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1 Introduction
The notion of symmetric duality in nonlinear programming, in which the dual of the dual
is the primal, was first introduced by Dorn []. Dantzig et al. [] discussed symmetric dual
programs and established a symmetric duality under the convexity-concavity assumption.
Mond and Hanson [] first formulated a pair of symmetric dual variational problems by
providing continuous analogue of the symmetric dual pair of Dantzig et al. [] and proved
the usual duality theorems under the convexity-concavity assumption. Suneja et al. []
formulated a pair of Wolfe-type multiobjective symmetric dual programs over arbitrary
cones, in which the objective function is optimized with respect to an arbitrary closed
convex cone by assuming the functions involved to be cone-convex. Later on, Khurana
[] formulated a pair of Mond-Weir-type multiobjective symmetric dual programs over
arbitrary cones and derived the symmetric duality theorems involving cone-pseudoinvex
and strongly cone-pseudoinvex functions. Recently, Kim and Kim [] extended the re-
sults of Suneja et al. [] and Khurana [] to nondifferentiable multiobjective symmetric
dual programs for weak efficiency involving cone-invex and cone-pseudoinvex functions.
Very recently, Ahmad et al. [] extended the results of Suneja et al. [] and Khurana []
to a pair of multiobjective mixed symmetric dual programs over arbitrary cones. On the
other hand, Chandra et al. [] first introduced a symmetric duality in nonlinear fractional
programming. Mond and Schechter [] studied nondifferentiable symmetric duality, in
which the objective function contains a support function. FollowingMond and Schechter
[], Yang et al. [] presented a pair of symmetric dual nonlinear fractional programming
problems and established duality theorems under pseudo-convexity/pseudo-concavity as-
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sumptions on the kernel function. Further, Gulati et al. [] generalized these results to
static and continuous nonlinear fractional programming. For the multiobjective case of
static nonlinear fractional program, symmetric duality was established under convexity
assumptions. Subsequently, Gulati et al. [] and Kim and Lee [] gave two pairs of multi-
objective symmetric dual variational programs, in which duality results were obtained un-
der pseudoconvexity-pseudoconcavity and invexity assumptions, respectively. Chen []
and Kim et al. [] discussed duality results for multiobjective symmetric fractional vari-
ational programs involving invex functions. Recently, Mishra et al. [] gave a symmetric
dual pair for a class of nondifferentiable multiobjective fractional variational problems.
Weak, strong, converse and self-duality relations were established under certain invexity
assumptions. Recently, Ahmad et al. [] formulated a pair of multiobjective fractional
variational symmetric dual problems over cones and established duality theorems. Weak,
strong and converse duality theorems are established under the generalized F-convexity
assumptions. In this paper, we introduce a pair of symmetric duals for nondifferentiable
multiobjective fractional variational problems with cone constraints over arbitrary cones.
On the basis of weak efficiency, we obtain symmetric duality relations forMond-Weir-type
problems under invexity and pseudo-invexity assumptions. Our duality results extend the
results in Mishra et al. [] to the cone constraints over arbitrary cones with weak effi-
ciency.

2 Preliminaries and notations
The following convention for vectors x and y in Rn will be used:

x > y ⇐⇒ xi > yi for all i = , . . . ,n,

x� y ⇐⇒ xi � yi for all i = , . . . ,n,

x ≥ y ⇐⇒ xi � yi for all i = , . . . ,n, but x �= y,

x≯ y is the negation of x > y.

Throughout this paper, we will use the following notations.
Let I = [a,b] be a real interval, let f := (f, . . . , fk) : I ×Rn ×Rn →Rk , g := (g, . . . , gk) : I ×

Rn ×Rn → Rk be continuously differentiable functions. In order to consider f (t,x(t), ẋ(t)),
where x : I →Rn is differentiable with derivative ẋ, denote the partial derivatives of f by

fix =
[

∂fi
∂x

, . . . ,
∂fi
∂xn

]
, fiẋ =

[
∂fi
∂ ẋ

, . . . ,
∂fi
∂ ẋn

]
, i = , . . . ,k.

LetC(I,Rm) denote the space of continuous functions φ : I →Rm, with the uniform norm;
C+(I,Rm) is the cone of nonnegative functions inC(I,Rm). Denote byX the space of piece-
wise smooth functions x : I → Rn, with the norm ‖x‖ = ‖x‖∞ + ‖Dx‖∞, where the differ-
entiation operator D is given by

u =Dx ⇐⇒ x(t) = α +
∫ t

a
u(s)ds,

where α is a given boundary value: thus D = d/dt except at discontinuities. For each t ∈ I ,
let Bi(t) be a positive semidefinite n × n matrix with Bi(·) continuous on I , i = , , . . . ,p
and the symbol T denotes the transposition.
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Consider the following multiobjective fractional variational problem:

(FVP)

Minimize
∫ b
a f (t,x(t), ẋ(t))dt∫ b
a g(t,x(t), ẋ(t))dt

=
( ∫ b

a f(t,x(t), ẋ(t))dt∫ b
a g(t,x(t), ẋ(t))dt

, . . . ,
∫ b
a fk(t,x(t), ẋ(t))dt∫ b
a gk(t,x(t), ẋ(t))dt

)
subject to x(a) = α, x(b) = β ,

h
(
t,x(t), ẋ(t)

)
� , t ∈ I,

where h : I ×Rn ×Rn →Rl .
Assume that gi(t,x(t), ẋ(t)) >  and fi(t,x(t), ẋ(t)) �  for all i = , , . . . ,k. Let X denote

the set of all feasible solutions of (FVP).

