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Abstract
This paper investigates integral inequalities with delay for discontinuous functions
involving two nonlinear terms. We do not require the classes ℘ and j in Gallo and
Piccirillo’s paper (Bound. Value Probl. 2009:808124, 2009). Our main results can be
applied to generalize Gallo and Piccirillo’s results and Iovane’s results (Nonlinear Anal.,
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of an impulsive differential equation are also given, which can not be estimated by
Gallo and Piccirillo’s results.
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1 Introduction
The Gronwall-Bellman integral inequalities and their various linear and nonlinear gen-
eralizations, involving continuous or discontinuous functions, play very important roles
in investigating different qualitative characteristics of solutions for differential equations
and impulsive differential equations such as existence, uniqueness, continuation, bound-
edness, continuous dependence of parameters, stability, attraction, practical stability. The
literature on inequalities for continuous functions and their applications is vast (see [–]).
Recently,more attention has been paid to generalizations ofGronwall-Bellman’s results for
discontinuous functions (see [–]) and their applications (see [, , ]). Among them,
one of the important things is that Samoilenko and Perestyuk [] studied the following
inequality

u(x) ≤ c +
∫ x

x
f (s)u(s)ds +

∑
x<xi<x

βiu(xi – ) (.)

about the nonnegative piecewise continuous function u(x), where c, βi are nonnegative
constants, f (s) is a positive function, and xi are the first kind discontinuity points of the
function u(x). Then Borysenko [] considered

u(x)≤ c +
∫ x

x
f (s)um(s)ds +

∑
x<xi<x

βiu(xi – ), m > ,m �= ,

u(x)≤ c +
∫ x

x
f (s)um(s)ds +

∑
x<xi<x

βium(xi – ), m > ,m �= . (.)
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He replaced the constant c by a positive monotonously nondecreasing function a(x), and
also estimated the inequalities

u(x)≤ a(x) +
∫ x

x
f (s)u(s)ds +

∑
x<xi<x

βium(xi – ), m > ,

u(x)≤ a(x) +
∫ x

x
f (s)um(s)ds +

∑
x<xi<x

βium(xi – ), m > ,m �= . (.)

In , he [] generalized the inequalities above from one integral to two integrals with
a form

u(x)≤ c +
∫ x

x
q(s)u(s)ds +

∫ x

x
q(s)

∫ s

x
g(τ )um(τ )dτ ds

+
∑

x<xi<x
βium(xi – ), m > . (.)

In , Iovane [] investigated the inequalities with delay

u(x)≤ a(x) +
∫ x

x
f (s)u

(
b(s)

)
ds +

∑
x<xi<x

βium(xi – ), m > ,

u(x)≤ a(x) +
∫ x

x
f (s)um

(
b(s)

)
ds +

∑
x<xi<x

βium(xi – ), m > ,m �= . (.)

Later, Gallo and Piccirillo [] further discussed

u(x)≤ a(x) + h(x)
∫ x

x
f (s)w

(
u
(
b(s)

))
ds +

∑
x<xi<x

βium(xi – ) (.)

with a general nonlinear termw(u) of u. They assumed thatw ∈ ℘ orw ∈ j , where the class
℘ consists of all nonnegative, nondecreasing and continuous functions w(u) on [,∞)
such that w() =  and w(αu) ≤ w(α)w(u) for all α >  and u ≥ , and the class j consists
of all positive, nondecreasing and continuous functions w(u) on (,∞) such that w() = 
andw(α–u) > α–w(u) for all α ≥  and u > . The classes℘ and j allow a reduction of a(t)
to the case of a constant a by dividing a(x) if a(x) is a positive and nondecreasing function.
Actually, when we study behaviors of solutions of impulsive differential equations, a(x)
may not be a nondecreasing function, and wmay not satisfy the condition w ∈ ℘ or w ∈ j .
For example, w(u) = eu does not belong to the class ℘ and j for any α >  and large u > .
Thus, it is interesting to avoid such conditions.
Motivated by this observation, in this paper, we consider the following much more gen-

eral inequality

u(x)≤ a(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds

+
∑

x<xi<x
βium(xi – ), m >  (.)

with two nonlinear terms w(u) and w(u) of u, where we do not restrict w and w to
the class ℘ or the class j . We also show that many integral inequalities for discontinuous
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functions such as (.), (.) and (.) can be reduced to the formof (.). Ourmain result is
applied to estimate the bounds of solutions of an impulsive ordinary differential equation.

