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1 Introduction
The famousHardy-Hilbert inequality for positive functions f , g and two conjugate param-
eters p and q such that p > , 

p +

q =  is given as

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy <
π

sin(π
p )

{∫ ∞


f p(x)dx

} 
p
{∫ ∞


gq(x)dx

} 
q
, (.)

provided that the integrals on the right-hand side are convergent. The constant π
sin( π

p )
is

best possible []. In the last years, inequality (.) has been extended in different ways. In
[] the authors obtained the following extension of (.):

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

< B( – pA,λ + pA–)
{∫ ∞


xpqA–f p(x)dx

} 
p
{∫ ∞


ypqA–gq(x)dx

} 
q
, (.)

where B( – pA,λ + pA–) is the best possible constant (B(x, y) is the beta function), λ >
, A ∈ ( –λ

q , q ), A ∈ ( –λ
p , p ) and pA + qA =  – λ. For  < p < , 

p + 
q = , λ > , A ∈

( q ,
–λ
q ), A ∈ ( –λ

p , p ) and pA + qA =  – λ, the reverse form of (.) is also valid with the
same constant factor. In [] the following extension was given:

∫ b

a

∫ b

a

f (x)g(y)
(au(x) + bu(x)v(y) + cv(y))λ

dxdy

< L∗
{∫ b

a

u(x)pqA–

u′(x)p–
f p(x)dx

} 
p
{∫ b

a

v(y)pqA–

v′(y)q–
gq(y)dy

} 
q
, (.)

where L∗ = a
qA–

 c
pA–

 B( – pA, λ + pA – )F( –pA
 ,λ– –pA

 ,λ + 
 ;  –

b
ac ) is best pos-

sible (F(α,β ;γ ;x) is the hypergeometric function), λ > , A ∈ ( –λq , q ), A ∈ ( –λp , p ) and
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pA +qA = –λ, a, c > , b < ac, λ > , u and v are differentiable nonnegative strictly in-
creasing functions on (a,b) (–∞ ≤ a < b ≤ ∞), and they satisfy the following conditions:
limt→a+ u(t) = limt→a+ v(t) =  and limt→b– u(t) = limt→b– v(t) = ∞. In particular, if we let
a = c = , b =  and consider

√
u(x),

√
v(y) instead of u(x) and v(y) respectively in (.), we

get

∫ b

a

∫ b

a

f (x)g(y)
(u(x) + v(y))λ

dxdy

< B( – pA,λ + pA–)

×
{∫ b

a

u(x)pqA–

u′(x)p–
f p(x)dx

} 
p
{∫ b

a

v(y)pqA–

v′(y)q–
gq(y)dy

} 
q
, (.)

here pA + qA =  – λ as in (.).
The following inequalities are special cases of (.):

∫ ∞

–∞

∫ ∞

–∞
f (x)g(y)
(ex + ey)λ

dxdy

< B( – pA,λ + pA–)
{∫ ∞

–∞
e(pqA–p)xf p(x)dx

} 
p
{∫ ∞

–∞
e(pqA–q)ygq(y)dy

} 
q
, (.)

∫ ∞



∫ ∞



f (x)g(y)
(lnx + ln y)λ

dxdy

< B( – pA,λ + pA–)

×
{∫ ∞



[lnx]pqA–

x–p
f p(x)dx

} 
p
{∫ ∞



[ln y]pqA–

y–q
gq(y)dy

} 
q
. (.)