Definition . () A point x∗ ∈ X is said to be an efficient (Pareto optimal) solution of
(FVP) if there exists no other feasible point x ∈ X such that

∫ b
a f (t,x(t), ẋ(t))dt∫ b
a g(t,x(t), ẋ(t))dt

≤
∫ b
a f (t,x∗(t), ẋ∗(t))dt∫ b
a g(t,x∗(t), ẋ∗(t))dt

.

() A point x∗ ∈ X is said to be a properly efficient solution of (FVP) if it is efficient for
(FVP) and if there exists a scalarM >  such that, for all i ∈ {, , . . . ,k},

∫ b
a fi(t,x∗(t), ẋ∗(t))dt∫ b
a gi(t,x∗(t), ẋ∗(t))dt

–
∫ b
a fi(t,x(t), ẋ(t))dt∫ b
a gi(t,x(t), ẋ(t))dt

�M
( ∫ b

a fj(t,x(t), ẋ(t))dt∫ b
a gj(t,x(t), ẋ(t))dt

–
∫ b
a fj(t,x∗(t), ẋ∗(t))dt∫ b
a gj(t,x∗(t), ẋ∗(t))dt

)

for some j �= i such that

∫ b
a fj(t,x(t), ẋ(t))dt∫ b
a gj(t,x(t), ẋ(t))dt

>
∫ b
a fj(t,x∗(t), ẋ∗(t))dt∫ b
a gj(t,x∗(t), ẋ∗(t))dt

whenever x ∈ X and

∫ b
a fi(t,x(t), ẋ(t))dt∫ b
a gi(t,x(t), ẋ(t))dt

<
∫ b
a fi(t,x∗(t), ẋ∗(t))dt∫ b
a gi(t,x∗(t), ẋ∗(t))dt

.

() A point x∗ ∈ X is said to be a weakly efficient solution of (FVP) if there exists no other
feasible point x ∈ X such that

∫ b
a f (t,x(t), ẋ(t))dt∫ b
a g(t,x(t), ẋ(t))dt

<
∫ b
a f (t,x∗(t), ẋ∗(t))dt∫ b
a g(t,x∗(t), ẋ∗(t))dt

.
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Now we recall the invexity for continuous case as follows.

Definition . The vector of functionals
∫ b
a f = (

∫ b
a f, . . . ,

∫ b
a fk) is said to be invex in x and

ẋ if for each y : [a,b] → Rm, with ẏ piecewise smooth, there exists a function η : [a,b] ×
Rn ×Rn ×Rn ×Rn →Rn such that ∀i = , , . . . ,k

∫ b

a

{
fi(t,x, ẋ, y, ẏ) – fi(t,u, u̇, y, ẏ)

}
dt

�
∫ b

a
η(t,x, ẋ,u, u̇)T

[
fix(t,u, u̇, y, ẏ) –

d
dt

fiẋ(t,u, u̇, y, ẏ)
]
dt

for all x : [a,b]→Rn, u : [a,b]→ Rn, where (ẋ(t), u̇(t)) is piecewise smooth on [a,b].

Definition . The vector of functionals –
∫ b
a f = (–

∫ b
a f, . . . , –

∫ b
a fk) is said to be invex

in y and ẏ if for each x : [a,b] → Rn, with ẋ piecewise smooth, there exists function ξ :
[a,b]×Rm ×Rm ×Rm ×Rm× →Rm such that ∀i = , , . . . ,k,

–
∫ b

a

{
fi(t,x, ẋ, v, v̇) – fi(t,x, ẋ, y, ẏ)

}
dt

� –
∫ b

a
ξ (t, v, v̇, y, ẏ)T

[
fiy(t,x, ẋ, y, ẏ) –

d
dt

fiẏ(t,x, ẋ, y, ẏ)
]
dt

for all v : [a,b]→Rm, y : [a,b]→Rm, where (v̇(t), ẏ(t)) is piecewise smooth on [a,b].

