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1 Introduction
Let Ap denote the class of functions of the form

f (z) = zp +
∞∑
k=

ap+kzp+k (.)

which are analytic in the open unit disk U = {z ∈C : |z| < }. We write A =A.
Suppose that f and g are analytic in U. We say that the function f is subordinate to g in

U, and we write f ≺ g or f (z) ≺ g(z) (z ∈U), if there exists an analytic function ω in U with
ω() =  and |ω(z)| <  for all z ∈U such that f (z) = g(ω(z)) inU. If g is univalent inU, then
the following equivalence relationship holds true:

f (z) ≺ g(z) ⇐⇒ f () = g() and f (U) ⊂ g(U).

For functions f given by (.) and g(z) = zp +
∑∞

k= bp+kzp+k , the Hadamard product (or
convolution) of f and g is defined by

(f ∗ g)(z) = f (z) ∗ g(z) = zp +
∞∑
k=

ap+kbp+kzp+k .

For fixed parametersA, B (–� B < A� ), letP(A,B) be the class of functions of the form

ϕ(z) =  + cz + cz + · · · (.)
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which are analytic in U and satisfy the condition

ϕ(z) ≺  +Az
 + Bz

(z ∈U).

The class P(A,B) was investigated in []. We denote by S∗
p (A,B) the class of functions

f ∈ Ap such that zf ′/pf ∈ P(A,B). Analogously, K(A,B) is the class of functions f ∈ Ap

such that (zf ′)′/pf ′ ∈P(A,B). It is easily seen that

S∗
p

(
 –

ρ
p
, –

)
= S∗

p (ρ) and Kp

(
 –

ρ
p
, –

)
=Kp(ρ) (� ρ < p),

the subclasses of Ap, which are respectively, p-valently starlike of order ρ and p-valently
convex of order ρ in U. We also note that

S∗
p (ρ)⊆ S∗

p () = S∗
p and Kp(ρ)⊆Kp() =Kp (� ρ < p),

where S∗
p and Kp are the subclasses ofAp consisting of functions that are p-valently star-

like and p-valently convex in U, respectively.
In the present investigation, we shall make use of theGauss hypergeometric function F

defined in U by

F(a,b; c; z) =
∞∑
k=

(a)k(b)k
(c)k

zk

k!
(
a,b, c ∈ C; c /∈ Z

–
 = {,–,–, . . .}), (.)

where (x)n denotes the Pochhammer symbol (or shifted factorial) given by

(x)n =

⎧⎨⎩x(x + )(x + ) · · · (x + n – ) (n ∈N),

 (n = ).

We note that the series defined by (.) converges absolutely for all z ∈ U and hence rep-
resents an analytic function in U [, Chapter ].
Motivated by the multiplier transformation introduced in [] on A, we introduce an

operator φp(n,λ) onAp by

φp(n,λ)(z) = zp +
∞∑
k=

(
p + k + λ

p + λ

)
zp+k

(
λ > –p,n ∈ Z = {,±,±, . . .}; z ∈ U

)
.

The operator φp(n,λ) is related to the multiplier transformation studied in [].
Corresponding to the function φp(n,λ), we define a new function φ

(†)
p (n,λ) in terms of

the Hadamard product by

φp(n,λ)(z) ∗ φ(†)
p (n,λ)(z) =

zp

( – z)p+μ
(μ > –p; z ∈ U). (.)

We now introduce the operator Inp (λ,μ) :Ap −→Ap by

Inp (λ,μ)f (z) = φ(†)
p (n,λ)(z) ∗ f (z) (n ∈ Z;λ,μ > –p). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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If the function f is given by (.), then from (.) and (.) we deduce that

Inp (λ,μ)f (z) = zp +
∞∑
k=

(p +μ)k
()k

(
p + λ

p + k + λ

)n

ap+kzp+k (z ∈U).

In view of (.), it follows that

z
(
Inp (λ,μ)f

)′(z) = (p + λ)In–p (λ,μ)f (z) – λInp (λ,μ)f (z) (f ∈Ap; z ∈U). (.)

In particular, we note that for z ∈U,

Ip (,  – p)f (z) = f (z),

Ip(δ,  – p)f (z) =
(
(p + δ)

∫ z


tδ–f (t)dt

)/
zδ (δ > –p)

[
cf. Eqn. (.)

]
,

I–p (λ,  – p)f (z) =
(
zf ′(z) + λf (z)

)
/(p + λ),

I–p (,  – p)f (z) =
(
zf ′′(z) + zf ′(z)

)
/p and

I–p (,  – p)f (z) =
(
zf ′′′(z) + zf ′′(z) + zf ′(z)

)
/p.

