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Abstract
In this paper, we are concerned with variational inequalities (VIs), where the ‘discount
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1 Introduction
Ergodic control problems may be solved by considering the variational inequality (VI)

⎧⎪⎪⎨
⎪⎪⎩
–Aαuα ≤ f , uα ≤ ψ in �,
(uα –ψ)(–Aαuα – f ) =  in �,
∂uα

∂n
=  on �

(.)

as α tends to +.
Here � is a bounded domain of RN with smooth boundary �, f is a positive right-hand

side in L∞(�), ψ is a positive obstacle in W ,∞(�) such that ∂ψ/∂n ≥  on �, where n is
the outward normal, and

–Aα = –� + αI. (.)

Such problems play a fundamental role in the solution of problems of stochastic control
with ergodic control type payoffs (see [] and the references therein).
For α > , there exists a unique solution uα of (.) which belongs toW ,p(�),  ≤ p < ∞

(see []).
Let (·, ·) denote the inner product in L(�), let a(·, ·) be the bilinear form

a(u, v) = (∇u.∇v),

and

K =
{
v ∈H(�) such that v ≤ ψ a.e. in �

}
. (.)
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The weak formulation of (.) being

a(uα , v – uα) + α(uα , v – uα)≥ (f , v – uα) ∀v ∈K, (.)

it can be shown that uα converges uniformly in C(�̄), as α → +, to u, the solution of
the VI

a(u, v – u) ≥ (f , v – u) ∀v ∈K. (.)

Also, denoting by Vh the finite element space consisting of continuous piecewise linear
functions, rh, the usual interpolation operator, and by

Kh = {v ∈Vh such that v ≤ rhψ}, (.)

it can be proved that the solution uαh ∈Kh of the discrete VI

a(uαh, v – uαh) + α(uαh, v – uαh) ≥ (f , v – uαh) ∀v ∈Kh (.)

converges uniformly in C(�̄), as α → +, to uh, the solution of the VI

a(uh, v – uh) ≥ (f , v – uh) ∀v ∈K. (.)

In this paper, our primary aim is to study the finite element approximation in the L∞

norm for VIs (.) and (.). More precisely, we establish the following optimal L∞ error
estimates:

‖uα – uαh‖∞ ≤ Ch| lnh| (.)

and, as α → +,

‖u – uh‖∞ ≤ Ch| lnh|, (.)

where C is a constant independent of both α and h and ‖ · ‖∞ denotes the L∞-norm.
The finite element approximation of variational inequalities with vanishing zero-order

term was first studied in [] and L∞ error estimates were derived by means of the concept
of subsolutions. In [], a quasi-optimal convergence order was derived by adapting an
algorithmic approach due to [] for quasi-variational of impulse control problems. This
method combines the approximation of both the continuous and discrete solutions of VIs
(.) and (.) by monotone geometrically convergent iterative schemes of Bensoussan-
Lions type and an estimation of the error in the maximum norm between the nth iterate
of the iterative scheme and its finite element counterpart.
In this paper, this algorithmic approach is improved and optimal convergence order is

derived. Besides the optimal convergence order (.) and (.), the other important nov-
elty in this paper is the optimal L∞ error estimate that is established between the nth
iterate of the iterative scheme and its finite element counterpart, which we achieve by
employing the concept of subsolutions.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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It is worth mentioning that the approach introduced in this paper is new and different
from the one employed in []. Moreover, it also has the merit of providing a basic compu-
tational scheme for the solution of (.). It may also be extended to the quasi-variational
inequality of ergodic impulse control problems studied by Lions and Perthame [].
The paper is organized as follows. In Section , we construct a monotone iterative

scheme and establish its geometrical convergence to the solution of VI (.). In Section ,
the same study is reproduced for the discrete problems. Section  is devoted to the finite
element error analysis and proofs of the main results of this paper.

2 The continuous problem
Let α be fixed in the open interval (, ), λ =  – α. Then (.) is equivalent to the VI

b(uα , v – uα) ≥ (f + λuα , v – uα) ∀v ∈K (.)

with

b(u, v) = a(u, v) + (u, v). (.)