Definition . The vector of functionals
∫ b
a f = (

∫ b
a f, . . . ,

∫ b
a fk) is said to be pseudo-invex

in x and ẋ if for each y : [a,b] → Rm, with ẏ piecewise smooth, there exists a function
η : [a,b]×Rn ×Rn ×Rn ×Rn →Rn such that ∀i = , , . . . ,k,

∫ b

a
η(t,x, ẋ,u, u̇)T

[
fix(t,u, u̇, y, ẏ) –

d
dt

fiẋ(t,u, u̇, y, ẏ)
]
dt � 

⇒
∫ b

a

{
fi(t,x, ẋ, y, ẏ) – fi(t,u, u̇, y, ẏ)

}
dt � 

for all x : [a,b]→Rn, u : [a,b]→ Rn, where (ẋ(t), u̇(t)) is piecewise smooth on [a,b].

Definition . The vector of functionals –
∫ b
a f is said to be pseudo-invex in y and ẏ if

for each x : [a,b]→Rn, with ẋ piecewise smooth, there exists a function ξ : [a,b]×Rm ×
Rm ×Rm ×Rm →Rm such that ∀i = , , . . . ,k,

–
∫ b

a
ξ (t, v, v̇, y, ẏ)T

[
fiy(t,x, ẋ, y, ẏ) –

d
dt

fiẏ(t,x, ẋ, y, ẏ)
]
dt � 

⇒ –
∫ b

a

{
fi(t,x, ẋ, v, v̇) – fi(t,x, ẋ, y, ẏ)

}
dt � 

for all v : [a,b]→Rm, y : [a,b]→Rm, where (v̇(t), ẏ(t)) is piecewise smooth on [a,b].

We consider the problem of finding functions x : [a,b]→Rn and y : [a,b]→Rm, where
(ẋ(t), ẏ(t)) is piecewise smooth on [a,b], to solve the following pair symmetric dual prob-
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lems for nondifferentiable multiobjective fractional variational problems as follows.

(NFVP)

Minimize
∫ b
a {f (t,x(t), ẋ(t), y(t), ẏ(t)) + s(x(t)|C) – y(t)Tz(t)}dt∫ b
a {g(t,x(t), ẋ(t), y(t), ẏ(t)) – s(x(t)|E) + y(t)Tr(t)}dt

=
(∫ b

a {f(t,x(t), ẋ(t), y(t), ẏ(t)) + s(x(t)|C) – y(t)Tz(t)}dt∫ b
a {g(t,x(t), ẋ(t), y(t)) – s(x(t)|E) + y(t)Tr(t)}dt

, . . . ,

∫ b
a {fk(t,x(t), ẋ(t), y(t), ẏ(t)) + s(x(t)|Ck) – y(t)Tzk(t)}dt∫ b
a {gk(t,x(t), ẋ(t), y(t), ẏ(t)) – s(x(t)|Ek) + y(t)Trk(t)}dt

)
subject to x(a) =  = x(b), y(a) =  = y(b),

ẋ(a) =  = ẋ(b), ẏ(a) =  = ẏ(b),

–
k∑
i=

τi
{
[fiy –Dfiẏ – zi]Gi(x, y) – [giy –Dgiẏ + ri]Fi(x, y)

} ∈ C∗
 ,

∫ b

a
y(t)T

k∑
i=

τi
{
[fiy –Dfiẏ – zi]Gi(x, y) – [giy –Dgiẏ + ri]Fi(x, y)

}
dt

� ,

τ > , τTe = , x(t) ∈ C, t ∈ I,

zi(t) ∈Di, ri(t) ∈ Hi, i = , , . . . ,k.

(NFVD)

Maximize
∫ b
a {f (t,u(t), u̇(t), v(t), v̇(t)) – s(v(t)|D) + u(t)Tw(t)}dt∫ b
a {g(t,u(t), u̇(t), v(t), v̇(t)) + s(v(t)|H) – u(t)Ts(t)}dt

=
(∫ b

a {f(t,u(t), u̇(t), v(t), v̇(t)) – s(v(t)|D) + u(t)Tw(t)}dt∫ b
a {g(t,u(t), u̇(t), v(t), v̇(t)) + s(v(t)|H) – u(t)Ts(t)}dt

, . . . ,

∫ b
a {fk(t,u(t), u̇(t), v(t), v̇(t)) – s(v(t)|Dk) + u(t)Twk(t)}dt∫ b
a {gk(t,u(t), u̇(t), v(t), v̇(t)) + s(v(t)|Hk) – u(t)Tsk(t)}dt

)
subject to u(a) =  = u(b), v(a) =  = v(b),

u̇(a) =  = u̇(b), v̇(a) =  = v̇(b),

k∑
i=

τi
{
[fiu –Dfiu̇ +wi]G∗

i (u, v) – [giu –Dgiu̇ – si]F∗
i (u, v)

} ∈ C∗
 ,

∫ b

a
u(t)T

k∑
i=

τi
{
[fiu –Dfiu̇ +wi]G∗

i (u, v) – [giu –Dgiu̇ – si]F∗
i (u, v)