The operator Inp (λ,  – p) (n ∈ Z
–
) is closely related to the Sǎlǎgean derivative operator

[]. The operator Inλ = In (λ, ) was recently studied in [, , ]. For any n ∈ Z, the operator
In = In (, ) was studied in [].
By using the operator Inp (λ,μ), we introduce the subclass ofAp as follows.

Definition For fixed parameters A, B (–� B < A� ), n ∈ Z, λ,μ > –p and α � , we say
that a function f ∈Ap is in the class Sn

p,λ,μ(α;A,B) if

( – α)
Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

+ α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

≺  +Az
 + Bz

(z ∈U).

It is readily seen that

S
p,,–p(;A,B) = S∗

p (A,B) and S–
p,,–p(;A,B) =Kp(A,B).

For the sake of convenience, we write

Sn
p,λ,μ(A,B) = Sn

p,λ,μ(;A,B) =
{
f ∈Ap :

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

≺  +Az
 + Bz

, z ∈U

}
.

The object of the present paper is to investigate some inclusion properties of the class
Sn
p,λ,μ(α;A,B). Integral-preserving and convolution properties in connection with the op-

erator Inp (λ,μ) are also considered. Relevant connections of the results presented herewith
those obtained in the earlier works are pointed out.

2 Preliminaries
We denote by H the class of all analytic functions in U and by B the class of functions
	 ∈H such that ω() =  and |	(z)| <  for z ∈ U.
We shall need the following lemmas to prove our results.

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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Lemma  ([], see also [, p.]) Let h be analytic and convex (univalent) in U with
h() = . Suppose also that the function ϕ defined by (.) is analytic in U. If

ϕ(z) +
zϕ′(z)

κ
≺ h(z)

(
κ �= ,(κ)� ; z ∈U

)
,

then

ϕ(z) ≺ ψ(z) =
κ

zκ

∫ z


tκ–h(t)dt ≺ h(z) (z ∈U) (.)

and ψ is the best dominant of (.).

Lemma  [, p.] Suppose that the function � :C ×U −→C satisfies the condition

�(ix, y; z)� ε

for ε > , real x, y� –( + x)/ and all z ∈ U. If the function ϕ, given by (.) is analytic in
U and

Re
(
�

(
ϕ(z), zϕ′(z); z

))
> ε,

then Re(ϕ(z)) >  in U.

Lemma  [] Let  < γ < γ <  and � ∈H satisfy

�(z) ≺  + γz, �() = .

(i) If ϕ ∈H, ϕ() =  and satisfies

�(z)
(
β + ( – β)ϕ(z)

) ≺  + γ z (z ∈U),

where

β =

⎧⎨⎩
–γ

+γ
( < γ + γ � ),

–(γ 
 +γ )

(–γ 
 )

(γ 
 + γ  � � γ + γ ),

(.)

then Re(ϕ(z)) >  in U.
(ii) If ω ∈H with ω() =  satisfies

�(z)
(
 +ω(z)

) ≺  + γ z (z ∈U),

then, for  < γ + γ � , we have

∣∣ω(z)∣∣ � γ + γ

 – γ
(z ∈U). (.)

The value of β in (.) and the bound in (.) are best possible.
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Lemma  [] If ω ∈ B and

ϕ(z) =
 + γω(z)

 + γ δ′ ∫ 
 tδ

′–ω(tz)dt

(
 < γ < , δ′ > , z ∈U

)
,

then Re(ϕ(z)) > β (� β < ) in U, where

β =

⎧⎨⎩
–γ

+γ δ
( < γ � 

+δ
),

–γ (+δ )
(–γ δ )

( 
+δ

� γ � √
+δ

)
(.)

and δ = δ′/( + δ′). Further, for  < γ � /( + δ), we have

∣∣ϕ(z) – 
∣∣ � γ ( + δ)

 – γ δ
(z ∈U). (.)

The value of β in (.) and the bound in (.) are best possible.

3 Inclusion relationships for the class Sn
p,λ,μ(α;A,B)

Unless otherwise mentioned, we assume throughout the sequel that

n ∈ Z, λ,μ > –p, α >  and – � B < A� .

Theorem  We have

Sn
p,λ,μ(α;A,B)⊂ Sn

p,λ,μ(A,B).

Further, for f ∈ Sn
p,λ,μ(α;A,B), we also have

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

≺ q(z) =
α

(p + λ)Q(z)
(z ∈U), (.)

where

Q(z) =

⎧⎨⎩
∫ 
 t

p+λ
α –( +tBz+Bz )

(p+λ)(B–A)
αB dt (B �= ),∫ 

 t
p+λ
α – exp( (p+λ)(t–)A

α
z)dt (B = )

(.)

and q is the best dominant of (.).Moreover, if A� – αB
p+λ

(–� B < ), then

Sn
p,λ,μ(α;A,B)⊂ Sn

p,λ,μ( – ρ, –), (.)

where ρ = [F (, (p+λ)(B–A)
αB , p+λ

α
+ ; B

B– )]
–. The bound ρ is best possible.