2 Main results
Consider (.), and assume that

(C) w(x) and w(x) are continuous and nondecreasing functions on [,∞) and are posi-
tive on (,∞) such that w(x)

w(x)
is nondecreasing;

(C) a(x) is defined on [x,∞) and a(x) �= ; βi is a nonnegative constant for any positive
integer i;

(C) f(x, s) and f(x, s) are continuous and nonnegative functions on [x,∞)× [x,∞);
(C) b(x) and b(x) are continuously differentiable and nondecreasing such that x ≤

b(x)≤ x and x ≤ b(x)≤ x on [x,∞);
(C) For x ∈ [x,∞), u(x) is nonnegative and piecewise-continuous with the first kind of

discontinuities at the points xi : x < x < · · · , where i is a nonnegative integer and
limi→∞ xi = ∞.

Let Wj(u) =
∫ u
ũj

dz
wj(z)

for u ≥ ũj and j = , , where ũj is a given positive constant. Clearly,
Wj is strictly increasing so its inverseW–

j is well defined, continuous and increasing in its
corresponding domain.

Theorem . Suppose that (Ck) (k = , . . . , ) hold, and u(x) satisfies (.) for a positive
constant m. Let ui(x) = u(x) for x ∈ [xi,xi+). Then the estimate of u(x) is recursively given
by for x ∈ [xi,xi+), i = , , , . . . ,

ui(x)≤ W–


[
W ◦W–



(
W

(
ri+(x)

)
+

∫ b(x)

b(xi)
f̃(x, s)ds

)
+

∫ b(x)

b(xi)
f̃(x, s)ds

]
, (.)

where

f̃j(x, s) = max
x≤τ≤x

fj(τ , s), j = , , r(x) = max
x≤τ≤x

∣∣a(τ )∣∣,

ri+(x) = r(x) +
i∑

k=

∫ b(xk )

b(xk–)
f̃(x, s)w

(
uk–(s)

)
ds

+
i∑

k=

∫ b(xk )

b(xk–)
f̃(x, s)w

(
uk–(s)

)
ds +

i∑
k=

βkumk–(xk – ), (.)

provided that

W
(
ri+(x)

)
+

∫ b(x)

b(xi)
f̃(x, s)ds≤

∫ ∞

ũ

dz
w(z)

,

W ◦W–


(
W

(
ri+(x)

)
+

∫ b(x)

b(xi)
f̃(x, s)ds

)
+

∫ b(x)

b(xi)
f̃(x, s)ds≤

∫ ∞

ũ

dz
w(z)

. (.)

The proof is given in Section .

Remark . () If wj satisfies
∫ ∞
ũj

dz
wj(z)

= ∞ for j = , , then i in Theorem . can be any
nonzero integer. [] pointed out that different choices of ũj inWj do not affect our results
for j = , . If a(x)≡ , then defineW() = , and (.) is still true.
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() Take b(x) = x, a(x) = c, f(t, s) = f (s), f(t, s) = , w(u) = u and m = . Hence, (.)
becomes (.). It is easy to check thatW(u) = ln u

ũ
andW–

 (u) = ũeu. From Theorem .,
we know that for x ∈ [xi,xi+),

ui(x)≤ ri+(x)e
∫ x
xi
f (s)ds

with

ri+(x) = c +
i∑

k=

∫ xk

xk–
f (s)uk–(s)ds +

i∑
k=

βkuk–(xk – ).