}
dt

� ,

τ > , τTe = , v(t) ∈ C, t ∈ I,

wi(t) ∈ Ci, si(t) ∈ Ei, i = , , . . . ,k,
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where fi : I ×Rn ×Rn ×Rm ×Rm → R+ and gi : I ×Rn ×Rn ×Rm ×Rm → R+ \ {} are
continuously differentiable functions,Ci, Ei (� i� k) are a compact convex set inRn and
Di, Ei (� i� k) are a compact convex set inRm, C and C are closed convex cones inRn,
Rm with nonempty interiors, respectively. C∗

 and C∗
 are positive polar cones of C and

C, respectively, and s(x|Ci) =max{〈x, y〉|y ∈ Ci}. Let hi(x) = s(x|Ci), i = , . . . ,p. Then hi is
a convex function and ∂hi(x) = {w ∈ Ci|〈w,x〉 = s(x|Ci)}, where ∂hi is the subdifferential
of hi. Let

Fi(x, y) =
∫ b

a

{
fi(t,x, ẋ, y, ẏ) + s

(
x(t)|Ci

)
– y(t)Tzi

}
dt;

Gi(x, y) =
∫ b

a

{
gi(t,x, ẋ, y, ẏ) – s

(
x(t)|Ei

)
+ y(t)Tri

}
dt;

F∗
i (u, v) =

∫ b

a

{
fi(t,u, u̇, v, v̇) – s

(
v(t)|Di

)
+ u(t)Twi

}
dt;

and

G∗
i (u, v) =

∫ b

a

{
gi(t,u, u̇, v, v̇) + s

(
v(t)|Hi

)
– u(t)Tsi

}
dt.

Let fx = fx(t,x(t), ẋ(t), y(t), ẏ(t)), fẋ = (t,x(t), ẋ(t), y(t), ẏ(t)), etc. All the statements above
for Fi, Gi, F∗

i and G∗
i will be assumed to hold for subsequent results. It is to be noted that

Dfiẏ = fiẏyẏ + fiẏẏÿ + fiẏxẋ + fiẏẋẍ

and, consequently,

∂

∂y
Dfiẏ =Dfiẏy,

∂

∂ ẏ
Dfiẏ =Dfiẏẏ + fiẏy,

∂

∂ ÿ
Dfiẏ =Dfiẏẏ,

∂

∂x
Dfiẏ =Dfiẏx,

∂

∂ ẋ
Dfiẏ =Dfiẏẋ + fiẏx,

∂

∂ ẍ
Dfiẏ =Dfiẏẋ.

In order to simplify the notations we introduce

pi =
Fi(x, y)
Gi(x, y)

=
∫ b
a {fi(t,x, ẋ, y, ẏ) + s(x(t)|Ci) – y(t)Tzi}dt∫ b
a {gi(t,x, ẋ, y, ẏ) – s(x(t)|Ei) + y(t)Tri}dt

, i = , . . . ,k

and

qi =
F∗
i (u, v)

G∗
i (u, v)

=
∫ b
a {fi(t,u, u̇, v, v̇) – s(v(t)|Di) + u(t)Twi}dt∫ b
a {gi(t,u, u̇, v, v̇) + s(v(t)|Hi) – u(t)Tsi}dt

, i = , . . . ,k

and express problems (NFVP) and (NFVD) equivalently as follows.

(NFVP)′ Minimize p = (p, . . . ,pk)

subject to x(a) =  = x(b), y(a) =  = y(b), ()

ẋ(a) =  = ẋ(b), ẏ(a) =  = ẏ(b), ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/434
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∫ b

a

{
fi(t,x, ẋ, y, ẏ) + s(x|Ci) – yTzi

}
dt

– pi
∫ b

a

{
gi(t,x, ẋ, y, ẏ) – s(x|Ei) + yTri

}
dt = ,

i = , . . . ,k, ()

–
k∑
i=

τi
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

} ∈ C∗
 , ()

∫ b

a
y(t)T

k∑
i=

τi
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
dt

� , ()

τ > , τTe = , x(t) ∈ C, t ∈ I, ()

zi(t) ∈Di, ri(t) ∈Hi, i = , , . . . ,k. ()

(NFVD)′ Maximize q = (q, . . . ,qk)

subject to u(a) =  = u(b), v(a) =  = v(b), ()

u̇(a) =  = u̇(b), v̇(a) =  = v̇(b), ()∫ b

a

{
fi(t,u, u̇, v, v̇) – s(v|Di) + uTwi

}
dt

– qi
∫ b

a

{
gi(t,u, u̇, v, v̇) + s(v|Hi) – uTsi

}
dt = ,

i = , . . . ,k, ()

k∑
i=

τi
{
(fiu –Dfiu̇ +wi) – qi(giu –Dgiu̇ – si)

} ∈ C∗
 , ()

∫ b

a
u(t)T

k∑
i=

τi
{
(fiu –Dfiu̇ +wi) – qi(giu –Dgiu̇ – si)

}
dt

� , ()

τ > , τTe = , v(t) ∈ C, t ∈ I, ()

wi(t) ∈ Ci, si(t) ∈ Ei, i = , , . . . ,k. ()

In the problems (NFVP)′ and (NFVD)′ above, it is to be noted that p and q are also
nonnegative.