Proof Let f ∈ Sn
p,λ,μ(α;A,B). Suppose that

g(z) = z
( In+p (λ,μ)f (z)

zp

)/(p+λ)

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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and r = sup{r : g(z) �= , < |z| < r < }. Choosing the principal branch of g , we note that g
is single-valued and analytic in Ur = {z : |z| < r}. Taking the logarithmic differentiation in
(.) and using identity (.) in the resulting equation, we get that

ϕ(z) =
zg ′(z)
g(z)

=
Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

(.)

is of the form (.) and is analytic in Ur . Again, carrying out logarithmic differentiation
in (.) and using (.), we deduce that

(–α)
Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

+α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

= ϕ(z) +
α

p + λ

zϕ′(z)
ϕ(z)

≺  +Az
 + Bz

(z ∈Ur ). (.)

Hence, by applying the result [, Corollary .], we obtain

ϕ(z) ≺ q(z) =
α

(p + λ)Q(z)
≺  +Az

 + Bz
(z ∈Ur ),

where q is the best dominant of (.) and Q is given by (.).
The proof of the remaining part can now be deduced along the same lines as in [,

Theorem ]. The bound ρ in (.) is best possible as q is the best dominant of (.). This
evidently completes the proof of the theorem. �

Setting n = –, λ =  and μ =  – p in Theorem , we get the following corollary.

Corollary  If A� –αB/p (–� B < ) and f ∈Ap satisfies

( – α)
zf ′(z)
f (z)

+ α

(
 +

zf ′′(z)
f ′(z)

)
≺ p( +Az)

 + Bz
(z ∈ U),

then

Re

(
zf ′(z)
f (z)

)
> p

[
F

(
,
p(B –A)

αB
,
p
α
+ ;

B
B – 

)]–

(z ∈U).

The result is best possible.

In the special case when n = ,μ = –p,A = –((η+λα)/(p+λ)) (� η < ) and B = –,
Theorem  gives the following.

Corollary  If max{–λα, (p + λ – λα – α)/} < η < p + λ – λα and f ∈Ap satisfies

Re

(
( – α)

zλf (z)∫ z
 tλ–f (t)dt

+ α
zf ′(z)
f (z)

)
> η (z ∈U),

then

Re

(
zλf (z)∫ z

 tλ–f (t)dt

)
> (p + λ)

[
F

(
,
(p + λ – λα – η)

α
,
p + λ

α
+ ;




)]–

(z ∈U).

The result is best possible.
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Remarks . Putting A =  and B = – in Corollary , we find that for α � p and z ∈ U,

Re

(
( – α)

zf ′(z)
f (z)

+ α

(
 +

zf ′′(z)
f ′(z)

))
>  �⇒ f ∈ S∗

p

(
p�( + (p/α))√
π�( + (p/α))

)
,

which in turn implies that

f ∈Kp

(
p(α – )�( + (p/α))√

πα�( + (p/α))

)
.

For p = , this result is contained in [].
. Setting α = , A =  – (η/p) (� η < p) and B = – in Corollary  and α =  in Corol-

lary , we get the corresponding result obtained in [].

Theorem  For � η < p, we have

f ∈ Sn
p,λ,μ

(
;  –

η
p
, –

)
�⇒ f ∈ Sn

p,λ,μ

(
α;  –

η
p
, –

) (|z| < R
)
,

where

R =

⎧⎨⎩
pα+(p+λ)(p–η)–

√
(pα+(p+λ)(p–η))–p(p+λ)(p–η)
(p+λ)(p–η) (η �= p

 ),
p+λ

p+λ+α (η = p
 ).

(.)

The bound R is best possible.

Proof Setting

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

=
η

p
+

(
 –

η

p

)
u(z) (z ∈U), (.)

we see that u is of the form (.), analytic and has a positive real part in U. Taking the
logarithmic differentiation in (.) and using identity (.), we deduce that

Re

(
( – α)

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

+ α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

)
–

η

p

�
(
 –

η

p

)[
Re

(
u(z)

)
–

pα|zu′(z)|
(p + λ)(|η + (p – η)u(z)|)

]
. (.)

Now, by using the well-known [] estimates

∣∣zu′(z)
∣∣� r

 – r
Re

(
u(z)

)
and Re

(
u(z)

)
�  – r

 + r
(|z| = r < 

)
in (.), we obtain

Re

(
( – α)

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

+ α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

)
–

η

p

�
(
 –

η

p

)
Re

(
u(z)

)[
 –

pαr
(p + λ)(η( – r) + (p – η)( – r))

]
,

which is certainly positive if r < R, where R is given by (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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To show that the bound R is best possible, we consider the function f ∈Ap defined by

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

=
η

p
+

(
 –

η

p

)
 + z
 – z

(z ∈U).

