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1 Introduction
In this paper, for a positive integer n, N denotes the set {, , . . . ,n}. Rn×n (Cn×n) denotes
the set of all n × n real (complex) matrices. Let A = (aij) and B = (bij) be two real n × n
matrices. We write A≥ B (A > B) if aij ≥ bij (aij > bij) for all i, j ∈N . If A≥  (A > ), we say
A is a nonnegative (positive) matrix. The spectral radius of A is denoted by ρ(A). If A is
a nonnegative matrix, the Perron-Frobenius theorem guarantees that ρ(A) ∈ σ (A), where
σ (A) is the set of all eigenvalues of A throughout this paper (see []).
For n≥ , an n× nmatrix A is said to be reducible if there exists a permutation matrix

P such that

PTAP =

(
B C
 D

)
,

where B and D are square matrices of order at least one. If no such permutation matrix
exists, then A is called irreducible. If A is a  ×  complex matrix, then A is irreducible if
and only if its single entry is nonzero (see []).
According to Ref. [], a matrix A is called anM-matrix if there exists an n× n nonneg-

ative real matrix P and a nonnegative real number α such that A = αI – P and α ≥ ρ(P),
where I is the identity matrix. Moreover, if α > ρ(P), A is called a nonsingular M-matrix;
if α = ρ(P), we call A a singularM-matrix.
In addition, a matrixA = (aij) ∈R

n×n is called Z-matrix if all of it off-diagonal entries are
negative and denoted by A ∈ Zn. For convenience, the following simple facts are needed
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(see Problems ,  and  in Section . of []), where τ (A)�min{λ|λ ∈ σ (A)}, andMn

is denoted by the set of all nonsingularM-matrices (see []):
. τ (A) ∈ σ (A);
. If A,B ∈ Mn and A≥ B, then τ (A) ≥ τ (B);
. If A ∈Mn, then ρ(A–) is the Perron eigenvalue of the nonnegative matrix A–, and

τ (A) = 
ρ(A–) is a positive real eigenvalue of A.

Let A be an irreducible nonnegative matrix. It is well known that there exist positive
vectors u and v such that Au = ρ(A)u and vTA = ρ(A)vT , where u and v are right and left
Perron eigenvectors of A, respectively.
The Hadamard product of A = (aij) ∈ C

n×n and B = (bij) ∈ C
n×n is defined by A ◦ B =

(aijbij) ∈C
n×n.

For two real matrices A,B ∈ Mn, the Fan product of A and B is denoted by A � B = C =
[cij] ∈Mn and is defined by

cij =

⎧⎨
⎩–aijbij if i �= j,

aiibii if i = j.

Obviously, if A,B ∈Mn, then A � B is also anM-matrix (see []).
We define

Ri =
∑
k �=i

|aik|, di =
Ri

|aii| , i ∈N ;

rli =
|ali|

|all| –∑
k �=l,i |alk|

, l �= i; ri =max
l �=i

{rli}, i ∈ N ;

sji = |aji|mj, mj =

⎧⎨
⎩rj if rj �= ,

 if rj = ;
si =max

j �=i
{sji}, i, j ∈N ,

throughout the paper.
The paper is organized as follows. Firstly, for two nonnegative matrices A and B, we

exhibit some new upper bounds for ρ(A ◦ B) in Section . In Section , some new lower
bounds for τ (A � B) of M-matrices are presented. Finally, some examples are given to il-
lustrate our results.

2 Some upper bounds for the spectral radius of the Hadamard product of two
nonnegative matrices

Firstly, in ([], p.), there is a simple estimate for ρ(A ◦ B): if A,B ∈ R
n×n, A ≥ , and

B ≥ , then

ρ(A ◦ B) ≤ ρ(A)ρ(B). (.)

Recently, Fang [] gave an upper bound for ρ(A ◦ B), that is,

ρ(A ◦ B) ≤ max
≤i≤n

{
aiibii + ρ(A)ρ(B) – biiρ(A) – aiiρ(B)

}
, (.)

which is smaller than the bound ρ(A)ρ(B) in ([], p.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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Liu and Chen [] improved (.) and gave the following result:

ρ(A ◦ B) ≤ max
≤i≤n



{
aiibii + ajjbjj +

[
(aiibii – ajjbjj)

+ 
(
ρ(A) – aii

)(
ρ(B) – bii

)(
ρ(A) – ajj

)(
ρ(B) – bjj

)] 

}
. (.)