Refinements of some Hilbert-type inequalities by virtue of various methods were ob-
tained in [, ] and []. A survey of some recent results concerning Hilbert and Hilbert-
type inequalities can be found in [] and [].
If p > , f (x) > , and F(x) =

∫ x
 f (t)dt, then the well-known Hardy inequality [] is given

as
∫ ∞



(
F(x)
x

)p

dx <
(

p
p – 

)p ∫ ∞


f p(x)dx, (.)

the constant ( p
p– )

p is best possible. A weighted form of (.) was given also by Hardy []
as

∫ ∞


xa

(
F(x)
x

)p

dx <
(

p
p –  – a

)p ∫ ∞


xaf p(x)dx, (.)

where p > , a < p –  or p < , a > p –  and the constant ( p
p––a )

p is best possible. For
 < p <  (a < p – ), inequality (.) holds in the reverse direction. Inequality (.) was
discovered byHardywhile hewas trying to introduce a simple proof ofHilbert’s inequality.
In the book [], the following Hardy-type inequality is given:

∫ ∞

–∞
ekpx

(∫ x

–∞
f (t)dt

)p

dx ≤ (–k)–p
∫ ∞

–∞
ekpxf p(x)dx, (.)
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where k <  and p >  or p < . If  < p < , then the reverse formof (.) holds. The constant
(–k)–p is best possible.
In [](see also []), the following Hardy-type inequality is obtained for p > :

∫ ∞




x[lnx]p

(∫ x


f (t)dt

)p

dx ≤
(

p
p – 

)p ∫ ∞


xp–f p(x)dx. (.)

For details about inequality (.) and its history and development, we refer the reader to
the papers [] and [].
Recently, in [], for f , g > , f , g ∈ L(,∞), F(x) =

∫ x
 f (u)du andG(x) =

∫ x
 g(u)du, λ > ,

the following form of (.) was obtained:

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

≤ λ

pq
B
(

λ

q
,
λ

p

)(∫ ∞


x–λ–Fp(x)dx

) 
p
(∫ ∞


y–λ–Gq(y)dy

) 
q
, (.)

the constant factor λ

pqB(
λ
q ,

λ
p ) is best possible. For other Hilbert-type inequalities involving

Hardy operators, see, for example, [] and [].
In this paper, by estimating the double integral

∫ b
a

∫ b
a

f (x)g(y)
(u(x)+v(y))λ dxdy, we introduce an

extension of (.) with the best constant factor. The reverse form is also obtained. Some
applications are given. The connection betweenHilbert andHardy inequalities is also con-
sidered. As a consequence of Theorem ., we obtain the following interesting inequality:

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy ≤ π

pq sin π
p

(∫ ∞



(
F(x)
x

)p

dx
) 

p
(∫ ∞



(
G(y)
y

)q

dy
) 

q
.

2 Preliminaries and lemmas
Recall that the gamma function�(θ ) and the beta function B(μ,ν) are defined respectively
by

�(θ ) =
∫ ∞


tθ–e–t dt, θ > ,

B(μ,ν) =
∫ ∞



tμ–

(t + )μ+ν
dt, μ,ν > .

In this paper, we assume that u and v are defined as in inequality (.) from the intro-
duction.

Lemma . Let r > , 
r +


s = , ϕ > , ϕ ∈ L(a,b), �(x) =

∫ x
a ϕ(u)du, and let h be a dif-

ferentiable nonnegative strictly increasing function on (a,b) such that limx→a+ h(x) = ,
limx→b– h(x) =∞. Then, for t,α > , we have

∫ b

a
e–th(x)ϕ(x)dx ≤ t


r –α�(αs + )


s

{∫ b

a

[
h(x)

]–αrh′(x)e–th(x)�r(x)dx
} 

r
. (.)
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Proof Using integration by parts, we get

∫ b

a
e–th(x)ϕ(x)dx = t

∫ b

a
h′(x)e–th(x)�(x)dx. (.)

Applying Hölder’s inequality, we obtain

∫ b

a
h′(x)e–th(x)�(x)dx

=
∫ b

a

([
h(x)

]α[
h′(x)

] 
s e–

th(x)
s

)([
h(x)

]–α[
h′(x)

] 
r e–

th(x)
r �(x)

)
dx

≤
(∫ b

a

[
h(x)

]αsh′(x)e–th(x) dx
) 

s
(∫ b

a

[
h(x)

]–αrh′(x)e–th(x)�r(x)dx
) 

r

= t
–
s –α�(αs + )


s

(∫ b

a

[
h(x)

]–αrh′(x)e–th(x)�r(x)dx
) 

r
.