Hence,

r(x) = c, u(x) ≤ ce
∫ x
x

f (s)ds,

r(x) = c +
∫ x

x
f (s)u(s)ds + βu(x – )

≤ c +
∫ x

x
f (s)ce

∫ s
x

f (τ )dτ ds + cβe
∫ x
x

f (s)ds

= c + ce
∫ s
x

f (τ )dτ |xx + cβe
∫ x
x

f (s)ds = c( + β)e
∫ x
x

f (s)ds,

u(x)≤ c( + β)e
∫ x
x

f (s)ds.

After recursive calculations, we have for x≥ x

u(x)≤ c�x<xk<x( + βk)e
∫ x
x

f (s)ds,

which is same as the one in [].
() Clearly, (.) and (.) are special cases of (.). If b′(x) >  on [x,∞), then (.) can

be rewritten as

u(x)≤ a(x) + h(x)
∫ b(x)

b(x)

f (b–(s))
b′(b–(s))

w
(
u(s)

)
ds +

∑
x<xi<x

βium(xi – ).

Let f(x, s) = h(x) f (b–(s))
b′(b–(s)) and f(x, s) ≡ , the inequality above is same as (.). Similarly,

(.) can also be reduced to (.).

Consider the inequality

u(x)≤ a(x) +
∫ x

x
g(x, s)

∫ s

x
h(s, τ )w

(
u(τ )

)
dτ ds

+
∫ x

x
g(x, s)

∫ s

x
h(s, τ )w

(
u(τ )

)
dτ ds +

∑
x<xi<x

βium(xi – ), (.)

which looks more complicated than (.).
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Corollary . Suppose that (C)-(C) and (C) hold, and that the functions gj and hj (j =
, ) are both nonnegative and continuous on [x,∞)× [x,∞). If (.) holds, then for x ∈
[xi,xi+), i = , , , . . . ,

ui(x)≤ W–


[
W ◦W–



(
W

(
ri+(x)

)
+

∫ x

xi

∫ x

s
max

x≤τ≤x
g(τ , v)h(v, s)dvds

)

+
∫ x

xi

∫ x

s
max

x≤τ≤x
g(τ , v)h(v, s)dvds

]
, (.)

where ri+ and its related functions are defined as in Theorem . by replacing fj(x, s) with∫ x
s maxx≤τ≤x gj(τ , v)hj(v, s)dv, j = , .

Proof Because fj, hj and wj are continuous, we have

∫ x

x
gj(x, s)

∫ s

x
hj(s, τ )wj

(
u(τ )

)
dτ ds

=
∫ x

x
wj

(
u(τ )

)∫ x

τ

gj(x, s)hj(s, τ )dsdτ

=
∫ x

x
wj

(
u(s)

)∫ x

s
gj(x, τ )hj(τ , s)dτ ds≤

∫ x

x
fj(x, s)wj

(
u(s)

)
ds,

where fj(x, s) :=
∫ x
s maxx≤τ≤x gj(τ , v)hj(v, s)dv. Then (.) is reduced to

u(x)≤a(x) +
∫ x

x
f(x, s)w

(
u(s)

)
ds +

∫ x

x
f(x, s)w

(
u(s)

)
ds

+
∑

x<xi<x
βium(xi – ),

which is just the form of (.), if we take bj(x) = x for j = , . Note that for fixed s, the
function fj(x, s) is increasing in x. So f̃j(x, s) := maxt≤τ≤x fj(τ , s) = fj(x, s). By Theorem .,
for x ∈ [xi,xi+), i = , , , . . . ,

ui(x)≤ W–


[
W ◦W–



(
W

(
ri+(x)

)
+

∫ x

xi

∫ x

s
max

x≤τ≤x
g(τ , v)h(v, s)dvds

)

+
∫ x

xi

∫ x

s
max

x≤τ≤x
g(τ , v)h(v, s)dvds

]
. �

Remark . Using the sameway, we can change inequality (.) into the form of (.) with
a(x) = c, f(x, s) = q(s), f(x, s) = g(s)

∫ x
s q(τ )dτ , w(u) = u and w(u) = um.