3 Duality theorems
In this section, we state duality theorems for problems (NFVP)′ and (NFVD)′, which lead
to corresponding relations between (NFVP) and (NFVD). We establish weak, strong and
converse duality relations between (NFVP)′ and (NFVD)′.

Theorem . (Weak duality) Let (x(t), y(t),p, τ , z(t), r(t)) be feasible for (NFVP)′, and let
(u(t), v(t),q, τ ,w(t), s(t)) be feasible for (NFVD)′.Assume that

∑k
i= τi

∫ b
a {(fi+(·)Twi)–qi(gi–

http://www.journalofinequalitiesandapplications.com/content/2013/1/434
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(·)Tsi)}dt is pseudo-invex in x and ẋ with respect to η(x,u) and –
∑k

i= τi
∫ b
a {(fi – (·)Tzi) –

pi(gi + (·)Tri)}dt is pseudo-invex in y and ẏ with respect to ξ (v, y), with η(x,u) + u ∈ C and
ξ (v, y) + y ∈ C ∀t ∈ I , except possibly at corners of (ẋ, ẏ) or (u̇, v̇). Then p≮ q.

Proof From () and η(x,u) + u ∈ C, we get

(
η(x,u) + u

)T k∑
i=

τi
{
(fiu –Dfiu̇ +wi) – qi(giu –Dgiu̇ – si)

}
dt � .

From (),

∫ b

a
η(x,u)

k∑
i=

τi
{
(fiu –Dfiu̇ +wi) – qi(giu –Dgiu̇ – si)

}
dt � .

Since
∑k

i= τi
∫ b
a {(fi + (·)Twi) – qi(gi – (·)Tsi)}dt is pseudo-invex with respect to η(x,u), it

follows that

k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, v, v̇) + xTwi

}
– qi

{
gi(t,x, ẋ, v, v̇) – xTsi

}]
dt

�
k∑
i=

τi

∫ b

a

[{
fi(t,u, u̇, v, v̇) + uTwi

}
– qi

{
gi(t,u, u̇, v, v̇) – uTsi

}]
dt. ()

Since xTsi ≤ s(x|Ei), si ∈ Ei, and xTwi ≤ s(x|Ci), wi ∈ Ci, () can be written as

k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, v, v̇) + s(x|Ci)

}
– qi

{
gi(t,x, ẋ, v, v̇) – s(x|Ei)

}]
dt

�
k∑
i=

τi

∫ b

a

[{
fi(t,u, u̇, v, v̇) + uTwi

}
– qi

{
gi(t,u, u̇, v, v̇) – uTsi

}]
dt. ()

From () and ξ (v, y) + y ∈ C, we get

–
(
ξ (x,u) + y

)T k∑
i=

τi
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
dt � .

From (),

–
∫ b

a
ξ (x,u)T

k∑
i=

τi
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
dt � .

By pseudo-invexity of –
∑k

i= τi
∫ b
a {(fi – (·)Tzi) – pi(gi + (·)Tri)}dt with respect to ξ (v, y), we

get

k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, v, v̇) – vTzi

}
– pi

{
gi(t,x, ẋ, v, v̇) + vTri

}]
dt

�
k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, y, ẏ) – yTzi

}
– pi

{
gi(t,x, ẋ, y, ẏ) + yTri

}]
dt.
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Since vTri ≤ s(v|Hi), ri ∈Hi, and vTzi ≤ s(v|Di), zi ∈Di,

–
k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, v, v̇) – s(v|Di)

}
– pi

{
gi(t,x, ẋ, v, v̇) + s(v|Hi)

}]
dt

� –
k∑
i=

τi

∫ b

a

[{
fi(t,x, ẋ, y, ẏ) – yTzi

}
– pi

{
gi(t,x, ẋ, y, ẏ) + yTri

}]
dt. ()

From () and (), we get

k∑
i=

τi(pi – qi)
∫ b

a
gi(t,x, ẋ, v, v̇)dt

�
k∑
i=

τi

[∫ b

a

{
fi(t,u, u̇, v, v̇) – s(v|Di) + uTwi

}
dt

– qi
∫ b

a

{
gi(t,u, u̇, v, v̇) + s(v|Hi) – uTsi

}
dt

]

–
k∑
i=

τi

[∫ b

a

{
fi(t,x, ẋ, y, ẏ) + s(x|Ci) – yTzi

}
dt

– pi
∫ b

a

{
gi(t,x, ẋ, y, ẏ) – s(x|Ei) + yTri

}
dt

]
. ()

From () and (), () yields

k∑
i=

τi(pi – qi)
∫ b

a
gi(t,x, ẋ, v, v̇)dt � . ()

Suppose, if possible, that pi < qi for all i, then from τ � , τTe =  and
∫ b
a gi(t,x, ẋ, v, v̇)dt >

, i = , , . . . ,k, we have

k∑
i=

τi(pi – qi)
∫ b

a
gi(t,x, ẋ, v, v̇)dt < ,

which contradicts (), hence p≮ q. �

Consider the following multiobjective fractional variational problem.