Notice that the bilinear form (.) is independent of α, as its zero-order term is equal
to .

2.1 Construction of monotone sequences for VI (1.4)
Let us first consider the following mapping:

T : L∞(�)−→ L∞(�)

w → Tw = ζ ,
(.)

where ζ ∈K is the unique solution of the following VI

b(ζ , v – ζ ) ≥ (f + λw, v – ζ ) ∀v ∈K. (.)

So, we obviously have

uα = Tuα . (.)

Let û be the solution of the equation

b(û, v) = (f +ψ , v) ∀v ∈H(�). (.)

Thanks to [], problem (.) has a unique solutionwhich belongs toW ,p(�),  ≤ p < ∞.
Moreover, û is independent of α, as the bilinear form (.) is itself independent of α.

Lemma  Let C = {w ∈ L∞(�) such that  ≤ w ≤ û}. Then the mapping T is increasing,
concave, and satisfies Tw≤ û, ∀w ∈ C.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Proof It is an easy adaptation of []. �

Now, starting from û, the solution of (.), and from ǔ = , we define the sequences

ûnα = Tûn–α , ∀n≥ , (.)

and

ǔnα = Tǔn–α , ∀n≥ , (.)

respectively.
As a result of Lemma , it is clear that both sequences (ûnα) and (ǔnα) are well defined inC.

Moreover, they are monotone decreasing and increasing, respectively.
Next, we shall establish the geometrical convergence of these sequences.

2.2 Geometrical convergence
Lemma  The solution uα of VI (.) or (.) satisfies  < uα ≤ û.

Proof First, notice that uα >  as f and ψ are both positive. On the other hand, as uα ≤ ψ ,
by taking v = uα – (uα – û)+ in (.) and v = (uα – û)+ in (.), we obtain by addition

b
(
û – ûα , (uα – û)+

) ≥ (
(ψ – λuα), (uα – û)+

) ≥ .

So,

b
(
(uα – û)+, (uα – û)+

) ≤ ,

which, thanks to the coercivity of the bilinear form b(·, ·), implies

(uα – û)+ = .

Thus,

uα ≤ û. �

Lemma  Let β = infψ >  on �̄, and assume that f ≥ f > , where f is a positive con-
stant, and

w – w̃ ≤ γw ∀w, w̃ ∈C,γ ∈ [, ]. (.)

Then

Tw – Tw̃ ≤ γ ( –μ)Tw, (.)

where

 < μ <min

(
β

‖û‖∞
,

f
‖ψ‖∞ + f

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Proof Let us first show that

ǔ = T()≥ μû.

Indeed, in view of the choice ofμ in (.), it is clear thatμû can be taken as a test function
for the VI whose ǔ is a solution. So, ǔ + (ǔ –μû)– is also a test function for that VI, and
we then have

b
(
ǔ, (ǔ –μû)–

) ≥ (
f , (ǔ –μû)–

)
. (.)

Also, taking v = (ǔ –μû)– as a test function in equation (.), we get

b
(
û, (ǔ –μû)–

)
=

(
f +ψ , (ǔ –μû)–

)
, (.)

which, multiplied by –μ, yields

b
(
–μû, (ǔ –μû)–

)
=

(
–μf –μψ , (ǔ –μû)–

)
. (.)

So, by addition, we obtain

b
(
ǔ –μû, (ǔ –μû)–

) ≥ (
f ( –μ) –μψ , (ǔ –μû)–

)
≥ (

f( –μ) –ψ , (ǔ –μû)–
)

because ψ >  and  < μ < .
But in view of the choice of μ, we have

f( –μ) > μ‖ψ‖∞ ≥ μψ .

So,

f( –μ) –μψ ≥ ,

and therefore

b
(
(ǔ –μû)–, (ǔ –μû)–

) ≤ .

Thus, by the coercivity of b(·, ·), we get

(ǔ –μû)– = 

and hence

ǔ ≥ μû.

We are now in a position to prove (.). Indeed, (.) implies

( – γ )w≤ w̃,

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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and since T is nondecreasing, we have

Tw̃≥ T( – γ )w.