Recently, some elaborate new bounds were also presented in [], which in some cases
give better estimates for the spectral radius of the Hadamard product of two nonnegative
matrices.
In this section, based on the idea of [], we present some new upper bounds on ρ(A ◦B)

for nonnegative matrices A and B which improve the above results. The new estimating
formulae also only depend on the entries of matrices A and B.

Lemma . [] Let A = (aij) be an arbitrary complex matrix, and let x,x, . . . ,xn be posi-
tive real numbers, then all the eigenvalues of A lie in the region

G(A) =
⋃{

z ∈C : |z – aii| ≤ xi
∑
j �=i


xj

|aji|, i ∈N
}
. (.)

Lemma . [] Let A = (aij) ∈C
n×n, and let x,x, . . . ,xn be positive real numbers, then all

the eigenvalues of A lie in the region

B(A) =
n⋃

i,j=;i�=j

{
z ∈C : |z – aii||z – ajj| ≤

(
xi

∑
k �=i


xk

|aki|
)(

xj
∑
k �=j


xk

|akj|
)}

. (.)

Next, we present a new estimating formula of the upper bounds of ρ(A ◦ B) which is
easier to calculate.

Theorem . If A = (aij) and B = (bij) are nonnegative matrices, then

ρ(A ◦ B) ≤ max
≤i≤n

{
aiibii + si

∑
j �=i

bji
mj

}
. (.)

Proof It is evident that inequality (.) holds with equality for n = . Therefore, we assume
that n≥  and give two cases to prove this problem.
Case . Suppose that C = A ◦B is irreducible. Obviously A and B are also irreducible. By

Lemma ., there exists i (≤ i ≤ n) such that

∣∣ρ(A ◦ B) – aiibii
∣∣ ≤ si

∑
k �=i

akibki
sk

,

i.e.,

ρ(A ◦ B) ≤ aiibii + si
∑
k �=i

akibki
sk

≤ aiibii + si
∑
k �=i

akibki
akimk

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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= aiibii + si
∑
k �=i

bki
mk

≤ max
i

{
aiibii + si

∑
k �=i

bki
mk

}
.

Thus, we have that

ρ(A ◦ B) ≤ max
i

{
aiibii + si

∑
k �=i

bki
mk

}
.

So, conclusion (.) holds.
Case . IfC = A◦B is reducible.Wemay denote by P = (pij) the n×n permutationmatrix

(pij) with

p = p = · · · = pn–,n = pn, = ,

the remaining pij being zero, then both A + εP and B + εP are nonnegative irreducible
matrices for any sufficiently small positive real number ε. Now we substitute A + εP and
B + εP for A and B, respectively, in the previous Case , and then letting ε → , the result
(.) follows by continuity. �

Theorem . If A = (aij) and B = (bij) are nonnegative matrices, then

ρ(A ◦ B) ≤ max
i�=j




{
aiibii + ajjbjj +

[
(aiibii – ajjbjj)

+ sisj
(∑

k �=i

bki
mk

)(∑
l �=j

blj
ml

)] 

}
. (.)

Proof Similarly, inequality (.) holds with equality for n = . Therefore, we assume that
n≥  and give two cases to prove this problem.
Case . Suppose that C = A ◦B is irreducible. Obviously, A and B are also irreducible. By

Lemma ., there exists a pair (i, j) of positive integers with i �= j (≤ i, j ≤ n) such that

∣∣ρ(A ◦ B) – aiibii
∣∣∣∣ρ(A ◦ B) – ajjbjj

∣∣ ≤
(
si

∑
k �=i

akibki
sk

)(
sj

∑
l �=j

aljblj
sl

)

≤
(
si

∑
k �=i

akibki
akimk

)(
sj

∑
l �=j

aljblj
aljml

)

=
(
si

∑
k �=i

bki
mk

)(
sj

∑
l �=j

blj
ml

)
. (.)

