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1 Introduction and preliminaries
Let C be a nonempty closed and convex subset of a real Hilbert space H with the inner
product 〈·, ·〉 and the norm ‖·‖, and let F :H →H be a nonlinearmapping. The variational
inequality problem is to find a point p∗ ∈ C such that

〈
F
(
p∗),p – p∗〉 ≥ , ∀p ∈ C. (.)

Variational inequalities were initially studied by Kinderlehrer and Stampacchia in [],
and since then have been widely investigated. They cover partial differential equations,
optimal control, optimization, mathematical programming, mechanics, and finance (see
[–]).
It is well known that if F is an L-Lipschitz continuous and η-strongly monotone, i.e., F

satisfies the following conditions:

∥∥F(x) – F(y)
∥∥ ≤ L‖x – y‖,〈

F(x) – F(y),x – y
〉 ≥ η‖x – y‖,

where L and η are fixed positive numbers, then (.) has a unique solution. It is also known
that (.) is equivalent to the fixed point equation

p = PC
(
p –μF(p)

)
, (.)
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where PC denotes the metric projection from x ∈ H onto C and μ is an arbitrarily positive
constant.
The fixed point formulation (.) involves the metric projection PC . To overcome the

complexity caused by PC , Yamada [] introduced a hybrid steepest descent method for
solving (.). His idea is stated as follows. Assume thatC =

⋂N
i= Fix(Ti), the set of common

fixed points of a finite family of nonexpansive mappings Ti on H with an integer N ≥ .
Recall that T :H →H is nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈H

and

Fix(T) = {x ∈ H : x = Tx}

denotes the fixed point set of T . Yamada proposed the following algorithm in []

uk+ = T[k+]uk – λk+μF(T[k+]uk), (.)

where T[n] = TnmodN , for integer n ≥ , with the mod-function taking values in the set
{, , . . . ,N}, μ ∈ (, η/L) and {λk} ⊂ (, ), and proved that the sequence {uk} in (.)
converges strongly to p∗ under the following conditions:
(L) limλk = ;
(L)

∑
λk = ∞;

(L)
∑ |λk – λk+N | <∞.

Further, Zeng and Yao [] proved the same result with (L) replaced by
(L) lim(λk – λk+N )/λk+N = .

Theorem . [] Let H be a real Hilbert space, and let F :H → H be an L-Lipschitz con-
tinuous and η-strongly monotone mapping for some constants L,η > . Let {Ti}Ni= be N
nonexpansive self-maps of H such that C =

⋂N
i= Fix(Ti) = ∅, μ ∈ (, η/L), and let condi-

tions (L), (L), (L) be satisfied. Assume in addition that

C =
N⋂
i=

Fix(Ti) = Fix(TT · · · TN )

= Fix(TNTT · · · TN–)

= · · ·
= Fix(TT · · · TNT). (.)

Then the sequence {uk} defined by (.) converges strongly to the unique element p∗ in (.).

It is not difficult to show that (L) implies (L) if limλk/λk+N exists. However, in general,
conditions (L) and (L) are not comparable, i.e., neither one of them implies the other
(see [] for details).
Recently, Zeng et al. [] proposed the following iterative scheme:

uk+ = T[k+]uk – λk+μk+F(T[k+]uk), (.)

and proved the following result.
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Theorem . [] Let H be a real Hilbert space, and let F :H → H be an L-Lipschitz con-
tinuous and η-strongly monotone mapping for some constants L,η > . Let {Ti}Ni= be N
nonexpansive self-maps of H such that

C =
N⋂
i=

Fix(Ti) = ∅,

and let μk ∈ (, η/L). Assume that the following conditions hold:
(i)

∑
λk = ∞, where {λk} ⊂ (, );

(ii) |μk – η/L| ≤ √
η – cL/L for some c ∈ (,η/L);

(iii) lim(μk+N – (λk/λk+N )μk) = .
Assume in addition that (.) holds. If

lim sup
k→∞

〈T[k+N] · · · T[k+]uk – uk+N ,T[k+N] · · · T[k+]uk – uk〉 ≤ , (.)

then the sequence {uk} defined by (.) converges strongly to the unique element p∗ in (.).