So, using the concavity of T , we get

Tw̃≥ T
(
( – γ )w + γ

)
≥ ( – γ )Tw + γT()

≥ Tw – γTw + γμû,

and since Tw ≤ û, we have

Tw – Tw̃ ≤ γTw – γμû

≤ γTw – γμTw

≤ γ ( –μ)Tw,

which completes the proof. �

Remark  The constant μ defined in (.) is independent of α as ψ , f , and û are them-
selves independent of α.

Theorem  The sequences defined in (.) and (.) converge geometrically to uα , the
unique solution of VI (.), that is,

∥∥ûnα – uα

∥∥∞ ≤ ( –μ)n‖û‖∞, (.)
∥∥ǔnα – uα

∥∥∞ ≤ ( –μ)n‖û‖∞. (.)

Proof The proof will be carried out by induction. We shall give only the proof of (.) as
that of (.) is similar. Indeed, we clearly have

 ≤ û – uα ≤ û.

Then, using (.) with γ =  and the fact that uα = Tuα , we get

Tû – Tuα ≤ ( –μ)Tû

or

 ≤ ûα – uα ≤ ( –μ)ûα ≤ ( –μ)û.

Now, assume that

 ≤ ûnα – uα ≤ ( –μ)nû.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438


Boulbrachene Journal of Inequalities and Applications 2013, 2013:438 Page 7 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/438

Then, making use of (.) with γ = ( –μ)n, we obtain

 ≤ Tûnα – Tuα ≤ ( –μ)( –μ)nTûnα

or

 ≤ ûn+α – uα ≤ ( –μ)n+ûn+α ≤ ( –μ)n+û.

Thus, (.) follows. �

Next, we shall give the existence and uniqueness for VI (.).

Theorem The solution uα of VI (.) converges uniformly in C(�̄) and strongly in H(�),
α → +, to u, the unique solution of VI (.).

Proof For uniqueness, see []. Let us give the existence.
First, set g = f + λuα in (.). Since  < uα ≤ ψ , then g is uniformly bounded in L∞(�),

i.e.,

‖g‖∞ ≤ ‖f + λuα‖∞ ≤ ‖f ‖∞ + λ‖ψ‖∞.

So, using Lewy-Stampacchia inequality [] associated with the operator

Bϕ = –
ϕ + ϕ,

we get

Bψ∧(f + λuα) ≤ Buα ≤ f + λuα ,

where

f ∧ g = inf(f , g).

Hence,

‖Buα‖∞ ≤ C (independent of α),

and thus

‖uα‖W,p(�) ≤ C (independent of α), ≤ p < ∞. (.)

Consequently,

uα → u uniformly in C(�̄), (.)

and from (.), we also have

uα → u weakly in H(�). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Let us now pass to the limit. Indeed, since

a(uα , v – uα) + α(uα , v – uα)≥ (f , v – uα),

then

a(uα , v) – a(uα ,uα) + α(uα , v) – α(uα ,uα) ≥ (f , v) – (f ,uα).

So, combining (.) and (.), we get

a(u, v)≥ lim inf
α

a(uα ,uα) + (f , v – u) ≥ a(u,u) + (f , v – u),

that is, u solves (.). In addition, choosing v = u, we obtain

a(uα ,uα) → a(u,u),

and thus

∇uα → ∇u

proving the strong convergence in H(�). �

3 The discrete problem
We assume that � is polyhedral. The extension to the general case can be set up by the
usual techniques (see []). Let τh be a regular and quasi-uniform triangulation of� consist-
ing of triangles of diameter less than h. Let also {ϕi} , i = , . . . ,m(h), be the basis functions
of Vh, and [b(ϕi,ϕj)] be the stiffness matrix associated with the bilinear form b(·, ·).

The discrete maximum principle assumption (DMP) We assume that the matrix B =
(b(ϕi,ϕj)) is an M-Matrix [, ].

It is not hard to see that VI (.) is equivalent to the VI: find uαh ∈ Kh such that

b(uαh, v – uαh) ≥ (f + λuαh, v – uαh) ∀v ∈Kh. (.)

As in the continuous case, we shall construct two discrete sequences and prove their
geometrical convergence to the solution of VI (.).