From inequality (.) and ρ(A ◦ B)≥ aiibii (see []), for any i ∈N , we have

(
ρ(A ◦ B) – aiibii

)(
ρ(A ◦ B) – ajjbjj

) ≤
(
si

∑
k �=i

bki
mk

)(
sj

∑
l �=j

blj
ml

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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Thus, by solving quadratic inequality (.), we have that

ρ(A ◦ B) ≤ 


{
aiibii + ajjbjj +

[
(aiibii – ajjbjj) + sisj

(∑
k �=i

bki
mk

)(∑
l �=j

blj
ml

)] 

}

≤ max
i�=j




{
aiibii + ajjbjj +

[
(aiibii – ajjbjj) + sisj

(∑
k �=i

bki
mk

)(∑
l �=j

blj
ml

)] 

}
,

i.e., conclusion (.) holds.
Case . IfC = A◦B is reducible.Wemay denote by P = (pij) the n×n permutationmatrix

(pij) with

p = p = · · · = pn–,n = pn, = ,

the remaining pij being zero, then both A + εP and B + εP are nonnegative irreducible
matrices for any sufficiently small positive real number ε. Now we substitute A + εP and
B + εP for A and B, respectively, in the previous Case , and then letting ε → , the result
(.) follows by continuity. �

Remark . Next, we give a comparison between inequality (.) and inequality (.).
Without loss of generality, for i �= j, we assume that

aiibii – si
∑
k �=i

bki
mk

≤ ajjbjj – sj
∑
l �=j

blj
ml

. (.)

Thus, we can rewrite (.) as

sj
∑
l �=j

blj
ml

≤ ajjbjj – aiibii + si
∑
k �=i

bki
mk

. (.)

From (.), we have that

(aiibii – ajjbjj) + 
(
si

∑
k �=i

bki
mk

)(
sj

∑
l �=j

blj
ml

)

≤ (aiibii – ajjbjj) + si
∑
k �=i

bki
mk

(
ajjbjj – aiibii + si

∑
k �=i

bki
mk

)

≤ (aiibii – ajjbjj) + si
∑
k �=i

bki
mk

(ajjbjj – aiibii) + 
(
si

∑
k �=i

bki
mk

)

=
(
ajjbjj – aiibii + si

∑
k �=i

bki
mk

)

.

Thus, from (.) and the above inequality, we can obtain

ρ(A ◦ B) ≤ max
i�=j




{
aiibii + ajjbjj

+
[
(aiibii – ajjbjj) + sisj

(∑
k �=i

bki
mk

)(∑
l �=j

|blj|
ml

)] 

}
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≤ max
i�=j




{
aiibii + ajjbjj + ajjbjj – aiibii + si

∑
k �=i

bki
mk

}

≤ max
≤i≤n

{
aiibii + si

∑
k �=i

bki
mk

}
. (.)

Hence, the bound in (.) is sharper than the bound in (.).

Example . [] Let

A = (aij) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ , B = (bij) =

⎛
⎜⎜⎜⎝
   
   
   
   

⎞
⎟⎟⎟⎠ .

If we apply (.), we have

ρ(A ◦ B) ≤ ρ(A)ρ(B) = ..

If we apply (.), we have

ρ(A ◦ B) ≤ max
≤i≤n

{
aiibii + ρ(A)ρ(B) – aiiρ(B) – biiρ(A)

}
= ..

If we apply (.), we have

ρ(A ◦ B) ≤ max
≤i≤n



{
aiibii + ajjbjj +

[
(aiibii – ajjbjj) 

+ 
(
ρ(A) – aii

)(
ρ(B) – bii

)(
ρ(A) – ajj

)(
ρ(B) – bjj

)] 

}

= ..

If we apply Theorem ., we get

ρ(A ◦ B) ≤ max
≤i≤n

{
aiibii + si

∑
j �=i

bji
mj

}
= .

If we apply Theorem ., we obtain that

ρ(A ◦ B) ≤ max
i�=j




{
aiibii + ajjbjj +

[
(aiibii – ajjbjj) + sisj

∑
k �=i

bki
mk

∑
l �=j

blj
ml

] 

}

= ..

In fact, ρ(A ◦ B) = .. The example shows that the bounds in Theorem . and
Theorem . are better than the existing bounds.

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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3 Inequalities for the Fan product of twoM-matrices
Firstly, let us recall some results. It is known (p., []) that the following classical result
is given. If A,B ∈ R

n×n areM-matrices, then

τ (A � B)≥ τ (A)τ (B). (.)