3 Proof of Theorem 2.1
Obviously, r(x) is positive and nondecreasing in x, and f̃j(x, s) is nonnegative and nonde-
creasing in x for each fixed s and j = , . They satisfy r(x)≥ a(x) and f̃j(x, s)≥ fj(x, s).
We first consider x ∈ [x,x), and we have from (.) and (.)

u(x) ≤ a(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds

≤ r(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/430
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Take any fixed T ∈ (x,x), and we investigate the following inequality

u(x)≤ r(T) +
∫ b(x)

b(x)
f̃(T , s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f̃(T , s)w

(
u(s)

)
ds (.)

for x ∈ [x,T], where f̃ and f̃ are defined in (.). Let

z(x) =
∫ b(x)

b(x)
f̃(T , s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f̃(T , s)w

(
u(s)

)
ds

and z(x) = . Hence, u(x)≤ r(T) + z(x). Clearly, z(x) is a nonnegative, nondecreasing and
differentiable function for x ∈ (x,T]. Moreover, bj(x) is differentiable and nondecreasing
in x ∈ [x,T] for j = , . Thus, b′

j(x)≥  for x ∈ [x,T]. Since w andw are nondecreasing,
z(x) + r(T) >  and bj(x)≤ x for x ∈ [x,T], we have

z′(x)
w(z(x) + r(T))

≤ b′
(x)f̃(T ,b(x))w(u(b(x)))

w(z(x) + r(T))
+
b′
(x)f̃(T ,b(x))w(u(b(x)))

w(z(x) + r(T))

≤ b′
(x)f̃(T ,b(x))w(z(b(x)) + r(T))

w(z(x) + r(T))

+
b′
(x)f̃(T ,b(x))w(z(b(x)) + r(T))

w(z(x) + r(T))

≤ b′
(x)f̃(T ,b(x))w(z(x) + r(T))

w(z(x) + r(T))

+
b′
(x)f̃(T ,b(x))w(z(b(x)) + r(T))

w(z(x) + r(T))

≤ b′
(x)f̃

(
T ,b(x)

)
+
b′
(x)f̃(T ,b(x))w(z(b(x)) + r(T))

w(z(b(x)) + r(T))
.

Integrating both sides of the inequality above, from x to x, we obtain

W
(
z(x) + r(T)

) ≤ W
(
r(T)

)
+

∫ x

x
b′
(s)f̃

(
T ,b(s)

)
ds

+
∫ x

x
b′
(s)f̃

(
T ,b(s)

)
φ
(
z
(
b(s)

)
+ r(T)

)
ds

≤ W
(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds +

∫ b(x)

b(x)
f̃(T , s)φ

(
z(s) + r(T)

)
ds

for x < x ≤ T , where φ(x) = w(x)
w(x)

, or equivalently,

ξ (x)≤ W
(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds +

∫ b(x)

b(x)
f̃(T , s)φ

(
W–


(
ξ (s)

))
ds� z(x),

where

ξ (x) =W
(
z(x) + r(T)

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/430
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It is easy to check that ξ (x) ≤ z(x), z(x) = W(r(T)) and z(x) is differentiable, posi-
tive and nondecreasing on (x,T]. Since φ(W–

 (u)) is nondecreasing from the assumption
(C), we have by (.)

z′
(x)

φ(W–
 (z(x)))

≤ f̃(T ,b(x))b′
(x)

φ(W–
 (z(x)))

+
f̃(T ,b(x))φ(W–

 (ξ (b(x))))b′
(x)

φ(W–
 (z(x)))

≤ f̃(T ,b(x))b′
(x)

φ(W–
 (z(x)))

+
f̃(T ,b(x))φ(W–

 (z(b(x))))b′
(x)

φ(W–
 (z(x)))

≤ f̃(T ,b(x))b′
(x)

φ(W–
 (W(r(T)) +

∫ b(x)
b(x)

f̃(T , s)ds))
+ f̃

(
T ,b(x)

)
b′
(x). (.)