(VP) Minimize
(∫ b

a

(
f
(
t,x(t), ẋ(t)

)
+ s

(
x(t)|D

))
dt, . . . ,

∫ b

a

(
fk

(
t,x(t), ẋ(t)

)
+ s

(
x(t)|Dk

))
dt

)
subject to x(a) = α, x(b) = β ,

gj
(
t,x(t), ẋ(t)

)
� , j = , . . . ,m,

hl
(
t,x(t), ẋ(t)

)
= , l = , . . . ,p,
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where gj : I × Rn × Rn → Rm is a continuously differentiable function, hl : I × Rn ×
Rn → Rp is a continuously differentiable function. Let A = {x ∈ X|x(a) = α,x(b) =
β , gj(t,x(t), ẋ(t))� , j = , . . . ,m,hl(t,x(t), ẋ(t)) = , l = , . . . ,p}.
We need the following Fritz John necessary optimality condition in order to establish

a strong duality theorem. Using the proof of Theorem  in [], we obtain the following
theorem.

(VP)′ Minimize F(x) + J(x) :=
(
F(x) + J(x), . . . ,Fk(x) + Jk(x)

)
subject to G(x) ∈ C+

(
I,Rm)

,

H(x) = ,

where Fi : X → R are functions defined on x ∈ X, Fi(x) =
∫ b
a fi(t,x(t), ẋ(t))dt, Ji : X → R

are functions defined by Ji(x) =
∫ b
a s(x(t)|Di)dt, G : X → C(I,Rm) are functions defined

by G(x)(t) = (g(t,x(t), ẋ(t)), . . . , gm(t,x(t), ẋ(x))) and H : X → C(I,Rp) are functions de-
fined by H(x)(t) = (h(t,x(t), ẋ(t)), . . . ,hp(t,x(t), ẋ(t))) and C+(I,Rm). Let S = {x ∈ X|G(x) ∈
C+(I,Rm),H(x) = }.

Theorem . Let x̄ ∈ A be a weakly efficient solution of (VP). Suppose that there exists
an x̂ ∈ X such that G(x̄) +G′(x̄)(x̂ – x̄) ∈ –

∫
C+(I,Rm), H ′(x̄)(x̂ – x̄) = C(I,Rp), and the map

H ′(x̄) is surjective. Then there exist τi � , (τ, . . . , τk) �=  and piecewise smooth λ : I →Rm
+ ,

μ : I → Rp, and wi ∈Di, i = , . . . ,k, satisfying

k∑
i=

τi
[
fix

(
t, x̄(t), ˙̄x(t)) +wi

]
+

m∑
j=

λj(t)gjx
(
t, x̄(t), ˙̄x(t)) + p∑

l=

μl(t)hlx
(
t, x̄(t), ˙̄x(t))

=D

[ k∑
i=

τifiẋ
(
t, x̄(t), ˙̄x(t)) + m∑

j=

λj(t)gjẋ
(
t, x̄(t), ˙̄x(t)) + p∑

l=

μl(t)hlẋ
(
t, x̄(t), ˙̄x(t))],

m∑
j=

λj(t)gj
(
t, x̄(t), ˙̄x(t)) = ,

wT
i x(t) = s

(
x(t)|Di

)
, i = , . . . ,k

for all t ∈ I .

Theorem . (Strong duality) Let (x(t), y(t),p, τ, z(t), r(t)) be a weakly efficient solu-

tion for (NFVP)′ and fix τ = τ in (NFVD)′, and define pi =
∫ b
a {fi(t,x,ẋ,y,ẏ)+s(x|Ci)–yT zi}dt∫ b
a {gi(t,x,ẋ,y,ẏ)–s(x|Ei)+yT ri}dt

,
i = , , . . . ,k. Suppose that all the conditions in weak duality are fulfilled. Furthermore,
assume that

(I) pi > , i = , . . . ,k,

(II)
k∑
i=

τi

∫ b

a

(t)T

[{
(fiyy – pigiyy) –D(fiẏy – pigiyẏ)

}
–D

{
(fiyẏ –Dfiẏẏ – fiẏy) – pi(giẏẏ –Dgiẏẏ – giẏy)

}
+D{–(fiẏẏ – pigiẏẏ)

}]

(t)dt � 
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implies that 
(t) = , ∀t ∈ I , and

(III)
(∫ b

a

{
(fy –Dfẏ – z) – p(gy –Dgẏ + r)

}
dt, . . . ,

∫ b

a

{
(fky –Dfkẏ – zk) – pk(gky –Dgkẏ + rk)

}
dt

)

is linearly independent.
Then there exist wi(t) ∈ Ci, si(t) ∈ Ei, i = , , . . . ,k such that (x(t), y(t),p, τ,w(t),

s(t)) is weakly efficient solution of (NFVD)′.