They also showed that conditions (L), (L) and (L) are sufficient for {uk} to be bounded
and

lim
k→∞

‖uk – T[k+N] · · · T[k+]uk‖ = .

So, (.) is satisfied. They did not give another sufficient condition different from (L), (L)
and (L).
Let Fx = Ax–u, whereA is a self-adjoint bounded linearmapping such thatA is strongly

positive, i.e.,

〈Ax,x〉 ≥ η‖x‖, ∀x ∈H

and u is some fixed element in H . Xu [] introduced the following iteration process:

uk+ = (I – λk+A)Tk+uk + λk+u, (.)

where I is the identity mapping of H , and proved the following result.

Theorem. [] Let conditions (L), (L) and (L) or (L) be satisfied.Assume in addition
that (.) holds. Then the sequence {uk} generated by algorithm (.) converges strongly to
the unique solution of (.) with Fx = Ax – u.

Very recently, Liu and Cui [] showed that the condition

C =
N⋂
i=

Fix(Ti) = Fix(TT · · · TN ) (.)

is sufficient for (.) if C = ∅.
In this paper, we introduce a new algorithm based on a combination of the steepest

descentmethod for variational inequalities with the Krasnoselskii-Mannmethod for fixed

http://www.journalofinequalitiesandapplications.com/content/2013/1/419
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point problems to solve (.) with C =
⋂N

i= Fix(Ti), where Ti is a nonexpansive mapping
on H for each i.
Given a starting point x ∈H , the iteration is defined by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x ∈H ,

yk = (I – λkμF)xk ,

yik = ( – β i
k)xk + β i

kTiyi–k , i = , . . . ,N ,

xk+ = yNk ,

(.)

and the sequences of parameters {λk} and {β i
k} ⊂ (, ) satisfy the following conditions:

⎧⎪⎪⎨
⎪⎪⎩

λk →  as k → ∞ and
∑

λk = ∞;

β i
k → β i,  < β i < , i = , . . . ,N – ;

 < lim infk→∞ βN
k ≤ lim supk→∞ βN

k < .

(.)

In Section , we prove the strong convergence theorem for (.)-(.) without condi-
tions (L), (L) and (.). An application to the case that Ti is a γi-strictly pseudocontrac-
tive mapping is given in Section .

2 Main results
We need the following lemmas for the proof of our main result.

Lemma . []
(i) ‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉, ∀x, y ∈H .
(ii) ‖( – t)x + ty‖ = ( – t)‖x‖ + t‖y‖ – ( – t)t‖x – y‖, ∀x, y ∈ H , and for any fixed

t ∈ [, ].

From [], we have the following lemma.

Lemma . [] ‖Tλx – Tλy‖ ≤ ( – λτ )‖x – y‖, ∀x, y ∈ H and for a fixed number μ ∈
(, η/L), λ ∈ (, ),where τ = –

√
 –μ(η –μL) ∈ (, ) andTλx = (I–λμF)x for x ∈H .

Lemma . [, ] Assume that T is a nonexpansive self-map of a closed convex subset K
of a real Hilbert space H . If T has a fixed point, then I –T is demiclosed; that is, whenever
{xk} is a sequence in K weakly converging to some x ∈ K and the sequence {(I–T)xk} strongly
converges to some y, it follows that (I – T)x = y.

Lemma . [] Let {xk} and {zk} be bounded sequences in a Banach space E such that

xk+ = ( – βk)xk + βkzk

for k ≥ , where {βk} is in [, ] such that

 < lim inf
k→∞

βk ≤ lim sup
k→∞

βk < .

http://www.journalofinequalitiesandapplications.com/content/2013/1/419
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Assume that

lim sup
k→∞

‖zk+ – zk‖ – ‖xk+ – xk‖ ≤ .