3.1 Construction of monotone sequences for VI (1.7)
Indeed, consider the mapping

Th : L∞(�) −→Vh,

w → Thw = ζh,
(.)

where ζh ∈Kh is the unique solution of the following VI:

b(ζh, v – ζh) ≥ (f + λw, v – ζh) ∀v ∈ Kh. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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So, clearly,

uαh = Thuαh. (.)

Let ûαh be the solution of

b
(
ûαh, v

)
= (f +ψ , v) ∀v ∈Vh. (.)

Lemma  Let Ch = {w ∈ L∞(�) such that  ≤ w ≤ ûh}. Then, under the DMP, the map-
ping Th is increasing, concave, and satisfies  ≤ Thw ≤ ûh, ∀w ∈Ch.

Now, starting from ûαh and ǔh = , we define the sequences

ûnαh = Thûn–αh , ∀n≥ , (.)

and

ǔnαh = Thǔn–αh , ∀n≥ , (.)

respectively.
Thanks to Lemma , the sequences (ûnαh) and (ǔnαh) are well defined in Ch. Moreover,

they are monotone decreasing and increasing, respectively.

.. Geometrical convergence
As in the continuous case, in order to establish the geometrical convergence of sequences
(.) and (.), we shall need the following lemmas. Their proofs will be omitted as they
are very similar to those of their respective continuous counterparts.

Lemma  Let the DMP hold. Then the solution uαh of VI (.) or (.) satisfies  < uαh ≤
ûh.

Lemma  Let Ch = {w ∈ L∞(�) such that  ≤ w ≤ ûh}. Then, under the DMP, the map-
ping Th is increasing, concave, and satisfies  ≤ Thw ≤ ûh, ∀w ∈Ch.

Remark Thanks to Lemma, sequences (.) and (.) arewell defined inCh.Moreover,
they are monotone decreasing and increasing, respectively.

Lemma  Assume that f ≥ f > , where f is a positive constant, and

w – w̃ ≤ γw, ∀w, w̃ ∈Ch. (.)

Then

Thw – Thw̃≤ γ ( –μ)Thw, (.)

where

 < μ <min

(
β

‖ûh‖∞
,

f
‖ψ‖∞ + f

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Remark  The constant μ is independent of α as ψ , f , and ûh are themselves indepen-
dent of α.

Theorem  Sequences (.) and (.) converge, geometrically, to uαh, the unique solution
of VI (.), that is,

∥∥ûnαh – uαh
∥∥∞ ≤ ( –μ)n‖ûh‖∞, (.)∥∥ûnαh – uαh
∥∥∞ ≤ ( –μ)n‖ûh‖∞. (.)

4 L∞-Error estimates
This section is devoted to proving themain results of this paper. For that, let us recall some
useful properties enjoyed by elliptic variational inequalities of obstacle type.

4.1 Elliptic variational inequality
Let g in L∞(�), ψ inW ,∞(�) be such that ∂ψ/∂n ≥  on �, let b(·, ·) be the bilinear form
defined in (.), and let ω be the solution of the following variational inequality:

b(ω, v –ω)� (g, v –ω) ∀v ∈ K. (.)

Definition  w ∈ K is said to be a subsolution for VI (.) if

b(w, v)≤ (g, v) ∀v ∈H(�), v≥ . (.)

Theorem  [] Let X denote the set of continuous subsolutions. Then the solution ω of VI
(.) is the least upper bound of the set X.

Theorem  [] Let g and g̃ in W ,∞(�) and ω and ω̃ be the corresponding solutions to
(.). Then

‖ω – ω̃‖∞ ≤ ‖g – g̃‖∞.

Similarly, let ωh ∈ Kh be the finite element counterpart of ω, that is,

b(ωh, v –ωh)� (g, v –ωh) ∀v ∈Kh. (.)

Definition  w ∈ Kh is said to be a subsolution for VI (.) if

b(w,ϕi) ≤ (g,ϕi) ∀ϕi, i = , , . . . ,m(h).

Theorem  Let Xh denote the set of discrete subsolutions. Then, under the DMP, the solu-
tion ωh of VI (.) is the least upper bound of the set Xh.