Noting that

( – α)
Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

+ α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

–
η

p

=
(
 –

η

p

)
 + z
 – z

[
 +

pαz
(p + λ)(η( – z) + (p – η)( – z))

]
= 

for z = –R, we complete the proof of Theorem . �

Remark For n = –, λ = , μ = – p and α = , Theorem  yields the corresponding result
contained in [].

For a function f ∈ Ap, the generalized Bernardi-Libera-Livingston integral operator
Fδ,p :Ap −→Ap is defined by (cf., e.g., [])

Fδ,p(f )(z) =
δ + p
zδ

∫ z


tδ–f (t)dt =

(
zp +

∞∑
k=

δ + p
δ + p + k

zp+k
)

∗ f (z)

= zpF(, δ + p; δ + p + ; z) ∗ f (z) (δ > –p; z ∈U). (.)

For convenience, we write Fδ,p(f )(z) = Fδ,p(z), z ∈ U. It readily follows from (.) that
f ∈Ap ⇒Fδ,p ∈Ap.

Theorem  Let δ be a real number satisfying

(δ – λ)( – B) + (p + λ)( –A)� . (.)

(i) If f ∈ Sn
p,λ,μ(A,B), then

Inp (λ,μ)Fδ,p(z)
In+p (λ,μ)Fδ,p(z)

≺ q(z) =


p + λ

(


Q(z)
– δ + λ

)
≺  +Az

 + Bz
(z ∈U), (.)

where

Q(z) =

⎧⎨⎩
∫ 
 t

δ+p–( +Btz+Bz )
(p+λ)(B–A)/B dt (B �= ),∫ 

 t
δ+p– exp{(p + λ)A(t – )z}dt (B = )

and q is the best dominant of (.). Consequently, the operator Fδ,p maps the class
Sn
p,λ,μ(A,B) into itself.
(ii) If –� B <  and δ �max{–(p+λ)(–A)

–B + λ, (p+λ)(B–A)
B – p – }, then

f ∈ Sn
p,λ,μ(A,B) �⇒ Fδ,p ∈ Sn

p,λ,μ( – τ , –), (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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where

τ =


p + λ

[
(δ + p)

(
F

(
,
(p + λ)(B –A)

B
; δ + p + ;

B
B – 

))–

– δ + λ

]
.

The bound τ is best possible.

Proof From (.) and (.), it follows that

z
(
In+p (λ,μ)Fδ,p

)′(z) = (δ + p)In+p (λ,μ)f (z) – δIn+p (λ,μ)Fδ,p(z) (z ∈U). (.)

We put

g(z) = z
( In+p (λ,μ)Fδ,p(z)

zp

)/(p+λ)

(.)

and r = sup{r : g(z) �= , < |z| < r < }. Choosing the principal branch of g , it follows that
g is a single-valued and is analytic in Ur . Taking the logarithmic differentiation in (.)
and using identity (.) for Fδ,p, we deduce that the function

ϕ(z) =
zg ′(z)
g(z)

=
Inp (λ,μ)Fδ,p(z)
In+p (λ,μ)Fδ,p(z)

(.)

is analytic in Ur and ϕ() = . Using identity (.) in (.), we obtain

(δ + p)
In+p (λ,μ)f (z)

In+p (λ,μ)Fδ,p(z)
= (p + λ)

Inp (λ,μ)Fδ,p(z)
In+p (λ,μ)Fδ,p(z)

+ (δ – p) (z ∈Ur ). (.)

Since f ∈ Sn
p,λ,μ(A,B), it is clear that In+p (λ,μ)f (z) �=  in  < |z| < . So, by (.), we get

In+p (λ,μ)Fδ,p(z)
In+p (λ,μ)f (z)

=
δ + p

(p + λ)ϕ(z) + (δ – λ)
(z ∈Ur ). (.)

Again, by taking the logarithmic differentiation in (.) followed by the use of identity
(.) in the resulting equation, we get

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

= ϕ(z) +
zϕ′(z)

(p + λ)ϕ(z) + (δ – λ)
≺  +Az

 + Bz
(z ∈Ur ).

The proof of the remaining part is the same as that of [, Theorem ], and we choose to
omit the details. The result is best possible as q is the best dominant of (.). �

Remark Letting n = –, λ = , μ =  – p, A =  – (η/p) ( � η < p) and B = – in Theo-
rem , we have the following implications [, Corollary . and Remark .]:

Fδ,p
(
S∗
p (η)

) ⊂ S∗
p (σ ) and Fδ,p

(
Kp(η)

) ⊂Kp(σ ),

where δ � max{–η,p – η – } and σ = (δ + p)( F (, (p – η); δ + p + ; /))– – δ. The
containment relations are best possible, and they improve the corresponding work in []
for suitable values of the parameters p, η and δ.