Then limk→∞ ‖xk – zk‖ = .

Lemma. [] Let {ak} be a sequence of nonnegative real numbers satisfying the condition

ak+ ≤ ( – bk)ak + bkck ,

where {bk} and {ck} are sequences of real numbers such that
(i) bk ∈ [, ] and

∑∞
k= bk = ∞;

(ii) lim supk→∞ ck ≤ .
Then limk→∞ ak = .

Now, we are in a position to prove the following main result.

Theorem . Let H be a real Hilbert space, and let F : H → H be an L-Lipschitz con-
tinuous and η-strongly monotone mapping for some constants L,η > . Let {Ti}Ni= be N
nonexpansive self-maps of H such that

C =
N⋂
i=

Fix(Ti) = ∅.

Then the sequence {xk} defined by (.)-(.) converges strongly to the unique element p∗

in (.).

Proof First, we prove that {xk} is bounded. By Lemma ., we have, for any p ∈ C, from
(.) that

∥∥yk – p
∥∥ =

∥∥(I – λkμF)xk – p
∥∥ =

∥∥(I – λkμF)xk – (I – λkμF)p – λkμF(p)
∥∥

≤ ( – λkτ )‖xk – p‖ + λkμ
∥∥F(p)∥∥.

PutMp =max{‖x –p‖, μ

τ
‖F(p)‖}. Then ‖x –p‖ ≤ Mp. So, if ‖xk–p‖ ≤ Mp, then ‖yk –p‖ ≤

Mp. This conclusion has a place for {yik} with i = , . . . ,N – . Indeed,

∥∥yik – p
∥∥ =

∥∥(
 – β i

k
)
(xk – p) + β i

k
(
Tiyi–k – Tip

)∥∥
≤ (

 – β i
k
)‖xk – p‖ + β i

k
∥∥yi–k – p

∥∥
≤ (

 – β i
k
)
Mp + β i

kMp

=Mp.

Then

‖xk+ – p‖ = ∥∥(
 – βN

k
)
(xk – p) + βN

k
(
Tiyi–k – Tip

)∥∥
≤ (

 – βN
k

)‖xk – p‖ + β i
kN

∥∥yN–
k – p

∥∥
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Kim and Buong Journal of Inequalities and Applications 2013, 2013:419 Page 6 of 12
http://www.journalofinequalitiesandapplications.com/content/2013/1/419

≤ (
 – β i

k
)
Mp + β i

kMp

=Mp.

Therefore, the sequence {xk} is bounded. So, the sequences {F(xk)}, {yik}, and {Tiyi–k } (i =
, , . . . ,N ) are also bounded. Without loss of generality, we assume that they are bounded
by a positive constantM.
Let zk = TNyN–

k . Then we have from (.) that

xk+ =
(
 – βN

k
)
xk + βN

k zk

and

‖zk+ – zk‖ =
∥∥TNyN–

k+ – TNyN–
k

∥∥ ≤ ∥∥yN–
k+ – yN–

k
∥∥

=
∥∥(
 – βN–

k+
)
xk+ + βN–

k+ TN–yN–
k+

–
[(
 – βN–

k
)
xk + βN–

k TN–yN–
k

]∥∥
≤ (

 – βN–
k+

)‖xk+ – xk‖ + M
∣∣βN–

k+ – βN–
k

∣∣
+ βN–

k+
∥∥TN–yN–

k+ – TN–yN–
k

∥∥
≤ (

 – βN–
k+

)‖xk+ – xk‖ + M
∣∣βN–

k+ – βN–
k

∣∣
+ βN–

k+
∥∥yN–

k+ – yN–
k

∥∥
≤ (

 – βN–
k+

)‖xk+ – xk‖ + M
∣∣βN–

k+ – βN–
k

∣∣
+ βN–

k+
[(
 – βN–

k+
)‖xk+ – xk‖ + M

∣∣βN–
k+ – βN–

k
∣∣

+ βN–
k+

∥∥yN–
k+ – yN–

k
∥∥]

