useful and important extensions and generalizations of the vari-
ational inequalities with a wide range of applications in industry, mathematical finance,
economics, decisions sciences, ecology, mathematical and engineering sciences. In gen-
eral, the method based on the resolvent operator technique has been widely used to solve
variational inclusions.
In this paper, under the assumption with no continuousness, we first introduce a new

system of generalized variational inclusions in the Banach space. By using the Yosida ap-
proximation technique form-accretive operator, we prove some existence and uniqueness
theorems of solutions for this kind of system of generalized variational inclusions. Our re-
sults generalize and improve main results in [–].
For i = , , let Ei be a real Banach space, let Ti : Ei → Ei , Mi : E × E → Ei be set-

valued mappings, let hi, gi : Ei → Ei, Fi : E × E → Ei be single-valued mappings, and let
(f, f) ∈ E × E. We consider the following problem: finding (x, y) ∈ E × E such that

⎧⎨
⎩
f ∈ Tx + F(x, y) +M(h(x), g(x));

f ∈ Ty + F(x, y) +M(h(y), g(y)).
(.)

This problem is called the system of generalized set-valued variational inclusions.
There are some special cases in literature.
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() If T = , T = , f = , f = , then (.) reduces to the problem of finding (x, y) ∈
E × E such that

⎧⎨
⎩
 ∈ F(x, y) +M(h(x), g(x));

 ∈ F(x, y) +M(h(y), g(y)).
(.)

Problem (.) was introduced and studied by Kazmi and Khan [, ] (g = g = I in []).
() If hi = gi = I is the identity operator, Mi(·, ·) = , f = f = , then (.) reduces to the

problem of finding (x, y) ∈ E × E such that

⎧⎨
⎩
 ∈ Tx + F(x, y);

 ∈ Ty + F(x, y).
(.)

Problem (.) was introduced and studied by Verma [], Fang and Huang [].
() If E = E = H is a Hilbert space, F = F = F(x), M(·, ·) =M(·), f = f = , then (.)

reduces to the problem of finding x ∈H such that

 ∈ F(x) +M(x). (.)

Problem (.) was introduced and studied by Zeng et al. []. If F(x) = S(x) –T(x) – f , f �= ,
(.) becomes f ∈ S(x) – T(x) +M(x) considered by Verma [].
Let E be a real Banach space with dual E∗, J : E → E∗ is the normalized duality mapping

defined by

Jx =
{
f ∈ E∗ : 〈x, f 〉 = ‖x‖ = ‖f ‖},

where 〈·, ·〉 denotes the generalized duality paring. In the sequel, we shall denote the single-
valued normalized duality map by j. It is well known that if E is smooth, then J is single-
valued, and E∗ is uniformly convex, then j is uniformly continuous on bounded set.
We assume that E, E, E are smooth Banach spaces. For convenience, the norms of E,

E and E are all denoted by ‖ · ‖. The norm of E × E is defined by ‖ · ‖ + ‖ · ‖, i.e., if
(x, y) ∈ E × E, then ‖(x, y)‖ = ‖x‖ + ‖y‖.

Definition . Let T : E → E be a set-valued mapping.
(i) T is said to be accretive, if ∀x, y ∈ E, u ∈ Tx, v ∈ Ty,

〈
u – v, j(x – y)

〉 ≥ , ∀x, y ∈ E,u ∈ Tx, v ∈ Ty.

(ii) T is said to be α-strongly-accretive if there exists α >  such that ∀x, y ∈ E, u ∈ Tx,
v ∈ Ty,

〈
u – v, j(x – y)

〉 ≥ α‖x – y‖.

(iii) T is said to be m-accretive if T is accretive and (I + λT)(E) = E, ∀λ > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/455
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Definition . Let N : E × E → E be a set-valued mapping.
(i) The mapping x �→N(x, y) is said to be accretive if ∀x,x ∈ E, u ∈N(x, y),

v ∈N(x, y), y ∈ E,

〈
u – v, j(x – x)

〉 ≥ .