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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4 Properties involving the operator Inp(λ,μ)
Theorem  If f ∈Ap satisfies

( – α)
In+p (λ,μ)f (z)

zp
+ α

Inp (λ,μ)f (z)
zp

≺  +Az
 + Bz

(z ∈ U), (.)

then

Re

( In+p (λ,μ)f (z)
zp

)
> � (z ∈U), (.)

where

� =

⎧⎨⎩A
B + ( – A

B )( – B)–F(, ; p+λ

α
+ ; B

B– ) (B �= ),

 – (p+λ)A
p+λ+α

(B = ).

The result is best possible.

Proof Setting

ϕ(z) =
In+p (λ,μ)f (z)

zp
(z ∈U), (.)

we note that ϕ is of the form (.) and is analytic in U. On differentiating (.) and using
identity (.) in the resulting equation, we deduce that

( – α)
In+p (λ,μ)f (z)

zp
+ α

Inp (λ,μ)f (z)
zp

= ϕ(z) +
α

p + λ
zϕ′(z) ≺  +Az

 + Bz
(z ∈U). (.)

The proof of the remaining part of the theorem follows by using Lemma  and the tech-
niques that proved Theorem  in [].
With a view to stating a well-known result, we denote by P(γ ) the class of functions ϕ

of the form (.) which are analytic in U and satisfy the inequality

Re
(
ϕ(z)

)
> γ (� γ < ; z ∈ U).

It is known [] that if ϕj ∈P(γj) (� γj < ; j = , ), then

(ϕ ∗ ϕ) ∈P(γ), (.)

where γ =  – ( – γ)( – γ). The bound γ is best possible. �

Theorem If the functions Inp (λ,μ)fj/zp ∈P(Aj,Bj) (–� Bj < Aj � , fj ∈Ap; j = , ), then
the function h defined in U by

h(z) = In+p (λ,μ)(f ∗ f)(z) (.)

satisfies

Re

( Inp (λ,μ)h(z)
In+p (λ,μ)h(z)

)
>  (z ∈ U),

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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provided

(A – B)(A – B)
( – B)( – B)

<
(p + λ) + 

[( F (, ;p + λ + ; /) – ) + (p + λ)]
. (.)

Proof We have

Inp (λ,μ)fj
zp

∈P(γj)
(

γj =
 –Aj

 – Bj
; j = , 

)
.

Hence, by using (.), we deduce that

Re

( Inp (λ,μ)h(z)
zp

+
z

p + λ

( Inp (λ,μ)h(z)
zp

)′)
= Re

( Inp (λ,μ)f(z)
zp

∗ Inp (λ,μ)f(z)
zp

)
>  – 

(A – B)(A – B)
( – B)( – B)

(z ∈U), (.)

which, in view of Lemma  for

κ = p + λ, A = – + 
(A – B)(A – B)
( – B)( – B)

and B = –,

yields

Re

( Inp (λ,μ)h(z)
zp

)
> +

(A – B)(A – B)
( – B)( – B)

[
F

(
, ;p+λ+;




)
–

]
(z ∈U). (.)

From (.), by using Theorem  for

α = , A = – – 
(A – B)(A – B)
( – B)( – B)

[
F

(
, ;p + λ + ;




)
– 

]
and B = –,

we deduce that

Re
(
θ (z)

)
>  – 

(A – B)(A – B)
( – B)( – B)

[
F

(
, ;p + λ + ;




)
– 

]

(z ∈U), (.)

where θ (z) = Inp (λ,μ)h(z)/zp. If we put

ϕ(z) =
Inp (λ,μ)h(z)
In+p (λ,μ)h(z)

(z ∈U),

then ϕ is of the form (.) analytic in U, and a simple computation shows that

Inp (λ,μ)h(z)
zp

+
z

p + λ

( Inp (λ,μ)h(z)
zp

)′
= θ (z)

[(
ϕ(z)

) + 
p + λ

zϕ′(z)
]

= �
(
ϕ(z), zϕ′(z); z

)
, (.)

where �(u, v; z) = θ (z)(u + (v/(p + λ))). Thus, by using (.) in (.), we conclude that

Re
(
�

(
ϕ(z), zϕ′(z); z

))
>  – 

(A – B)(A – B)
( – B)( – B)

(z ∈U).