Note that

∫ x

x

z′
(s)

φ(W–
 (z(s)))

ds =
∫ x

x

w(W–
 (z(s)))z′

(s)
w(W–

 (z(s)))
ds =

∫ W–
 (z(x))

W–
 (z(x))

du
w(u)

=W ◦W–


(
z(x)

)
–W ◦W–


(
z(x)

)
=W ◦W–


(
z(x)

)
–W

(
r(T)

)
.

Integrating both sides of inequality (.), from x to x, we obtain

W ◦W–


(
z(x)

)
–W

(
r(T)

)

=
∫ x

x

z′
(s)

φ(W–
 (z(s)))

ds

≤
∫ x

x

f̃(T ,b(s))b′
(s)

φ(W–
 (W(r(T)) +

∫ b(s)
b(x)

f̃(T , τ )dτ ))
ds +

∫ x

x
f̃

(
T ,b(s)

)
b′
(s)ds

≤ W ◦W–


(
W

(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds

)
–W

(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds.

Thus,

W ◦W–


(
z(x)

) ≤ W ◦W–


(
W

(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds

)
+

∫ b(x)

b(x)
f̃(T , s)ds.

We have by (.)

u(x) ≤ z(x) + r(T) ≤ W–


(
ξ (x)

) ≤ W–


(
z(x)

)

≤ W–


[
W ◦W–



(
W

(
r(T)

)
+

∫ b(x)

b(x)
f̃(T , s)ds

)
+

∫ b(x)

b(x)
f̃(T , s)ds

]
.

Since the inequality above is true for any x ∈ [x,T], we obtain

u(T) ≤ W–


[
W ◦W–



(
W

(
r(T)

)
+

∫ b(T)

b(x)
f̃(T , s)ds

)
+

∫ b(T)

b(x)
f̃(T , s)ds

]
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/430
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Replacing T by x yields

u(x)≤ W–


[
W ◦W–



(
W

(
r(x)

)
+

∫ b(x)

b(x)
f̃(x, s)ds

)
+

∫ b(x)

b(x)
f̃(x, s)ds

]
. (.)

This means that (.) is true for x ∈ [x,x) and i =  if replace u(x) with u(x).
For i =  and x ∈ [x,x), (.) becomes

u(x)≤ r(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds

+ βum (x – ) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds

≤ r(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds, (.)

where the definition of r(x) is given in (.). Note that the estimate of u(x) is known.
Equation (.) is same as (.) if replace r(x) and x by r(x) and x. Thus, by (.), we
have

u(x)≤ W–


[
W ◦W–



(
W

(
r(x)

)
+

∫ b(x)

b(x)
f̃(x, s)ds

)
+

∫ b(x)

b(x)
f̃(x, s)ds

]
. (.)

This implies that (.) is true for x ∈ [x,x) and i =  if replace u(x) by u(x).
Assume that (.) is true for x ∈ [xi,xi+), i.e.,

ui(x)≤ W–


[
W ◦W–



(
W

(
ri+(x)

)
+

∫ b(x)

b(xi)
f̃(x, s)ds

)
+

∫ b(x)

b(xi)
f̃(x, s)ds

]
(.)

for x ∈ [xi,xi+).
For x ∈ [xi+,xi+), (.) becomes

u(x)≤ a(x) +
∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(x)
f(x, s)w

(
u(s)

)
ds

+
∑

x<xi+<x
βi+um(xi+ – )

≤r(x) +
i∑

k=

∫ b(xk+)

b(xk )
f(x, s)w

(
uk(s)

)
ds +

i∑
k=

∫ b(xk+)

b(xk )
f(x, s)w

(
uk(s)