(ii) The mapping x �→ N(x, y) is said to be α-strongly-accretive if there exists α >  such
that ∀x,x ∈ E, u ∈N(x, y), u ∈N(x, y), y ∈ E,

〈
u – u, j(x – x)

〉 ≥ α‖x – x‖.

(iii) The mapping x �→N(x, y) is said to be m-α-strongly-accretive if N(·, y) is
α-strongly-accretive and (I +N(·, y))(E) = E, ∀y ∈ E, λ > .

In a similar way, we can define the strong accretiveness of themappingN : E×E → E

with respect to the second argument.

Definition . Let T : E → E bem-accretive mapping.
(i) The resolvent operator of T is defined by RT

λ x = (I + λT)–x, ∀x ∈ E,λ > .
(ii) The Yosida approximation of T is defined by JTλ x =


λ
(I – RT

λ )x, ∀x ∈ E, λ > .

Definition . The mapping F : E × E → E is said to be (r, s)-mixed Lipschitz continu-
ous if there exist r > , s >  such that ∀(x, y), (x, y) ∈ E × E,

∥∥F(x, y) – F(x, y)
∥∥ ≤ r‖x – x‖ + s‖y – y‖.

In the sequel, we use the notation → and ⇀ to denote strong and weak convergence,
respectively.

Proposition . [–] If T : E → E is m-accretive, then
() RT

λ is single-valued and ‖RT
λ x – RT

λ y‖ ≤ ‖x – y‖, ∀x, y ∈ E;
() ‖JTλ x‖ ≤ |Tx| = inf{‖y‖ : y ∈ Tx}, ∀x ∈ D(T);
() JTλ is m-accretive on E, and ‖JTλ x – JTλ y‖ ≤ 

λ
‖x – y‖, ∀x, y ∈ E, λ > ;

() JTλ x ∈ TRT
λ x;

() If E∗ is uniformly convex Banach space, then T is demiclosed, i.e.,
[xn, yn] ∈ Graph(T), xn → x, yn ⇀ y implies that [x, y] ∈ Graph(T).

Lemma . If T : E → E is m-α-strongly-accretive, then
(i) RT

λ is 
+λα

-Lipschitz continuous;
(ii) JTλ is α

+λα
-strongly-accretive.

Proof (i) Let u = RT
λ x, v = RT

λ y. Then x – u ∈ λTu, y – v ∈ λTv. Since T is α-strongly-
accretive, λT is λα-strongly-accretive, λα‖u – v‖ ≤ 〈x – u – y + v, j(u – v)〉 ≤ ‖x – y‖‖u –
v‖ – ‖u – v‖. Therefore, ‖u – v‖ ≤ 

+λα
‖x – y‖. This completes the proof of (i).

http://www.journalofinequalitiesandapplications.com/content/2013/1/455
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(ii) By definition of JTλ and (i), we have

〈
JTλ x – JTλ y, j(x – y)

〉
=


λ

〈
x – y –

(
RT

λ x – RT
λ y

)
, j(x – y)

〉

≥ 
λ

(‖x – y‖ – ∥∥RT
λ x – RT

λ y
∥∥‖x – y‖) ≥ α

 + λα
‖x – y‖.

This completes the proof of (ii). �

Remark . Let Ni : E × E → Ei be set-valued mapping, let x �→ N(x, y) and y �→
N(x, y) be m-accretive. Then the resolvent operator and Yosida approximation of Ni can
be rewritten as

RN(·,y)
λ x =

(
I + λN(·, y)

)–x, JN(·,y)
λ x =


λ

(
I – RN(·,y)

λ

)
x,

RN(x,·)
λ y =

(
I + λN(x, ·)

)–y, JN(x,·)
λ y =


λ

(
I – RN(x,·)

λ

)
y,

respectively.