Theorem  Let g and g̃ be in W ,∞(�), and let ωh and ω̃h be the corresponding solutions
to (.). Then

‖ωh – ω̃h‖∞ ≤ ‖g – g̃‖∞.

Let us now introduce two auxiliary variational inequalities.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438


Boulbrachene Journal of Inequalities and Applications 2013, 2013:438 Page 11 of 18
http://www.journalofinequalitiesandapplications.com/content/2013/1/438

4.2 Two auxiliary sequences of variational inequalities
We define the sequence {ūnα}n≥ such that ūnα solves the continuous VI

b
(
ūnα , v – ūnα

) ≥ (
f + λûn–αh , v – ūnα

) ∀v ∈K, (.)

where ûn–αh is defined in (.), and the sequence {ūnαh}n≥ is such that ūnαh solves the discrete
VI

b
(
ūnαh, v – ūnαh

) ≥ (
f + λûn–α , v – ūnαh

) ∀v ∈Kh, (.)

where ûn–α is defined in (.).

Lemma  There exists a constant C independent of α, h, and n such that

∥∥ūnα – ûnαh
∥∥∞ ≤ Ch| lnh| (.)

and

∥∥ûnα – ūnαh
∥∥∞ ≤ Ch| lnh|. (.)

Proof Since ‖ûn–αh ‖∞ ≤ C (independent of α, h, and n) and ‖ûn–αh ‖∞ ≤ C (independent of
α, h, and n), making use of [], we get both (.) and (.). �

4.3 Optimal L∞-error estimates
Next, we shall estimate the error in the maximum norm between the nth iterates ûnα and
ûnαh defined in (.) and (.), respectively.

Theorem 

∥∥ûnα – ûnαh
∥∥∞ ≤ Ch| lnh|. (.)

In order to prove Theorem , we need the following lemma.

Lemma  There exists a sequence of continuous subsolutions (βn)n≥ such that

βn ≤ ûnα , ∀n≥ ,

and

∥∥βn – ûnαh
∥∥∞ ≤ Ch| lnh|

and a sequence of discrete subsolution (γ n
h )n≥ such that

γ n
h ≤ ûnαh, ∀n≥ ,

and

∥∥γ n
h – ûnα

∥∥∞ ≤ Ch| lnh|.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Proof Consider the VI

b
(
ūα , v – ūα

) ≥ (
f + λûh, v – ūα

) ∀v ∈ K.

Then, as ūα is solution to a VI, it is also a subsolution, i.e.,

b
(
ūα , v

) ≤ (
f + λûh, v

) ∀v ∈H(�), v≥ ,

≤ b
(
ūα , v

) ≤ (
f + λûh – λû + λû, v

) ∀v ∈ H(�), v ≥ .

But

∥∥ûh – û
∥∥∞ ≤ Ch| lnh| (see []).

Then

b
(
ūα , v

) ≤ (
f + λ

∥∥ûh – û
∥∥∞ + λû, v

) ∀v ∈H(�), v≥ ,

≤ (
f +Ch| lnh| + λû, v

) ∀v ∈H(�), v≥ .

So, ūα is a subsolution for the VI whose solution is Ū
α = ∂(f +Ch| lnh|+ λû). Then, as

ûα = ∂(f + λû), making use of Theorem , we have

∥∥Ū
α – ûα

∥∥∞ ≤ ∥∥f +Ch| lnh| + λû – (f + λû)
∥∥∞

≤ Ch| lnh|.

Hence, making use of Theorem , we have

ūα ≤ Ū
α ≤ ûα +Ch| lnh|.

Putting

β = ūα –Ch| lnh|,

we get

β
(h)
 ≤ ûα (.)

and

∥∥β – ûαh
∥∥∞ ≤ ∥∥ūα –Ch| lnh| – ûαh

∥∥∞

≤ ∥∥ūα – ûαh
∥∥∞ +Ch| lnh|

≤ Ch| lnh| +Ch| lnh|
≤ Ch| lnh|. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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Consider now the discrete VI

b
(
ūαh, v – ūαh

) ≥ (
f + λû, v – ūαh

) ∀v ∈ Kh.