)
ds

+
i∑

k=

βk+umk (xk+ – ) +
∫ b(x)

b(xi+)
f(x, s)w

(
u(s)

)
ds

+
∫ b(x)

b(xi+)
f(x, s)w

(
u(s)

)
ds

≤ ri+(x) +
∫ b(x)

b(xi+)
f(x, s)w

(
u(s)

)
ds +

∫ b(x)

b(xi+)
f(x, s)w

(
u(s)

)
ds, (.)

where we use the fact that the estimate of u(x) is already known for x ∈ [x,xi+) by the
assumption (.). Again (.) is same as (.) if replace r(x) and x by ri+(x) and xi+.
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Thus, by (.), we have

u(x)≤ W–


[
W ◦W–



(
W

(
ri+(x)

)
+

∫ b(x)

b(xi+)
f̃(x, s)ds

)
+

∫ b(x)

b(xi+)
f̃(x, s)ds

]
.

This yields that (.) is true for x ∈ [xi+,xi+) if replace u(x) by ui+(x). By induction, we
know that (.) holds for x ∈ [xi,xi+) for any nonnegative integer i. This completes the
proof of Theorem ..

4 Applications
Consider the following impulsive differential equation

dy
dx

= F(x, y), x �= xi,


y|x=xi = Ii(y),
(.)

where y ∈ Rn, F : Rn+ → Rn, Ii : Rn → Rn (i = , , . . .), x ≥ x ≥ , limi→∞ xi = ∞, xi– < xi
for all i = , , . . . .
Assume that
() ‖F(x, y)‖ ≤ h(x)‖y‖ + h(x)e‖y‖, where h, h are nonnegative and continuous on

[x,∞);
() ‖Ii(y)‖ ≤ βi‖y‖m, where βi and m are nonnegative constants.

The solution of (.) with an initial value y(x) = y is given by

y(x) = y +
∫ x

x
F(s, y)ds +

∑
x<xi<x

Ii
(
y(xi – )

)
, (.)

which implies that

∥∥y(x)∥∥ ≤ ‖y‖ +
∫ x

x

(
h(s)‖y‖ + h(s)e‖y‖)ds + ∑

x<xi<x
βi

∥∥y(xi – )
∥∥m. (.)

Let

u(x) =
∥∥y(x)∥∥, a(x)≡ ‖y‖, b(x) = x, b(x) = x,

f(x, s) = h(s), f(x, s) = h(s), w(u) = u, w(u) = eu,

so (.) is same as (.). It is easy to obtain for any positive constants ũ and ũ

r(x)≡ ‖y‖, f̃(x, s) = h(s), f̃(x, s) = h(s), W(u) =
∫ u

ũ

dz
w(z)

= ln
u
ũ

,

W–
 (u) = ũeu, W(u) =

∫ u

ũ

dz
w(u)

= e–ũ – e–u, W–
 (u) = – ln

(
e–ũ – u

)
,

ri+(x) = ‖y‖ +
i∑

k=

∫ xk

xk–
h(s)uk–(s)ds +

i∑
k=

∫ xk

xk–
h(s)euk–(s) ds

+
i∑

k=

βkumk–(xk – ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/430


Mi et al. Journal of Inequalities and Applications 2013, 2013:430 Page 10 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/430

Thus, for any nonnegative integer i and x ∈ (xi,xi+)

ui(x)≤ – ln
(
e–ri+(x)e

∫ x
xi h(s)ds –

∫ x

xi
h(s)ds

)
,

provided that

e–ri+(x)e
∫ x
xi h(s)ds –

∫ x

xi
h(s)ds > .

Remark . From (.), we know that w(u) = eu. Clearly, w(u) = eu ≤ w()w(u) =
eeu does not hold for largeu > . Thus,w(u) does not belong to the class℘ . Againw( u ) =
e u
 ≥ 

w(u) = 
e

u does not hold for large u > , so w(u) does not belong to the class j .
Hence, the results in [] can not be applied to inequality (.).
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