Lemma . Let N(x, y) = Tx + F(x, y) and N(x, y) = Ty + F(x, y). If Ti : Ei → Ei is m-
accretive, Fi : E × E → Ei is αi-strongly-accretive in the ith argument, and (ri, si)-mixed
Lipschitz continuous, then

(i) Ni is m-αi-strongly-accretive in the ith argument (i = , );
(ii) ‖RN(·,y)

λ x – RN(·,y)
λ x‖ ≤ λs‖y – y‖;

(iii) ‖RN(x,·)
λ y – RN(x,·)

λ y‖ ≤ λr‖x – x‖.

Proof (i) The fact directly follows from Kobayashi [] (Theorem .).
(ii) Let u = RN(·,y)

λ x, v = RN(·,y)
λ x. Then

x – u – λF(u, y) ∈ λTu, x – v – λF(v, y) ∈ λTv.

By accretiveness of Ti and αi-strong accretiveness of Fi, we have that

 ≤ 〈
–u – λF(u, y) + v + λF(v, y), j(u – v)

〉
= –‖u – v‖ + λ

〈
F(v, y) – F(u, y), j(u – v)

〉
= –‖u – v‖ + λ

〈
F(v, y) – F(u, y), j(u – v)

〉
+ λ

〈
F(u, y) – F(u, y), j(u – v)

〉
≤ –‖u – v‖ – λα‖u – v‖ + λ

∥∥F(u, y) – F(u, y)
∥∥‖u – v‖

≤ –( + λα)‖u – v‖ + λs‖y – y‖‖u – v‖,

Therefore, ‖u – v‖ ≤ λs
+λα

‖y – y‖ ≤ λs‖y – y‖. This completes the proof of (ii).
(iii) The proof is similar. We omit it. �

2 Main results
We assume that CB(E) in the family of all nonempty closed and bounded subset of E.

http://www.journalofinequalitiesandapplications.com/content/2013/1/455
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Lemma. [] Let T : E×E → E and T = E×E → E be two continuousmappings.
If there exist θ, θ,  < θ, θ <  such that

∥∥T(x, y) – T(x, y)
∥∥ +

∥∥T(x, y) – T(x, y)
∥∥

≤ θ‖x – x‖ + θ‖y – y‖,

then there exists (x, y) ∈ E × E such that x = T(x, y), y = T(x, y).

Theorem . For i = , , let Ei be a real Banach space with uniformly convex dual E∗
i ,

and let Fi : E × E → Ei, hi, gi : Ei → Ei be three single-valued mappings, let Ti : Ei → Ei ,
Mi : Ei × Ei → Ei be two set-valued mappings satisfying the following conditions that
() Mi(hi(·), gi(·)) : Ei → CB(Ei) is m-accretive;
() Ti is m-accretive.
() Fi is αi-strongly-accretive in the ith argument and (ri, si)-mixed Lipschitz continuous,

N(x, y) = T(x) + F(x, y), N(x, y) = T(y) + F(x, y).
If λ satisfies that

 < λ <min

{
α – r
tα

,
α – s
sα

}
, r < α, s < α,

sr
αα

< , (.)

and (f, f) ∈ E × E, then
(i) for any λ in (.), there exists (xλ, yλ) ∈ E × E such that

⎧⎨
⎩
f ∈ JN(·,yλ)

λ xλ +M(h(xλ), g(xλ)),

f ∈ JN(xλ ,·)
λ yλ +M(h(yλ), g(yλ)),

(.)

and {xλ}λ→ and {yλ}λ→ are bounded;
(ii) if {JN(·,y)

λ xλ}λ→,{JN(x,·)
λ yλ}λ→ are bounded, then there exists unique (x, y) ∈ E × E,

which is a solution of Problem (.), such that xλ → x, yλ → y as λ → .

Remark . Equation (.) is called the system of Yosida approximation inclusions (equa-
tions).

Proof of Theorem . (i) By Definition ., we can easily show that (xλ, yλ) satisfies (.), if
and only if (xλ, yλ) satisfies the relation that

x = RM(h(·),g(·))
λ

[
λf + RN(·,y)

λ x
]
� B(x, y),

y = RM(h(·),g(·))
λ

[
λf + RN(x,·)

λ y
]
� B(x, y).