≤ (
 – βN–

k+ βN–
k+

)‖xk+ – xk‖ + M
(∣∣βN–

k+ – βN–
k

∣∣
+

∣∣βN–
k+ – βN–

k
∣∣) + βN–

k+ βN–
k+

∥∥yN–
k+ – yN–

k
∥∥

≤ · · ·

≤
(
 –

N–∏
i=

β i
k+

)
‖xk+ – xk‖ +

N–∏
i=

β i
k+

∥∥yk+ – yk
∥∥

+ M

N–∑
i=

∣∣β i
k+ – β i

k
∣∣.

On the other hand,

∥∥yk+ – yk
∥∥ =

∥∥(I – λk+μF)xk+ – (I – λkμF)xk
∥∥

≤ ‖xk+ – xk‖ +M(λk+ + λk).

So, we obtain that

‖zk+ – zk‖ – ‖xk+ – xk‖ ≤ M(λk+ + λk)
N–∏
i=

β i
k+ + M

N–∑
i=

∣∣β i
k+ – β i

k
∣∣.
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Since λk →  and β i
k → β i, i = , . . . ,N – , we have

lim sup
k→∞

‖zk+ – zk‖ – ‖xk+ – xk‖ ≤ .

By Lemma ., ‖xk – zk‖ →  as k → ∞, i.e., ‖xk – TNyN–
k ‖ → .

Now, we prove that ‖xk – Tiyi–k ‖ →  for i = , . . . ,N – . First, we prove ‖xk –
TN–yN–

k ‖ → . Let {xkn} be a subsequence of {xk} such that

lim sup
k→∞

∥∥xk – TN–yN–
k

∥∥ = lim
n→∞

∥∥xkn – TN–yN–
kn

∥∥
and let {xkj} be a subsequence of {xkn} such that

lim sup
n→∞

‖xkn – p‖ = lim
j→∞‖xkj – p‖.

Further,

‖xkj – p‖ ≤ ∥∥xkj – TNyN–
kj

∥∥ +
∥∥TNyN–

kj – TNp
∥∥

≤ ∥∥xkj – TNyN–
kj

∥∥ +
∥∥yN–

kj – p
∥∥

≤ ∥∥xkj – TNyN–
kj

∥∥ +
(
 – βN–

k
)‖xkj – p‖

+ βN–
kj

∥∥TN–yN–
kj – TN–p

∥∥
≤ ∥∥xkj – TNyN–

kj

∥∥ +
(
 – βN–

k
)‖xkj – p‖ + βN–

kj

∥∥yN–
kj – p

∥∥
≤ ∥∥xkj – TNyN–

kj

∥∥ +
(
 – βN–

k
)‖xkj – p‖

+ βN–
kj

[(
 – βN–

k
)‖xkj – p‖ + βN–

kj

∥∥TN–yN–
kj – TN–p

∥∥]
≤ ∥∥xkj – TNyN–

kj

∥∥ +
(
 – βN–

k βN–
kj

)‖xkj – p‖
+ βN–

kj βN–
kj

∥∥yN–
kj – p

∥∥
≤ · · ·

≤ ∥∥xkj – TNyN–
kj

∥∥ +

(
 –

N–∏
i=

β i
kj

)
‖xkj – p‖ +

N–∏
i=

β i
kj

∥∥ykj – p
∥∥.

Since

∥∥ykj – p
∥∥ ≤ ( – λkjτ )‖xkj – p‖ + λkjμ

∥∥F(p)∥∥,
we have

‖xkj – p‖ ≤ ∥∥xkj – TNyN–
kj

∥∥ +
∥∥yN–

kj – p
∥∥

≤ ∥∥xkj – TNyN–
kj

∥∥ + ‖xkj – p‖ +
N–∏
i=

β i
kjλkjμ

∥∥F(p)∥∥.
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Therefore,

lim
j→∞‖xkj – p‖ = lim

j→∞
∥∥yN–

kj – p
∥∥. (.)