Then

b
(
ūαh,ϕi

) ≤ (f + λû,ϕi) ∀ϕi

or

b
(
ūαh,ϕi

) ≤ (
f + λû – λûh + λûh,ϕi

) ∀ϕi

b
(
ūαh,ϕi

) ≤ (
f + λ

∥∥û – ûh
∥∥∞ + λûh,ϕi

) ∀ϕi

≤ (
f + λCh| lnh| + λûh,ϕi

) ∀ϕi.

So, ūαh is a subsolution for the VI whose solution is Ū
αh = ∂h(f + λCh| lnh| + λûh). And,

as ûαh = ∂h(f + λûh), making use of Theorem , we get

∥∥Ū
αh – ûαh

∥∥∞ ≤ ∥∥f + λCh| lnh| + λûh – (f + λûh)
∥∥∞

≤ Ch| lnh|,

and, making use of Theorem , we have

ūαh ≤ Ū
αh ≤ ûαh +Ch| lnh|.

Now, taking

γ 
h = ūαh –Ch| lnh|,

we have

γ 
h ≤ ûαh (.)

and

∥∥γ 
h – ûα

∥∥∞ ≤ ∥∥ūαh – ûα
∥∥∞ +Ch| lnh|

≤ Ch| lnh| +Ch| lnh|
≤ Ch| lnh|. (.)

Thus, combining (.), (.) and (.), (.), we obtain

ûα ≤ γ 
h +Ch| lnh|

≤ ûαh +Ch| lnh|

≤ β
(h)
 +Ch| lnh|

≤ ûα +Ch| lnh|.

http://www.journalofinequalitiesandapplications.com/content/2013/1/438
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That is,

∥∥ûα – ûαh
∥∥∞ ≤ Ch| lnh|.

Step n. Let us now assume that

∥∥ûn–α – ûn–αh
∥∥∞ ≤ Ch| lnh| (.)

and prove that

∥∥ûnα – ûαh
∥∥∞ ≤ Ch| lnh|.

For that, consider the VI

b
(
ūnα , v – ūnα

) ≥ (
f + λûn–αh , v – ūnα

) ∀v ∈K.

Then

b
(
ūnα , v

) ≤ (
f + λûn–αh , v

) ∀v ∈H(�), v≥ ,

or

b
(
ūnα , v

) ≤ (
f + λûn–αh – λûn–α + λûn–α , v

) ∀v ∈ H(�), v ≥ 

≤ (
f + λ

∥∥ûn–αh – ûn–α

∥∥∞ + λûn–α , v
) ∀v ∈H(�), v≥ .

So, using (.), we get

b
(
ūnα , v

) ≤ (
f +Ch| lnh| + λûn–α , v

) ∀v ∈H(�), v≥ .

Hence, ūnα is a subsolution for the VI whose solution is Ūn
α = ∂(f + Ch| lnh| + λûn–α ).

Then, as ûnα = ∂(f + λûn–α ), making use of Theorem , we have

∥∥Ūn
α – ûnα

∥∥∞ ≤ ∥∥f +Ch| lnh| + λûn–α –
(
f + λûn–α

)∥∥∞

≤ Ch| lnh|.

Hence, applying Theorem , we get

ūnα ≤ Ūn
α ≤ ûnα +Ch| lnh|.

Putting

βn = ūnα –Ch| lnh|,

we get

βn ≤ ûnα (.)
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and

∥∥βn – ûnαh
∥∥∞ ≤ ∥∥ūnα –Ch| lnh| – ûnαh

∥∥∞

≤ ∥∥ūnα – ûnαh
∥∥∞ +Ch| lnh|

≤ Ch| lnh| +Ch| lnh|

≤ Ch| lnh|. (.)

Consider now the discrete VI

b
(
ūnαh, v – ūnαh

) ≥ (
f + λûn–α , v – ūnαh

) ∀v ∈Kh.