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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Now, for all real x, y� –( + x)/, we have

Re
(
�(ix, y; z)

)
=

(
y

p + λ
– x

)
Re

(
θ (z)

)
� –


(p + λ)

[
 +

(
(p + λ) + 

)
x

]
Re

(
θ (z)

)
� 

(p + λ)
Re

(
θ (z)

)
�  – 

(A – B)(A – B)
( – B)( – B)

(z ∈U)

by (.) and (.). Hence, by making use of Lemma , we get Re(ϕ(z)) >  in U. This
completes the proof of Theorem . �

Theorem  If the functions Inp (λ,μ)fj/zp ∈ P(Aj,Bj) (– � Bj < Aj � , fj ∈ Ap; j = , , ),
then the function H defined in U by

H(z) = In+p (λ,μ)(f ∗ f ∗ f)(z)

satisfies

Re

( Inp (λ,μ)H(z)
In+p (λ,μ)H(z)

)
>  (z ∈U),

provided

(A – B)(A – B)(A – B)
( – B)( – B)( – B)

<
(p + λ) + 

[( F (, ;p + λ + ; /) – ) + (p + λ)]
.

Proof From the definition of the function H , it is easily seen that

Re

( Inp (λ,μ)H(z)
zp

+
z

p + λ

( Inp (λ,μ)H(z)
zp

)′)
= Re

( Inp (λ,μ)f(z)
zp

∗ Inp (λ,μ)f(z)
zp

∗ Inp (λ,μ)f(z)
zp

)
>  – 

(A – B)(A – B)(A – B)
( – B)( – B)( – B)

(z ∈U)

and the proof of the theorem is completed similarly to Theorem . �

Theorem  Let fj ∈Ap (j = , ). If the function h defined in U by (.) satisfies

Re

( Inp (λ,μ)h(z)
zp

)
>  –

(p + λ) + 
[( F (, ;p + λ + ; /) – ) + (p + λ)]

(z ∈ U),

then

Re

( Inp (λ,μ)G(z)
In+p (λ,μ)G(z)

)
>  (z ∈U),

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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where

G(z) = p + λ

zλ

∫ z


tλ–h(t)dt (z ∈U).

Proof Using the fact that

Re

( Inp (λ,μ)h(z)
zp

)
= Re

( Inp (λ,μ)G(z)
zp

+
z

p + λ

( Inp (λ,μ)G(z)
zp

)′)
>  –

(p + λ) + 
[( F (, ;p + λ + ; /) – ) + (p + λ)]

(z ∈ U)

and by following the same lines of proof as in Theorem , we get the required result. �

Remark Putting n = –, λ =  and μ =  in Theorems ,  and , respectively, we obtain
the corresponding results contained in [].

Theorem  Let δ >  and  < γ � ( + δ(p + λ))/
√
 + δ(p + λ) + (δ(p + λ)). If f ∈ Ap

satisfies

In–p (λ,μ)f (z)
zp

( Inp (λ,μ)f (z)
zp

)δ–

≺  + γ z (z ∈U), (.)

then f ∈ Sn–
p,λ,μ( – κ, –), where

κ =

⎧⎨⎩
+δ(p+λ)

+δ(p+λ)(+γ ) ( < γ � +δ(p+λ)
+δ(p+λ) ),

Mp(λ, δ,γ ) ( +δ(p+λ)
+δ(p+λ) � γ � +δ(p+λ)√

+δ(p+λ)+(δ(p+λ))
),

(.)

and

Mp(λ, δ,γ ) =
( + δ(p + λ)) – [ + δ(p + λ) + (δ(p + λ))]γ 

[( + δ(p + λ)) – (δ(p + λ))γ ]
.

Further, for  < γ � ( + δ(p + λ))/( + δ(p + λ)),

∣∣∣∣ In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

– 
∣∣∣∣ < ( + δ(p + λ))γ

 + δ(p + λ)( – γ )
(z ∈ U). (.)

The bound given by (.) and the estimate in (.) are best possible.

Proof Setting

�(z) =
( Inp (λ,μ)f (z)

zp

)δ

(z ∈U) (.)

and choosing the principal branch in (.), we note that � is analytic in U with �() = .
A simple computation shows that (.) is equivalent to

�(z) +
z�′(z)
δ(p + λ)

≺  + γ z (z ∈U).

http://www.journalofinequalitiesandapplications.com/content/2013/1/441
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Now, by applying Lemma  (with κ = δ(p + λ), A = γ and B = –), we get

�(z) ≺  + γz
(

γ =
δ(p + λ)γ
 + δ(p + λ)

; z ∈ U

)
.

We further observe that

 +


δ(p + λ)
z�′(z)
�(z)

=
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

(z ∈U).