Proof Since (x(t), y(t),p, τ, z(t), r(t)) is a weakly efficient solution of (NFVP)′, by The-
orem ., there exist λ ∈ Rk , α ∈ Rk , ζ ∈ R, μ : I −→ Rk , piecewise smooth β(t) : I −→ C

and ρ(t) : I −→ C∗
 such that

λi – αi
(
gi – si + yT ri

)
– (giy –Dgiẏ + ri)(β – ζy) = ,

i = , , . . . ,k, ()

k∑
i=

αi
[{
(fix +wi) – pi(gix – si)

}
–D(fiẋ – pigiẋ)

]

+
k∑
i=

τi
[{
(fiyx – pigiyx) –D(fiẏx – pigiẏx)

}
–D

{
(fiyẋ –Dfiẏẋ – fiẏx) – pi(giyẋ –Dgiẏẋ – giẏx)

}
+D{–(fiẏẋ – pigiẏẋ)

}]
(β – ζy) – ρ = , ()

k∑
i=

(αi – ζ τi)
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}

+
k∑
i=

τi
[{
(fiyy – pigiyy) –D(fiẏy – pigiẏy)

}
–D

{
(fiyẏ –Dfiẏẏ – fiẏy) – pi(giyẏ –Dgiẏẏ – giẏy)

}
+D{–(fiẏẏ – pigiẏẏ)

}]
(β – ζy) = , (){

(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)
}
(β – ζy) –μi = ,

i = , . . . ,k, ()

αipiy + (β – ζy)τipi ∈NHi (ri), i = , , . . . ,k, ()

αiy + (β – ζy)τi ∈NDi (zi), i = , , . . . ,k, ()

k∑
i=

αi

[∫ b

a

{(
fi + s(x|Ci) – yT zi

)
– pi

(
gi – s(x|Ei) + yT ri

)}
dt

]
= , ()

βT
k∑
i=

τi
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
= , ()
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ζyT
k∑
i=

τi

∫ b

a

{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
dt = , ()

μTτ = , ()

ρTx = , ()

wi ∈ Ci, wT
ix = s(x|Ci), i = , , . . . ,k, ()

si ∈ Ei, sTix = s(x|Ei), i = , , . . . ,k, ()(
λ,α,β(t), ζ ,μ,ρ(t)

)
� , ()(

λ,α,β(t), ζ ,μ,ρ(t)
) �= . ()

Multiplying () by (β – ζy)T ,

k∑
i=

(αi – ζ τi)
{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
(β – ζy)

+ (β – ζy)T
k∑
i=

τi
[{
(fiyy – pigiyy) –D(fiẏy – pigiẏy)

}
–D

{
(fiyẏ –Dfiẏẏ – fiẏy) – pi(giyẏ –Dgiẏẏ – giẏy)

}
+D{–(fiẏẏ – pigiẏẏ)

}]
(β – ζy) = .

Using the result in equality () and (), we get

k∑
i=

αiμi + (β – ζy)T
k∑
i=

τi
[{
(fiyy – pigiyy) –D(fiẏy – pigiẏy)

}
–D

{
(fiyẏ –Dfiẏẏ – fiẏy) – pi(giyẏ –Dgiẏẏ – giẏy)

}
+D{–(fiẏẏ – pigiẏẏ)

}]
(β – ζy) = .

Since α ∈Rk
+, μ ∈Rk

+, αTμ� , and hence

k∑
i=

τi

∫ b

a
(β – ζy)T

[{
(fiyy – pigiyy) –D(fiẏy – pigiẏy)

}
–D

{
(fiyẏ –Dfiẏẏ – fiẏy) – pi(giyẏ –Dgiẏẏ – giẏy)

}
+D{–(fiẏẏ – pigiẏẏ)

}]
(β – ζy)dt � .

Which by virtue of the hypothesis (II) yields

β = ζy ∀t ∈ I. ()

From () along with (), we obtain

k∑
i=

(αi – ζ τi)
∫ b

a

{
(fiy –Dfiẏ – zi) – pi(giy –Dgiẏ + ri)

}
dt = .
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By hypothesis (III),

αi = ζ τi, i = , . . . ,k. ()

If ζ = , then () implies that α =  and using () β = . From (), we get λ = , and
from () ρ =  and using (), we get that μ = , which contradicts (). Hence ζ >  and
α > . Hence by (), y ∈ C ∀t ∈ I . By (), () and αi = ζ τi, i = , . . . ,k,

k∑
i=

ζ τi
[{
(fix +wi) – pi(gix – si)

}
–D(fiẋ – pigiẋ)

]
= ρ ∈ C∗

 . ()

Since
∑k

i= τi[{(fix +wi) –pi(gix – si)}–D(fiẋ –pigiẋ)] ∈ C∗
 . By multiplying both sides of

equation () by x, hence from () we get,

∫ b

a
xT

k∑
i=

τi
[{
(fix +wi) – pi(gix – si)

}
–D(fiẋ – pigiẋ)

]
dt = .