Substituting the last inequality in (.), we get (.). �

Lemma . Let  < r < , 
r +


s = , ϕ > , ϕ ∈ L(a,b), �(x) =

∫ x
a ϕ(u)du, and let h be as in

Lemma .. Then, for t >  and β ∈R (βs +  > ), we have

∫ b

a
e–th(x)ϕ(x)dx ≥ t


r –β�(βs + )


s

{∫ b

a

[
h(x)

]–βrh′(x)e–th(x)�r(x)dx
} 

r
. (.)

Proof Integration by parts yields

∫ b

a
e–th(x)ϕ(x)dx = t

∫ b

a
h′(x)e–th(x)�(x)dx. (.)

Using the reverse Hölder inequality, we obtain

∫ b

a
h′(x)e–th(x)�(x)dx

=
∫ b

a

([
h(x)

]β[
h′(x)

] 
s e–

th(x)
s

)([
h(x)

]–β[
h′(x)

] 
r e–

th(x)
r �(x)

)
dx

≥
(∫ b

a

[
h(x)

]βsh′(x)e–th(x) dx
) 

s
(∫ b

a

[
h(x)

]–βrh′(x)e–th(x)�r(x)dx
) 

r

= t
–
s –β�(βs + )


s

(∫ b

a

[
h(x)

]–βrh′(x)e–th(x)�r(x)dx
) 

r
.

Substituting the last inequality in (.), we get (.).
By the definition of the gamma function above, we may write


(x + y)λ

=


�(λ)

∫ ∞


tλ–e–(x+y)t dt. (.)

�
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3 Main results
In this section, we introduce two main results in this paper. Theorem . gives an ex-
tended form of inequality (.) and it is connected to the famous Hardy inequality. In
Theorem ., we introduce the reverse form obtained in Theorem ..

Theorem . Let p > , 
p + 

q = , λ > , γ ∈ ( –λ
p ,

λ
q ), f , g > , f , g ∈ L(a,b), define F(x) =∫ x

a f (u)du and G(x) =
∫ x
a g(u)du. If

∫ b
a [u(x)]

–λ––pγu′(x)Fp(x)dx <∞ and
∫ b
a [v(y)]

–λ–+qγ ×
v′(y)Gq(y)dy < ∞, then

∫ b

a

∫ b

a

f (x)g(y)
(u(x) + v(y))λ

dxdy

≤ C
(∫ b

a

[
u(x)

]–λ––pγu′(x)Fp(x)dx
) 

p

×
(∫ b

a

[
v(y)

]–λ–+qγ v′(y)Gq(y)dy
) 

q
, (.)

where the constant C = ( λ
p + γ )( λ

q – γ )B( λ
p + γ , λ

q – γ ) is best possible.

Proof By using (.) and applying Hölder’s inequality, we have

I =:
∫ b

a

∫ b

a

f (x)g(y)
(u(x) + v(y))λ

dxdy

=


�(λ)

∫ b

a

∫ b

a
f (x)g(y)

(∫ ∞


tλ–e–(u(x)+v(y))t dt

)
dxdy

=


�(λ)

∫ ∞



(
t

λ–
p +γ

∫ b

a
e–u(x)t f (x)dx

)(
t

λ–
q –γ

∫ b

a
e–v(y)tg(y)dy

)
dt

≤ 
�(λ)

(∫ ∞


tλ–+pγ

(∫ b

a
e–u(x)t f (x)dx

)p

dt
) 

p

×
(∫ ∞


tλ––qγ

(∫ b

a
e–v(y)tg(y)dy

)q

dt
) 

q
. (.)