(.)

Now, we study the mapping Bi : E × E → Ei (i = , ) defined by (.). By Proposi-
tion .(), Lemma . and Lemma ., and Eq. (.), for any x,x ∈ E, y, y ∈ E, we have
that

∥∥B(x, y) – B(x, y)
∥∥

=
∥∥RM(h(·),g(·))

λ

[
λf + RN(·,y)

λ x
]
– RM(h(·),g(·))

λ

[
λf + RN(·,y)

λ x
]∥∥

http://www.journalofinequalitiesandapplications.com/content/2013/1/455
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≤ ∥∥RN(·,y)
λ x – RN(·,y)

λ x
∥∥

≤ ∥∥RN(·,y)
λ x – RN(·,y)

λ x
∥∥ +

∥∥RN(·,y)
λ x – RN(·,y)

λ x
∥∥

≤ λs‖y – y‖ + 
 + λα

‖x – x‖. (.)

Similarly, by Proposition .(), Lemma . and Lemma ., we can prove that

∥∥B(x, y) – B(x, y)
∥∥ ≤ λr‖x – x‖ + 

 + λα
‖y – y‖. (.)

Equations (.) and (.) imply that

∥∥B(x, y) – B(x, y)
∥∥ +

∥∥B(x, y) – B(x, y)
∥∥ ≤ θ‖x – x‖ + θ‖x – x‖,

where θ = 
+λα

+ λr, θ = 
+λα

+ λs. By (.),  < θ, θ < . Therefore, by Lemma ., for
λ in (.), there exists (xλ, yλ) ∈ E ×E such that xλ = B(xλ, yλ), yλ = B(xλ, yλ), i.e., (xλ, yλ)
satisfies (.), and hence (.) hold.
Now, we show that {xλ}λ→ and {yλ}λ→ are bounded. For (x, y) ∈ E×E, and λ in (.),

let

zλ ∈ JN(·,yλ)
λ x +M

(
h(x), g(x)

)
; (.)

wλ ∈ JN(xλ ,·)
λ y +M

(
h(y), g(y)

)
. (.)

Equations (.) plus (.) indicates that

zλ – JN(·,yλ)
λ x – f + JN(·,yλ)

λ xλ ∈ M
(
h(x), g(x)

)
–M

(
h(xλ), g(xλ)

)
.

By Lemma . and condition () in Theorem ., we obtain that

 ≤ 〈
zλ – f – JN(·,yλ)

λ x + JN(·,yλ)
λ xλ, j(x – xλ)

〉
=

〈
zλ – f, j(x – xλ)

〉
–

〈
JN(·,yλ)
λ x – JN(·,yλ)

λ xλ, j(x – xλ)
〉

≤ ‖zλ – f‖‖x – xλ‖ – α

 + λα
‖x – xλ‖. (.)

By Definition .(ii), Proposition .() and Lemma ., we get that

∥∥JN(·,yλ)
λ x

∥∥ ≤ ∥∥JN(·,yλ)
λ x – JN(·,y)

λ x
∥∥ +

∥∥JN(·,y)
λ x

∥∥
=

∥∥∥∥ 
λ

(
x – RN(·,yλ)

λ x – x + RN(·,y)
λ x

)∥∥∥∥ +
∣∣N(·, y)x

∣∣

≤ s
 + λα

‖y – yλ‖ +
∣∣N(x, y)

∣∣. (.)

For any λ in (.), take uλ ∈ M(h(x), g(x)), vλ ∈ M(h(y), g(y)) such that zλ =
JN(·,yλ)
λ x + uλ, wλ = JN(xλ ,·)

λ y + vλ. Since {uλ} ⊂ M(h(x), g(x)) and {vλ} ⊂ M(h(y),
g(y)), by condition (), {uλ} and {vλ} are bounded. Combining (.), (.) and (.) yields

http://www.journalofinequalitiesandapplications.com/content/2013/1/455
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that

‖x – xλ‖ ≤  + λα

α
‖zλ – f‖ ≤  + λα

α

(‖zλ‖ + ‖f‖
)

≤  + λα

α

(∥∥JN(·,yλ)
λ x

∥∥ + ‖uλ‖ + ‖f‖
)

≤  + λα

α

(
s

 + λα
‖y – yλ‖ +

∣∣N(x, y)
∣∣ + ‖uλ‖ + ‖f‖

)
. (.)