Equation () with α >  implies that

∫ b

a

{(
fi(t,x, ẋ, y, ẏ) + s(x|Ci) – yT zi

)
– pi

(
gi(t,x, ẋ, y, ẏ) – s(x|Ei) + yT ri

)}
dt = . ()

By () and the fact that β = ζy, αiy ∈ NDi (zi), i = , . . . ,k. Since αi > , and so y ∈
NDi (zi), hence yT zi = s(y|Di), i = , . . . ,k. By () and the fact that β = ζy, αipiy ∈
NHi (ri), i = , . . . ,k. Since αi > , pi > , and so y ∈ NHi (ri), hence yT ri = s(y|Hi), i =
, . . . ,k. Thus, from (), () and yT zi = s(y|Di), yT ri = s(y|Hi), i = , . . . ,k, equation
() implies

∫ b

a

{(
fi(t,x, ẋ, y, ẏ) – s(y|Di) + xTwi

)
– pi

(
gi(t,x, ẋ, y, ẏ) + s(y|Hi) – xT si

)}
dt = ,

and

pi =
∫ b
a {fi(t,x, ẋ, y, ẏ) + s(x|Ci) – yT zi}dt∫ b
a {gi(t,x, ẋ, y, ẏ) – s(x|Ei) + yT ri}dt

=
∫ b
a {fi(t,x, ẋ, y, ẏ) – s(y|Di) + xTwi}dt∫ b
a {gi(t,x, ẋ, y, ẏ) + s(y|Hi) – xT si}dt

= qi.

Thus (x, y,p, τ, z, r) is feasible for (NFVD)′, and the objective values of (NFVP)′ and
(NFVD)′ are equal there. Clearly, (x, y,p, τ, z, r) is weakly efficient for (NFVD)′. If
(x, y,p, τ, z, r) is not weakly efficient for (NFVD)′, then for some feasible (x̃, ỹ, p̃,
τ̃ , z̃, r̃) of (NFVD)′, there exist wi(t) ∈ Ci, si(t) ∈ Ei such that p < p̃, with p̃i =
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∫ b
a {fi(t,x̃, ˜̇x,ỹ, ˜̇y)–s(ỹ|Di)+x̃Twi}dt∫ b
a {gi(t,x̃, ˙̃x,ỹ, ˙̃y)+s(ỹ|Hi)–x̃T si}dt

, i = , . . . ,k. Since gi(t,x, ẋ, y, ẏ) > , i = , . . . ,k, it follows that∑k
i= τi(pi – p̃i)

∫ b
a gi(t,x, ẋ, y, ẏ)dt < , which contradicts by weak duality, equation

(). Thus (x, y,p, τ, z, r) is a weakly efficient solution of (NFVD)′. Hence the result
holds. �

Theorem . (Converse duality) Let (x(t), y(t),q, τ,w(t), s(t)) be a weakly efficient
solution for (NFVD)′ and fix τ = τ in (NFVP)′, and define

qi =
∫ b
a {fi(t,x, ẋ, y, ẏ) – s(y|Di) + xTwi}dt∫ b
a {gi(t,x, ẋ, y, ẏ) + s(y|Hi) – xT si}dt

, i = , , . . . ,k.

Suppose that all the conditions in weak duality are fulfilled. Furthermore, assume that

(I) qi > , i = , . . . ,k,

(II)
k∑
i=

τi

∫ b

a

(t)T

[{
(fixx – qigixx) –D(fiẋx – qigixẋ)

}
–D

{
(fixẋ –Dfiẋẋ – fiẋx) – qi(giẋẋ –Dgiẋẋ – giẋx)

}
+D{–(fiẋẋ – qigiẋẋ)

}]

(t)dt � 

implies that 
(t) = , ∀t ∈ I , and

(III)
(∫ b

a

{
(fx –Dfẋ +w) – q(gx –Dgẋ – s)

}
dt, . . . ,

∫ b

a

{
(fkx –Dfkẋ +wk) – qk(gkx –Dgkẋ – sk)

}
dt

)
is linearly independent.
Then there exist zi(t) ∈ Di, ri(t) ∈ Hi, i = , , . . . ,k such that (x(t), y(t),q, τ, z(t),

r(t)) is weakly efficient solution of (NFVP)′.

Proof It is analogous to the proof of the lines of Theorem .. �

Remark . () When C = D = E = H = {}, then the support functions and inner prod-
ucts in the problems (NFVP) and (NFVD) in the draft disappear, and hence (NFVP) and
(NFVD) in the draft collapse to (P) and (D) in the paper of Ahmad, Sharma (EJOR, Vol.
, , pp. -) [].
()WhenC =Rn

+, andC =Rm
+ , then the problems (NFVP) and (NFVD) reduce to those

considered by Mishra et al. [], respectively.
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