By Lemma ., for r = p, s = q, α = λ+pγ
pq and then for r = q, s = p, α = λ–qγ

pq , we obtain,
respectively,

(∫ b

a
e–u(x)t f (x)dx

)p

≤ t–
λ+pγ
q �

(
λ

p
+ γ + 

) p
q
∫ b

a

[
u(x)

]– λ+pγ
q u′(x)e–tu(x)Fp(x)dx,

(∫ b

a
e–v(y)tg(y)dy

)q

≤ t–
λ–qγ
p �

(
λ

q
– γ + 

) q
p
∫ b

a

[
v(y)

]– λ–qγ
p v′(y)e–tv(y)Gq(y)dy.

Substituting these two inequalities in (.), we have

I ≤ �( λ
p + γ + )


q �( λ

q – γ + )

p

�(λ)

(∫ b

a

[
u(x)

]– λ+pγ
q u′(x)Fp(x)

(∫ ∞


t

λ
p +γ e–u(x)t dt

)
dx

) 
p

×
(∫ b

a

[
v(y)

]– λ–qγ
p v′(y)Gq(y)

(∫ ∞


t

λ
q –γ e–v(y)t dt

)
dy

) 
q
.
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Since
∫ ∞


t

λ
p +γ e–u(x)t dt =

[
u(x)

] –λ
p –γ–

�

(
λ

p
+ γ + 

)

and
∫ ∞


t

λ
q –γ e–v(y)t dt =

[
v(y)

]– λ
q +γ–

�

(
λ

q
– γ + 

)
,

we find

I ≤ C
(∫ b

a

[
u(x)

]–λ––pγu′(x)Fp(x)dx
) 

p
(∫ b

a

[
v(y)

]–λ–+qγ v′(y)Gq(y)dy
) 

q
.

Now, since �(u + ) = u�(u) and
�( λ

p +γ )�( λ
q –γ )

�(λ) = B( λ
p + γ , λ

q – γ ), we get

C =
(

λ

p
+ γ

)(
λ

q
– γ

)
B
(

λ

p
+ γ ,

λ

q
– γ

)
.

Inequality (.) is proved. We need to show that the constant factor C in (.) is best pos-
sible. For  < ε < min{λ – qγ ,λ + pγ }, we define the functions fε(x) = , for x ∈ (a,a)
and fε(x) = λ+pγ–ε

p [u(x)]
λ+pγ–ε

p –u′(x) for x ∈ [a,b) and gε(y) =  for y ∈ (a,a) and gε(y) =
λ–qγ–ε

q [v(y)]
λ–qγ–ε

q –v′(y) for y ∈ [a,b), where a and a are such that u(a) = v(a) = .

Then we get Fε(x) = ([u(x)]
λ+pγ–ε

p – ) for x ∈ [a,b) and Gε(y) = ([v(y)]
λ–qγ–ε

q – ) for
y ∈ [a,b), Fε(x) = Gε(y) =  for x ∈ (a,a), y ∈ (a,a), respectively. Suppose that the con-
stant C = ( λ

p + γ )( λ
q – γ )B( λ

p + γ , λ
q – γ ) is not best possible, then there exists  < K < C

such that

I ≤ K
(∫ b

a

[
u(x)

]–λ––pγu′(x)
[[
u(x)

] λ+pγ–ε
p – 

]p dx
) 

p

×
(∫ b

a

[
v(y)

]–λ–+qγ v′(y)
[[
v(y)

] λ–qγ–ε
q – 

]q dy
) 

q

< K
(∫ b

a

[
u(x)

]–ε–u′(x)dx
) 

p
(∫ b

a

[
v(y)

]–ε–v′(y)dy
) 

q

= K
(∫ ∞


δ–ε– dδ

) 
p
(∫ ∞


δ–ε– dδ

) 
q
=
K
ε
. (.)