By using similar methods, we obtain that

‖y – yλ‖ ≤  + λα

α

(
r

 + λα
‖x – xλ‖ +

∣∣N(x, y)
∣∣ + ‖vλ‖ + ‖f‖

)
. (.)

It follows from (.) and (.) that {xλ}λ→ and {yλ}λ→ are bounded since  < sr
αα

< .
(ii) Note that for λ,μ > 

f – JN(·,yλ)
λ xλ ∈ M

(
h(·), g(·)

)
xλ and f – JN(·,yμ)

μ xμ ∈M
(
h(·), g(·)

)
xμ.

By Proposition .(), we have that

 ≤ 〈
–JN(·,yλ)

λ xλ + JN(·,yμ)
μ xμ, j(xλ – xu)

〉
=

〈
JN(·,yλ)
λ xλ – JN(·,yμ)

μ xμ, j
(
RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

)
– j(xλ – xμ)

〉
–

〈
JN(·,yλ)
λ xλ – JN(·,yμ)

μ xμ, j
(
RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

)〉
≤ 〈

JN(·,yλ)
λ xλ – JN(·,yμ)

μ xμ, j
(
RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

)
– j(xλ – xμ)

〉
– α

∥∥RN(·,yλ)
λ xλ – RN(·,yμ)

μ xμ

∥∥,

and hence,

α
∥∥RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

∥∥

≤ 〈
JN(·,yλ)
λ xλ – JN(·,yμ)

μ xμ, j
(
RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

)
– j(xλ – xμ)

〉
. (.)

Since xλ –RN(·,yλ)
λ xλ = λJN(·,yλ)

λ xλ →  (as λ → ), {JN(·,yλ)
λ xλ}λ→ is bounded. The j is uni-

formly continuous on bounded set, and (.) reduces to that

α
∥∥RN(·,yλ)

λ xλ – RN(·,yμ)
μ xμ

∥∥

≤O
(∥∥xλ – xμ – RN(·,yλ)

λ xλ + RN(·,yμ)
μ xμ

∥∥) ≤O(λ +μ).

Similarly, we have that

α
∥∥RN(xλ ,·)

λ yλ – RN(xμ ,·)
μ yμ

∥∥ ≤O(λ +μ).

Consequently, {RN(·,yλ)
λ xλ}λ→ and {RN(xλ ,·)

λ yλ}λ→ are the Cauchy net. There exists (x, y) ∈
E ×E such that RN(·,yλ)

λ xλ → x, RN(xλ ,·)
λ yλ → y as λ →  from which and xλ –RN(·,yλ)

λ xλ =
λJN(·,yλ)

λ xλ and yλ – RN(xλ ,·)
λ yλ = λJN(xλ ,·)

λ yλ, it follows that xλ → x and yλ → y as λ → .

http://www.journalofinequalitiesandapplications.com/content/2013/1/455


Cao Journal of Inequalities and Applications 2013, 2013:455 Page 8 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/455

Now, we show that (x, y) is a solution of (.). Since Ei is reflexive and {JN(·,yλ)
λ xλ}λ→

and {JN(xλ ,·)
λ yλ}λ→ are bounded, there exist λn >  (n = , , . . .) such that λn →  and

JN(·,yλn )
λn xλn ⇀ z, J

N(xλn ,·)
λn yλn ⇀ z for some (z, z) ∈ E × E. Let w′

λn = f – JN(·,yλn )
λn xλn ∈

M(h(xλn ), g(xλn )), w′′
λn = f – JN(xλn ,·)