In , Fang improved (.) in Remark  of Ref. [] and gave a new lower bound for
τ (A � B), that is,

τ (A � B)≥ min
≤i≤n

{
biiτ (A) + aiiτ (B) – τ (A)τ (B)

}
. (.)

Subsequently, Liu and Chen [] gave a sharper bound than (.), i.e.,

τ (A � B) ≥ max
≤i≤n



{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ 
(
aii – τ (A)

)(
bii – τ (B)

)(
ajj – τ (A)

)(
bjj – τ (B)

)] 

}
. (.)

Next, we exhibit a new lower bound on the minimum eigenvalue τ (A �B) of the Fan prod-
uct of nonsingularM-matrices.

Theorem . If A = (aij) and B = (bij) are nonsingular M-matrices, then

τ (A � B)≥ min
≤i≤n

{
aiibii – si

∑
j �=i

|bji|
mj

}
. (.)

Proof It is evident that inequality (.) holds with equality for n = . Therefore, we assume
that n≥  and give two cases to prove this problem.
Case . Suppose that C = A �B is irreducible. Obviously, A and B are also irreducible. By

Lemma ., there exists i (≤ i≤ n) such that

∣∣τ (A � B) – aiibii
∣∣ ≤ si

∑
k �=i

|akibki|
sk

≤ si
∑
k �=i

|akibki|
|aki|mk

= si
∑
k �=i

|bki|
mk

. (.)

From inequality (.) and  ≤ τ (A � B)≤ aiibii (see []), for any i ∈N , we have

aiibii – τ (A � B) ≤ si
∑
k �=i

|bki|
mk

. (.)

Thus, we can obtain that

τ (A � B)≥ min
≤i≤n

{
aiibii – si

∑
k �=i

|bki|
mk

}
,

i.e., the conclusion (.) holds.
Case . If C = A � B is reducible. It is well known that a matrix in Zn is a nonsingular

M-matrix if and only if all its leading principal minors are positive (see Condition (E) of

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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Theorem .. of []). If we denote by P = (pij) the n× n permutation matrix (pij) with

p = p = · · · = pn–,n = pn, = ,

the remaining pij being zero, then both A – εP and B – εP are irreducible nonsingular
M-matrices for any sufficiently small positive real number ε such that all the leading prin-
cipal minors of both A – εP and B – εP are positive. Now we substitute A – εP and B – εP
for A and B, respectively, in the previous Case , and then letting ε → , the result (.)
follows by continuity. �

Theorem . If A = (aij) and B = (bij) are nonsingular M-matrices, then

τ (A � B) ≥ 

min
i�=j

{
aiibii + ajjbjj –

[
(aiibii – ajjbjj)

+ sisj
(∑

k �=i

|bki|
mk

)(∑
l �=j

|blj|
ml

)] 

}
. (.)

Proof Obviously, inequality (.) holds with equality for n = . Therefore, we assume that
n≥  and give two cases to prove this problem.
Case . Suppose that C = A �B is irreducible, then A and B are also irreducible. By Lem-

ma ., there exists a pair (i, j) of positive integers with i �= j (≤ i, j ≤ n) such that

∣∣τ (A � B) – aiibii
∣∣∣∣τ (A � B) – ajjbjj

∣∣ ≤
(
si

∑
k �=i

|akibki|
sk

)(
sj

∑
l �=j

|aljblj|
sl

)

≤
(
si

∑
k �=i

|akibki|
|aki|mk

)(
sj

∑
l �=j

|aljblj|
|alj|ml

)

=
(
si

∑
k �=i

|bki|
mk

)(
sj

∑
l �=j

|blj|
ml

)
. (.)

From inequality (.) and  ≤ τ (A � B)≤ aiibii (see []), for any i ∈N , we have

(
τ (A � B) – aiibii

)(
τ (A � B) – ajjbjj

) ≤
(
si

∑
k �=i

|bki|
mk

)(
sj

∑
l �=j

|blj|
ml

)
. (.)