On the other hand, we have

I =
∫ b

a

∫ b

a

fε(x)gε(y)
(u(x) + v(y))λ

dxdy

=
(λ + pγ – ε)(λ – qγ – ε)

pq

∫ b

a

∫ b

a

[u(x)]
λ+pγ–ε

p –u′(x)[v(y)]
λ–qγ–ε

q –v′(y)
(u(x) + v(y))λ

dydx

=
(λ + pγ – ε)(λ – qγ – ε)

pq

∫ b

a

[
u(x)

]–ε–u′(x)
{∫ ∞


u(x)

θ
λ–qγ–ε

q –

(θ + )λ
dθ

}
dx
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=
(λ + pγ – ε)(λ – qγ – ε)

pq

×
{

ε

∫ ∞



θ
λ–qγ–ε

q –

(θ + )λ
dθ du –

∫ b

a

[
u(x)

]–ε–u′(x)
∫ 

u(x)



θ
λ–qγ–ε

q –

(θ + )λ
dθ dx

}

=
(λ + pγ – ε)(λ – qγ – ε)

pq
B( λ

p + γ , λ
q – γ ) + o()
ε

–
(λ + pγ – ε)(λ – qγ – ε)

pq

∫ b

a

[
u(x)

]–ε–u′(x)
∫ 

u(x)



θ
λ–qγ–ε

q –

(θ + )λ
dθ dx

>
(λ + pγ – ε)(λ – qγ – ε)

pq
B( λ

p + γ , λ
q – γ ) + o()
ε

–
(λ + pγ – ε)(λ – qγ – ε)

pq

∫ b

a

[
u(x)

]–ε–u′(x)
∫ 

u(x)


θ

λ–qγ–ε
q – dθ dx

=
(λ + pγ – ε)(λ – qγ – ε)

pq
B( λ

p + γ , λ
q – γ ) + o()
ε

–O(). (.)

It is obvious that when ε → + from (.) and (.), we obtain a contradiction. Thus, the
proof of the theorem is completed. �

Theorem . Let  < p < , 
p + 

q = , λ > , γ ∈ ( –λ
p ,

λ
q ), f , g > , f , g ∈ L(a,b), de-

fine F(x) =
∫ x
a f (u)du and G(x) =

∫ x
a g(u)du. If

∫ b
a [u(x)]

–λ––pγu′(x)Fp(x)dx < ∞ and∫ b
a [v(y)]

–λ–+qγ v′(y)Gq(y)dy < ∞, then we obtain the reverse form of (.) as

∫ b

a

∫ b

a

f (x)g(y)
(u(x) + v(y))λ

dxdy≥ C
(∫ b

a

[
u(x)

]–λ––pγu′(x)Fp(x)dx
) 

p

×
(∫ b

a

[
v(y)

]–λ–+qγ v′(y)Gq(y)dy
) 

q
, (.)

where C is as in Theorem ..

Proof If we use (.) and apply the reverse Hölder inequality, we have

I =:
∫ b

a

∫ b

a

f (x)g(y)
(u(x) + v(y))λ

dxdy

=


�(λ)

∫ ∞



(
t

λ–
p +γ

∫ b

a
e–u(x)t f (x)dx

)(
t

λ–
q –γ

∫ b

a
e–v(y)tg(y)dy

)
dt

≥ 
�(λ)

(∫ ∞


tλ–+pγ

(∫ b

a
e–u(x)t f (x)dx

)p

dt
) 

p

×
(∫ ∞


tλ––qγ

(∫ b

a
e–v(y)tg(y)dy

)q

dt
) 

q
. (.)
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By Lemma ., for r = p, s = q, β = λ+pγ
pq and then for r = q, s = p, β = λ–qγ

pq , we obtain,
respectively,

(∫ b

a
e–u(x)t f (x)dx

)p

≥ t–
λ+pγ
q �

(
λ

p
+ γ + 

) p
q
∫ b

a

[
u(x)

]– λ+pγ
q u′(x)e–tu(x)Fp(x)dx,

(∫ b

a
e–v(y)tg(y)dy

)q

≤ t–
λ–qγ
p �

(
λ

q
– γ + 

) q
p
∫ b

a

[
v(y)

]– λ–qγ
p v′(y)e–tv(y)Gq(y)dy.