λn yλn ∈ M(h(xλn ), g(yλn )). Then w′
λn ⇀ w, w′′

λn ⇀

w for some (w,w) ∈ E × E. Since N(·, y), N(x, ·) (∀(x, y) ∈ E × E), Ti and Mi(hi(·),
g(·)) (i = , ) are demiclosed (see Proposition .()), we have that

x ∈ E =D
(
N(·, y)

) ∩D
(
M

(
h(·), g(·)

))
,

y ∈ E =D
(
N(x, ·)

) ∩D
(
M

(
h(·), g(·)

))
,

z ∈N(·, y)x =N(x, y) = Tx + F(x, y),

z ∈N(x, ·)y =N(x, y) = Ty + F(x, y),

w ∈M
(
h(x), g(x)

)
and w ∈M

(
h(y), g(y)

)
.

Therefore,

f = z +w ∈ Tx + F(x, y) +M
(
h(x), g(x)

)
,

f = z +w ∈ Ty + F(x, y) +M
(
h(y), g(y)

)
.

Finally, we show the uniqueness of solutions. Let (x, y) and (x, y) be two solutions of
Problem (.). Let u ∈ Tx, u ∈ Tx, w ∈ M(h(x), g(x)), w ∈ M(h(x), g(x)) such that

f = u + F(x, y) +w, f = u + F(x, y) +w.

Then by accretiveness ofMi and Ti, we have that

 =
〈
f – f, j(x – x)

〉
=

〈
u + F(x, y) +w – u – F(x, y) –w, j(x – x)

〉
≥ 〈

F(x, y) – F(x, y), j(x – x)
〉

=
〈
F(x, y) – F(x, y), j(x – x)

〉
+

〈
F(x, y) – F(x, y), j(x – x)

〉
≥ α‖x – x‖ –

∥∥F(x, y) – F(x, y)
∥∥‖x – x‖

≥ α‖x – x‖ – s‖y – y‖‖x – x‖.

That is,

‖x – x‖ ≤ s
α

‖y – y‖. (.)

Let v ∈ Ty, v ∈ Ty, z ∈M(h(y), g(y)), z ∈M(h(y), g(y)) such that

f = v + F(x, y) +w,

f = v + F(x, y) +w.
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The by the similar discussion, we have that

‖y – y‖ ≤ r
α

‖x – x‖. (.)

Equations (.), (.) and (.) imply that x = x, y = y. �

Theorem . Suppose that Ei, Ti,Mi, Fi, fi and hi (i = , ) are the same as in Theorem ..
If for any Ri > , there exist Li > , ai >  and  < Li <  such that

|Tx| ≤ L
∣∣M

(
h(x), g(x)

)∣∣ + a, ‖x‖ ≤ R, (.)

|Ty| ≤ L
∣∣M

(
h(y), g(y)

)∣∣ + a, ‖y‖ ≤ R, (.)

then Problem (.) has a unique solution.

Proof It suffices to show that {JN(·,yλ)
λ xλ}λ→ and {JN(xλ ,·)

λ yλ}λ→ in Theorem . are
bounded. Because {xλ} and {yλ} are bounded, therefore, there exists Ri >  (i = , ) such
that for λ in (.), ‖xλ‖ ≤ R and ‖yλ‖ ≤ R. By Proposition .() and (.),

∥∥JN(·,yλ)
λ xλ

∥∥ ≤ ∣∣N(xλ, yλ)
∣∣ = ∣∣Txλ + F(xλ, yλ)

∣∣
= inf

{‖u‖ : u = u + F(xλ, yλ) ∈ Txλ + F(xλ, yλ)
}

= inf
{∥∥u + F(xλ, yλ)

∥∥ : u ∈ Txλ

}
≤ inf

{‖u‖ : u ∈ Txλ

}
+

∥∥F(xλ, yλ)
∥∥

= |Txλ| +
∥∥F(xλ, yλ)

∥∥
≤ L

∣∣M
(
h(xλ), g(xλ)

)∣∣ + ∥∥F(xλ, yλ)
∥∥ + a; (.)