Hence, assertion (.) follows by using part (i) of Lemma . If we put

In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

=  +ω(z) (ω ∈ B; z ∈U),

then we obtain (.) from part (ii) of Lemma .
To show that the estimates are best possible, we consider the function f ∈Ap defined in

U by

( Inp (λ,μ)f (z)
zp

)δ

=  + δ(p + λ)γ
∫ 


tδ(p+λ)–ω(tz)dt (δ > ,ω ∈ B; z ∈U).

From this, we obtain

In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

=
 + γω(z)

 + δ(p + λ)γ
∫ 
 tδ(p+λ)–ω(tz)dt

(z ∈U),

and the sharpness follows from Lemma  (for δ′ = δ(p + λ)). �

Putting n = λ = , μ =  – p and δ =  in Theorem , we get the following.

Corollary  If  < γ � (p + )/
√
 + p + p and f ∈Ap satisfies∣∣∣∣ f ′(z)

pzp–
– 

∣∣∣∣ < γ (z ∈U),

then

Re

(
zf ′(z)
f (z)

)
>

⎧⎨⎩
p(p+)(–γ )
+p(+γ ) ( < γ � p+

p+ ),
p(p+)–p(+p+p)γ 

((p+)–(pγ )) ( p+
p+ � γ � p+√

+p+p
).

Further, for  < γ � (p + )/(p + ),

∣∣∣∣zf ′(z)
f (z)

– 
∣∣∣∣ < p(p + )γ

 + p( – γ )
(z ∈U).

The estimates are best possible.
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Theorem  If γ >  and f ∈Ap satisfies

( – α)
Inp (λ,μ)f (z)

zp
+ α

In–p (λ,μ)f (z)
zp

≺  + γ z (α > ; z ∈U), (.)

then f ∈ Sn–
p,λ,μ( – ϑ , –), where

ϑ =

⎧⎨⎩
α((p+λ)(+γ )+α–γ )–(p+λ)γ

α((p+λ)(+γ )+α) ( < γ � p+λ+α

(p+λ)+α
),

Np(λ,α,γ )–(–α)
α

( p+λ+α

(p+λ)+α
� γ � p+λ+α√

(p+λ)+(p+λ+α)
)

(.)

and

Np(λ,α,γ ) =
(p + λ + α) – ((p + λ + α) + (p + λ))γ 

((p + λ + α) – (p + λ)γ )
.

For  < γ � (p + λ + α)/((p + λ) + α), we have

∣∣∣∣ In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

– 
∣∣∣∣ < ((p + λ) + α)γ

(p + λ)( – γ ) + α
(z ∈U). (.)

Further, f ∈ Sn
p,λ,μ( – κ̃, –), where κ̃ is obtained from κ (given in (.)) for δ =  and

upon replacing γ by (p + λ)γ /(p + λ + α). Moreover, for  < γ � ((p + λ + α)(p + λ + ))/
[(p + λ)( + (p + λ))],

∣∣∣∣ Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

– 
∣∣∣∣ < (p + λ)( + (p + λ))γ

(p + λ + α) + (p + λ)(α + (p + λ)( – γ ))
(z ∈U). (.)

The estimates are best possible.

Proof Since f ∈Ap satisfies (.), by Theorem  (for A = γ and B = –) we obtain

Inp (λ,μ)f (z)
zp

≺  + γz
(

γ =
(p + λ)γ
p + λ + α

; z ∈ U

)
. (.)

Again, on writing (.) in the form

Inp (λ,μ)f (z)
zp

(
 – α + α

In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

)
≺  + γ z (z ∈U)

and using part (ii) of Lemma , we deduce that

Re

(
 – α + α

In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

)

�

⎧⎨⎩
(p+λ+α)(–γ )
(p+λ)(+γ )+α

( < γ � p+λ+α

(p+λ)+α
),

Np(λ,α,μ) ( p+λ+α

(p+λ)+α
� γ � p+λ+α√

(p+λ)+(p+λ+α)
),
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which implies assertion (.). By using part (ii) of Lemma  with

ω(z) = α

( In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

– 
)
,

we obtain (.). That f ∈ Sn–
p,λ,μ( – κ̃, –) and (.) now follow from Theorem  and

(.).
To show the sharpness of the estimates, we consider the function f defined in U by

Inp (λ,μ)f (z)
zp

=  +
(p + λ)γ

α

∫ 


t
p+λ
α –ω(tz)dt (ω ∈ B; z ∈U).

Hence, by using identity (.), we get

 – α + α
In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

=
 + γω(z)

 + (p+λ)γ
α

∫ 
 t

p+λ
α –ω(tz)dt

(z ∈U),

and the sharpness follows from Lemma . The fact that f ∈ Sn
p,λ,μ( – κ̃, –) is sharp fol-

lows from (.) and the sharpness of Theorem . �

Putting n = –, λ =  and μ =  – p in Theorem , we have the following.