Then

b
(
ūnαh,ϕi

) ≤ (
f + λûn–α ,ϕi

) ∀ϕi,

and, making use of (.), we obtain

b
(
ūnαh,ϕi

) ≤ (
f + λûn–α – λûn–αh + λûn–αh ,ϕi

) ∀ϕi

≤ (
f + λ

∥∥ûn–α – ûn–αh
∥∥∞ + λûn–αh ,ϕi

) ∀ϕi

≤ (
f + λCh| lnh| + λûn–αh ,ϕi

) ∀ϕi.

So, ūαh is a subsolution for the VI whose solution is Ūn
αh = ∂h(f + λCh| lnh| + λûn–αh ).

And, as ûnαh = ∂h(f + λûn–αh ), making use of Theorem , we get

∥∥Ūn
αh – ûnαh

∥∥∞ ≤ ∥∥f + λCh| lnh| + λûn–αh –
(
f + λûn–αh

)∥∥∞

≤ Ch| lnh|,

and, making use of Theorem , we have

ūnαh ≤ Ūn
αh ≤ ûnαh +Ch| lnh|.

Now, taking

γ n
h = ūnαh –Ch| lnh|,

we have

γ n
h ≤ ûnαh (.)

and

∥∥γ n
h – ûnα

∥∥∞ ≤ ∥∥ūnαh – ûnα
∥∥∞ +Ch| lnh|

≤ Ch| lnh|. (.)
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Thus, combining (.), (.) and (.), (.), we obtain

ûnα ≤ γ n
h +Ch| lnh|

≤ ûnαh +Ch| lnh|

≤ β (h)
n +Ch| lnh|

≤ ûnα +Ch| lnh|.

That is,

∥∥ûnα – ûnαh
∥∥∞ ≤ Ch| lnh|. �

Theorem  There exists a constant C independent of both α and h such that

‖uα – uαh‖∞ ≤ Ch| lnh|. (.)

Proof Indeed, combining estimates (.), (.), and (.), we get

‖uα – uαh‖∞ ≤ ∥∥uα – ûnα
∥∥∞ +

∥∥ûnα – ûnαh
∥∥∞ +

∥∥ûnαh – uαh
∥∥∞

≤ ∥∥uα – ûnα
∥∥∞ +Ch| lnh| + ∥∥ûnαh – uαh

∥∥∞

≤ ( –μ)n‖ûh‖∞ +Ch| lnh| + ( –μ)n‖ûh‖∞.

So, passing to the limit, as n→ ∞, we get

‖uα – uαh‖∞ ≤ Ch| lnh|. �

Theorem  The solution uαh of VI (.) converges, as α → +, uniformly in C(�̄) to uh,
the solution of discrete VI (.).

Proof Since  ≤ uαh ≤ rhψ , then taking v =  as a trial function in the VI

b(uαh, v – uαh) + (uαh, v – uαh) ≥ (f + λuαh, v – uαh) ∀v ∈ Kh,

we get

‖uαh‖H(�) ≤ b(uαh,uαh) + (uαh,uαh)

≤ (f + λuαh,uαh) ≤ C‖uαh‖H(�).

That is,

‖uαh‖H(�) ≤ C.

On the other hand, we have from the theorem

‖uα – uαh‖∞ ≤ Ch| lnh|.
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Then, by the inverse inequality, we have

‖uα – uαh‖W ,∞(�) ≤ Ch| lnh|,

and therefore

‖uαh‖W ,∞ ≤ C (independent of α and h).

The rest of the proof is similar to that of Theorem . �

Next, combining Theorems , , and , we are in a position to derive the main result of
this paper.

Theorem  There exists a constant independent of both α and h such that

‖u – uh‖∞ ≤ Ch| lnh|.

Proof Indeed, using estimate (.), we have

‖u – uh‖∞ ≤ ‖u – uα‖∞ + ‖uα – uαh‖∞ + ‖uαh – uh‖∞

≤ ‖u – uα‖∞ +Ch| lnh| + ‖uαh – uh‖∞.

So, passing to the limit, as α → +, we get

‖u – uh‖∞ ≤ lim
α→

‖u – uα‖∞ +Ch| lnh| + lim
α→

‖uαh – uh‖∞.

Thus

‖u – uh‖∞ ≤ Ch| lnh|. �
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