Similarly, by Proposition .() and (.), we get that

∥∥JN(xλ ,·)
λ yλ

∥∥ ≤ L
∣∣M

(
h(yλ), g(yλ)

)∣∣ + ∥∥F(xλ, yλ)
∥∥ + a. (.)

By (.),

∣∣M
(
h(xλ), g(xλ)

)∣∣ ≤ ‖f‖ +
∥∥JN(·,yλ)

λ xλ

∥∥, (.)
∣∣M

(
h(yλ), g(yλ)

)∣∣ ≤ ‖f‖ +
∥∥JN(xλ ,·)

λ yλ

∥∥. (.)

Therefore, from (.)-(.), it follows that

∥∥JN(·,yλ)
λ xλ

∥∥ ≤ L
 – L

‖f‖ + 
 – L

∥∥F(xλ, yλ)
∥∥ +

a
 – L

, (.)

∥∥JN(xλ ,·)
λ yλ

∥∥ ≤ L
 – L

‖f‖ + 
 – L

∥∥F(xλ, yλ)
∥∥ +

a
 – L

. (.)

Since Fi (i = , ) is uniformly continuous, Fi map bounded set in E × E to bounded
set. Hence, (.) and (.) imply that {JN(·,yλ)

λ xλ}λ→ and {JN(xλ ,·)
λ yλ}λ→ are bounded.�
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Theorem . Suppose that Ei, Ti, Mi, hi, gi, Fi and fi (i = , ) are the same as in Theo-
rem .. If for any Ri > , there exists bounded functional Bi : E × E → �+ (i.e., Bi map a
bounded set in E × E to a bounded set in �+) such that for [x, z] ∈Graph(M(h(·), g(·))),
[y,w] ∈ Graph(M(h(·), g(·))) and λ > ,

〈
z, jJN(·,y)

λ x
〉 ≥ –B(x, y), (.)

〈
w, jJN(x,·)

λ y
〉 ≥ –B(x, y), ‖x‖ ≤ R,‖y‖ ≤ R (.)

for x ∈ E, ‖x‖ ≤ R, y ∈ E, ‖y‖ ≤ R, then Problem (.) has a unique solution.

Proof It suffices to show that {JN(·,yλ)
λ xλ}λ→ and {JN(xλ ,·)

λ yλ}λ→ are bounded. Since
{xλ}λ→ and {yλ}λ→ are bounded, then by (.), for uλ ∈M(h(·), g(·))xλ,

‖f‖
∥∥JN(·,yλ)

λ xλ

∥∥ ≥ 〈
f, jJ

N(·,yλ)
λ xλ

〉
=

〈
JN(·,yλ)
λ xλ + uλ, jJ

N(·,yλ)
λ xλ

〉
=

∥∥JN(·,yλ)
λ xλ

∥∥ +
〈
uλ, jJ

N(·,yλ)
λ xλ

〉 ≥ ∥∥JN(·,yλ)
λ xλ

∥∥ – B(xλ, yλ),

which implies that ‖JN(·,yλ)
λ xλ‖ ≤ (B(xλ, yλ) + 

‖f‖)  + ‖f‖
 . Similarly, ‖JN(xλ ,·)

λ yλ‖ ≤
(B(xλ, yλ))


 + 

‖f‖. This completes the proof of Theorem .. �

3 Conclusion and future perspective
Two of the most difficult and important problems in variation inclusions are the estab-
lishment of system of variational inclusions and the development of an efficient numerical
methods. A new system of generalized variational inclusions in the Banach space under
the assumption with no continuousness is introduced, and some existence and unique-
ness theorems of solutions for this kind of system of generalized variational inclusions are
proved by using the Yosida approximation technique for m-accretive operator.
More approaches [–], which have been applied in variational inequalities, could be

manipulated in variational inclusions. We will make further research to solve this kind of
system of generalized variational inclusions by using extragradient method and implicit
iterative methods.
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