Corollary  If f ∈Ap satisfies(
 – α +

α

p

)
f ′(z)
pzp–

+ α
f ′′(z)
pzp–

≺  + γ z (γ > ,α > ; z ∈U),

then

Re

(
 +

zf ′′(z)
f ′(z)

)
>

⎧⎨⎩
pα(p+α+(p–)γ )–pγ

α(p(+γ )+α) ( < γ � p+α

p+α
),

p(p+α)–p((p+α)+p)γ 

α((p+α)–pγ ) – p( –α
α
) ( p+α

p+α
� γ � p+α√

p+(p+α)
)

and for  < γ � (p + α)/(p + α),∣∣∣∣ + zf ′′(z)
f ′(z)

– p
∣∣∣∣ < p(p + α)γ

α(p( – γ ) + α)
(z ∈U).

The result is sharp.

Remark For p =  in Corollary  and Corollary , we get the corresponding results ob-
tained in [].

Theorem  If f ∈Ap satisfies∣∣∣∣ Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

– 
∣∣∣∣γ ∣∣∣∣ In–p (λ,μ)f (z)

Inp (λ,μ)f (z)
– 

∣∣∣∣β

<
(
A – B
 + |B|

)γ+β(
 +


(p + λ)( + |A|)

)β

(z ∈U), (.)

for some real numbers β and γ such that β � , γ � , β + γ > , then f ∈ Sn
p,λ,μ(A,B).
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Proof If we set

Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

=
 +Aω(z)
 + Bω(z)

(z ∈ U), (.)

then ω is analytic inU. Differentiating (.) logarithmically and using identity (.) in the
resulting equation, we get

In–p (λ,μ)f (z)
Inp (λ,μ)f (z)

=
 +Aω(z)
 + Bω(z)

+
(A – B)zω′(z)

(p + λ)( +Aω(z))( + Bω(z))
(z ∈U).

Now, we have

∣∣∣∣ Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

– 
∣∣∣∣γ ∣∣∣∣ In–p (λ,μ)f (z)

Inp (λ,μ)f (z)
– 

∣∣∣∣β

= (A – B)γ+β

∣∣∣∣ ω(z)
 + Bω(z)

∣∣∣∣γ+β

×
∣∣∣∣ + 

p + λ

zω′(z)
ω(z)


 +Aω(z)

∣∣∣∣β (z ∈U). (.)

We claim that |ω(z)| <  for z ∈ U. Otherwise, there exists a point z ∈ U such that
max|z|�|z| |ω(z)| = |ω(z)| = . By using Jack’s lemma [], we write ω(z) = eiθ ,  < θ � π
and zω′(z) =mω(z),m� . Thus, from (.), it follows that

∣∣∣∣ Inp (λ,μ)f (z)
In+p (λ,μ)f (z)

– 
∣∣∣∣γ ∣∣∣∣ In–p (λ,μ)f (z)

Inp (λ,μ)f (z)
– 

∣∣∣∣β �
(
A – B
 + |B|

)γ+β(
 +

m
p + λ


(


 +Aeiθ

))β

�
(
A – B
 + |B|

)γ+β(
 +


(p + λ)( + |A|)

)β

.

This contradicts the hypothesis (.) and hence |ω(z)| <  for z ∈U. This proves the the-
orem. �

Taking A = – ρ
p , B = –,μ = –p, λ = , n = – and γ = –β in Theorem , we get the

following interesting criterion for starlikeness for multivalent functions, which improves
the corresponding work in [] for p = .

Corollary  Let β �  and � ρ < p. If f ∈Ap satisfies

∣∣∣∣zf ′(z)
f (z)

– p
∣∣∣∣–β ∣∣∣∣ + zf ′′(z)

f ′(z)
– p

∣∣∣∣β < ξ (p,ρ,β) =

⎧⎨⎩(p – ρ)( + 
(p–ρ) )

β (� ρ � p
 ),

(p – ρ)( + 
ρ )

β ( p � ρ < p)

for all z ∈ U, then f ∈ S∗
p (ρ).

Similarly, by setting A =  – ρ
p , B = –, μ =  – p, λ = , n = – and γ =  – β in Theo-

rem , we obtain the following sufficient condition for convexity ofmultivalent functions.
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Corollary  Let β �  and � ρ < p. If f ∈Ap satisfies∣∣∣∣( + zf ′′(z)
f ′(z)

)
– p

∣∣∣∣–β ∣∣∣∣( + zf ′′′(z) + zf ′′(z)
zf ′′(z) + f ′(z)

)
– p

∣∣∣∣β < ξ (p,ρ,β) (z ∈U),

where ξ (p,ρ,β) is defined as in Corollary , then f ∈Kp(ρ).
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