If we substitute these two inequalities in (.) and make some computations as we did in
Theorem ., we get inequality (.). �

4 Applications
In this section, we give some applications of Theorem . and Theorem .. We consider
some specific functions which satisfy the conditions of the functions u and v, and we see
the connection between Hilbert andHilbert-type inequalities with Hardy andHardy-type
inequalities from the introduction.
. Let u(x) = x, v(y) = y, x, y ∈ (,∞), then we find by (.)

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

≤ C
(∫ ∞


x–λ––pγ Fp(x)dx

) 
p
(∫ ∞


y–λ–+qγGq(y)dy

) 
q
, (.)

here F(x) =
∫ x
 f (t)dt and G(y) =

∫ y
 g(t)dt. If we put γ =  in (.), we get (.). If we let

λ = , γ = p–
p , we obtain the following form:

∫ ∞



∫ ∞



f (x)g(y)
x + y

dxdy

≤ π

pq sin π
p

(∫ ∞



(
F(x)
x

)p

dx
) 

p
(∫ ∞



(
G(y)
y

)q

dy
) 

q
. (.)

Applying Hardy’s inequality (.) to the right-hand side of (.), we get Hilbert’s inequality
(.). If we apply the weighted Hardy inequality (.) to (.), we get

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

< C

(∫ ∞


xp–λ––pγ f p(x)dx

) 
p
(∫ ∞


yq–λ–+qγ gq(y)dy

) 
q
, (.)

where C = B( λ
p + γ , λ

q – γ ). Inequality (.) is equivalent to inequality (.) if we set γ =
p–λ–pqA

p (– λ
p < γ < λ

q ) under the condition pA + qA =  – λ. By Theorem ., we have the
reverse form of (.)

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

≥ C
(∫ ∞


x–λ––pγ Fp(x)dx

) 
p
(∫ ∞


y–λ–+qγGq(y)dy

) 
q
. (.)
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If we apply the reverse inequality of (.) to the first integral on the right-hand side in (.)
and inequality (.) to the second integral (q < ), we get

∫ ∞



∫ ∞



f (x)g(y)
(x + y)λ

dxdy

> C

(∫ ∞


xp–λ––pγ f p(x)dx

) 
p
(∫ ∞


yq–λ–+qγ gq(y)dy

) 
q
. (.)

Inequality (.) is equivalent to the reverse form of (.) if we set γ = p–λ–pqA
p under the

condition pA + qA =  – λ.
. If u(x) = ex, v(y) = ey, x, y ∈ (–∞,∞), we obtain by (.)

∫ ∞

–∞

∫ ∞

–∞
f (x)g(y)
(ex + ey)λ

dxdy

≤ C
(∫ ∞

–∞
e–(λ+pγ )xFp(x)dx

) 
p
(∫ ∞

–∞
e–(λ–qγ )yGq(y)dy

) 
q
, (.)

here F(x) =
∫ x
–∞ f (t)dt andG(y) =

∫ y
–∞ g(t)dt. If we apply (.) to the integrals on the right-

hand side of (.) and set γ = p–λ–pqA
p , we obtain (.). The reverse form of (.) is also

valid, and we may obtain a reverse inequality of (.) if we use (.) and its reverse form.
. If u(x) = lnx, v(y) = ln y, x, y ∈ (,∞), then we have

∫ ∞



∫ ∞



f (x)g(y)
(lnx + ln y)λ

dxdy

≤ C
(∫ ∞



Fp(x)
x[lnx]λ+pγ+

dx
) 

p
(∫ ∞



Gq(y)
y[ln y]λ–qγ+

dy
) 

q
, (.)

here F(x) =
∫ x
 f (t)dt and G(y) =

∫ y
 g(t)dt. In particular, for λ = , γ = p–

p , we get

∫ ∞



∫ ∞



f (x)g(y)
lnx + ln y

dxdy≤ π

pq sin π
p

(∫ ∞



Fp(x)
x[lnx]p

dx
) 

p
(∫ ∞



Gq(y)
y[ln y]q

dy
) 

q
;

if we apply (.), we get Hilbert-type inequality (.).
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