Next, by Lemma . we have

∥∥yN–
kj – p

∥∥ =
(
 – βN–

kj

)‖xkj – p‖ + βN–
kj

∥∥TN–yN–
kj – p

∥∥

–
(
 – βN–

kj

)
βN–
kj

∥∥xkj – TN–yN–
kj

∥∥

≤ (
 – βN–

kj

)‖xkj – p‖ + βN–
kj

∥∥yN–
kj – p

∥∥

–
(
 – βN–

kj

)
βN–
kj

∥∥xkj – TN–yN–
kj

∥∥

≤ (
 – βN–

kj

)‖xkj – p‖

+ βN–
kj

∥∥(
 – βN–

kj

)
(xkj – p) + βN–

kj

(
TN–yN–

kj – p
)∥∥

–
(
 – βN–

kj

)
βN–
kj

∥∥xkj – TN–yN–
kj

∥∥

≤ (
 – βN–

kj βN–
kj

)‖xkj – p‖ + βN–
kj βN–

kj

∥∥yN–
kj – p

∥∥

–
(
 – βN–

kj

)
βN–
kj

∥∥xkj – TN–yN–
kj

∥∥

≤ · · ·

≤
(
 –

N–∏
i=

β i
kj

)
‖xkj – p‖ +

N–∏
i=

β i
kj

∥∥ykj – p
∥∥

–
(
 – βN–

kj

)
βN–
kj

∥∥xkj – TN–yN–
kj

∥∥.

On the other hand, by Lemma . we get

∥∥yk – p
∥∥ =

∥∥(I – λkμF)xk – p
∥∥

=
∥∥xk – p – (I – λkμF)xk

∥∥
≤ ‖xk – p‖ – λkμ

〈
F(xk),xk – p

〉
≤ ‖xk – p‖ + λkμMMp.

Without loss of generality, assume that α ≤ β i
k ≤ β , k ≥  for i = , . . . ,N –  and some

α,β ∈ (, ). Then we obtain that

α( – β)
∥∥xkj – TN–yN–

kj

∥∥ ≤ ‖xkj – p‖ – ∥∥yN–
kj – p

∥∥ + λkjμMMp

N–∏
i=

β i
kj ,

which with λk →  and (.) implies that ‖xkj – TN–yN–
kj ‖ →  as j → ∞. So, ‖xk –

TN–yN–
k ‖ →  as k → ∞.

Similarly, we obtain that ‖xk – TN–yN–
k ‖ → , . . . , ‖xk – Tyk‖ →  as k → ∞.

Further, we prove that ‖xk – Tixk‖ →  as k → ∞ for i = , . . . ,N . First, note that ‖yk –
xk‖ = λk‖F(xk)‖ →  as k → ∞ because λk →  and ‖F(xk)‖ ≤ M, and ‖yik –xk‖ = β i

k‖xk –

http://www.journalofinequalitiesandapplications.com/content/2013/1/419
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Tiyi–k ‖ →  because ‖xk – Tiyi–k ‖ → , for i = , . . . ,N . Now, from

‖xk – Tixk‖ ≤ ∥∥xk – Tiyi–k
∥∥ +

∥∥Tiyi–k – Tixk
∥∥

≤ ∥∥xk – Tiyi–k
∥∥ +

∥∥yi–k – xk
∥∥

and ‖xk – Tiyi–k ‖,‖yi–k – xk‖ → , it follows that ‖xk – Tixk‖ →  for i = , . . . ,N .
Further, we have

lim sup
k→∞

〈
F
(
p∗),p∗ – xk

〉 ≤ . (.)

Indeed, let {xkj} be a subsequence of {xk} that converges weakly to p̃ such that

lim sup
k→∞

〈
F
(
p∗),p∗ – xk

〉
= lim

j→∞
〈
F
(
p∗),p∗ – xkj

〉
.