Thus, by solving quadratic inequality (.), we have that

τ (A � B)≥ 

min
i�=j

{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) + sisj

(∑
k �=i

|bki|
mk

)(∑
l �=j

|blj|
ml

)] 

}
,

i.e., conclusion (.) holds.
Case . Similarly, if C = A � B is reducible. It is well known that a matrix in Zn is a non-

singularM-matrix if and only if all its leading principal minors are positive (see Condition
(E) of Theorem .. of []). If we denote by P = (pij) the n× n permutation matrix (pij)
with

p = p = · · · = pn–,n = pn, = ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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the remaining pij being zero, then both A – εP and B – εP are irreducible nonsingular
M-matrices for any sufficiently small positive real number ε such that all the leading prin-
cipal minors of both A – εP and B – εP are positive. Now we substitute A – εP and B – εP
for A and B, respectively, in the previous Case , and then letting ε → , the result (.)
follows by continuity. �

Remark . Similarly, by solving quadratic inequality (.) and the same proof as Theo-
rem ., one can also obtain an upper bound on the τ (A � B):

τ (A � B) ≤ 

max
i�=j

{
aiibii + ajjbjj

+
[
(aiibii – ajjbjj) + sisj

(∑
k �=i

|bki|
mk

)(∑
l �=j

|blj|
ml

)] 

}
.

Remark . Next, we give a comparison between inequality (.) and inequality (.).
Without loss of generality, for i �= j, we assume that

aiibii – si
∑
k �=i

|bki|
mk

≤ ajjbjj – sj
∑
l �=j

|blj|
ml

. (.)

Thus, we can rewrite (.) as

sj
∑
l �=j

|blj|
ml

≤ ajjbjj – aiibii + si
∑
k �=i

|bki|
mk

. (.)

From (.), we have that

(aiibii – ajjbjj) + 
(
si

∑
k �=i

|bki|
mk

)(
sj

∑
l �=j

|blj|
ml

)

≤ (aiibii – ajjbjj) + si
∑
k �=i

|bki|
mk

(
ajjbjj – aiibii + si

∑
k �=i

|bki|
mk

)

≤ (aiibii – ajjbjj) + si
∑
k �=i

|bki|
mk

(ajjbjj – aiibii) + 
(
si

∑
k �=i

|bki|
mk

)

=
(
ajjbjj – aiibii + si

∑
k �=i

|bki|
mk

)

.

Thus, from (.) and the above inequality, we can obtain

τ (A � B) ≥ 

min
i�=j

{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) + sisj

(∑
k �=i

|bki|
mk

)(∑
l �=j

|blj|
ml

)] 

}

≥ min
i�=j




{
aiibii + ajjbjj – ajjbjj + aiibii – si

∑
k �=i

|bki|
mk

}

≥ min
≤i≤n

{
aiibii – si

∑
k �=i

|bki|
mk

}
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/433
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Hence, the bound in (.) is sharper than the bound in (.).

Next, let us consider a simple example.

Example . [] Consider two ×  M-matrices

A = (aij) =

⎛
⎜⎜⎜⎝

 – – –
–  – –
 –  –
– – – 

⎞
⎟⎟⎟⎠ , B = (bij) =

⎛
⎜⎜⎜⎝

 – 
  

– 
  – 

 
 – 

  – 


  – 
 

⎞
⎟⎟⎟⎠ .

By calculation, we obtain that τ (A � B) = .. If we apply (.), we can get that

τ (A � B)≥ τ (A)τ (B) = ..

If we apply (.), we have that

τ (A � B)≥ min
≤i≤n

{
aiiτ (B) + biiτ (A) – τ (A)τ (B)

}
= ..

If we apply (.), we have

τ (A � B) ≥ max
≤i≤n



{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) 

+ 
(
aii – τ (A)

)(
bii – τ (B)

)(
ajj – τ (A)

)(
bjj – τ (B)

)] 

}

= ..

If we apply (.), we have that

τ (A � B)≥ min
≤i≤n

{
aiibii – si

∑
j �=i

|bji|
mj

}
= ..

If we apply (.), we get that

τ (A � B) ≥ 

min
i�=j

{
aiibii + ajjbjj –

[
(aiibii – ajjbjj) + sisj

(∑
k �=i

|bki|
mk

)(∑
l �=j

|blj|
ml

)] 

}

= ..

From the above example, inequality (.) is obviously the best one corresponding to
inequalities (.), (.), (.) and (.).
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