Then ‖xkj – Tixkj‖ → . So, by Lemma ., p̃ ∈ C. Therefore, from (.) it implies (.).
Finally, we estimate the value

∥∥xk+ – p∗∥∥ ≤ (
 – βN

k
)∥∥xk – p∗∥∥ + βN

k
∥∥TNyN–

k – TNp∗∥∥

≤ (
 – βN

k
)∥∥xk – p∗∥∥ + βN

k
∥∥yN–

k – TNp∗∥∥

≤ (
 – βN

k
)∥∥xk – p∗∥∥

+ βN
k

[(
 – βN–

k
)∥∥xk – p∗∥∥ + βN–

k
∥∥TN–yN–

k – TN–p∗∥∥]
≤ (

 – βN
k βN–

k
)∥∥xk – p∗∥∥ + βN

k βN–
k

∥∥yN–
k – TNp∗∥∥

≤ (
 – βN

k βN–
k

)∥∥xk – p∗∥∥ + βN
k βN–

k
[(
 – βN–

k
)∥∥xk – p∗∥∥

+ βN–
k

∥∥TN–yN–
k – TN–p∗∥∥]

≤ · · ·

≤
(
 –

N∏
i=

β i
k

)∥∥xk – p∗∥∥ +
N∏
i=

β i
k
∥∥yk – p∗∥∥.

On the other hand, since

∥∥yk – p∗∥∥ =
∥∥(I – λkμF)xk – p∗∥∥

=
∥∥(I – λkμF)

(
xk – p∗) – λkμF

(
p∗)∥∥

≤ ( – λkτ )
∥∥xk – p∗∥∥ – λkμ

〈
F(xk), yk – p∗〉,

we have

∥∥xk+ – p∗∥∥ ≤
(
 –

N∏
i=

β i
k

)∥∥xk – p∗∥∥ +
N∏
i=

β i
k( – λkτ )

∥∥xk – p∗∥∥

+
[
λkμ

〈
F
(
p∗),p∗ – xk

〉
+ λkμ

〈
F
(
p∗),xk – yk

〉] N∏
i=

β i
k

http://www.journalofinequalitiesandapplications.com/content/2013/1/419
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≤
(
 – λkτ

N∏
i=

β i
k

)∥∥xk – p∗∥∥

+ λkτ

N∏
i=

β i
k

[
μ
τ

〈
F
(
p∗),p∗ – xk

〉
+
μ
τ

〈
F
(
p∗),xk – yk

〉]
.

Using Lemma . with

ak =
∥∥xk – p∗∥∥,

bk = λkτ

N∏
i=

β i
k ,

ck =
μ
τ

〈
F
(
p∗),p∗ – xk

〉
+
μ
τ

〈
F
(
p∗),xk – yk

〉
,

‖xk – yk‖ →  and (.), we have that ‖xk – p∗‖ → . This completes the proof. �

3 Application
Recall that a mapping S : H → H is called γ -strictly pseudocontractive if there exists a
constant γ ∈ [, ) such that

‖Sx – Sy‖ ≤ ‖x – y‖ + γ
∥∥(I – S)x – (I – S)y

∥∥, ∀x, y ∈H .

It is well known [] that a mapping T :H →H by Tx = αx+ (–α)Sxwith a fixed α ∈ [γ , )
for all x ∈H is a nonexpansive mapping and Fix(T) = Fix(S).
Using this fact, we can extend our result to the case C =

⋂N
i= Fix(Si), where Si is

γi-strictly pseudocontractive as follows.
Let αi ∈ [γi, ) be fixed numbers. Then C =

⋂N
i= Fix(T̃i) with

T̃iy = αiy + ( – αi)Siy, (.)

a nonexpansive mapping, for each i = , . . . ,N . So, we have the following result.

Theorem . Let H be a real Hilbert space, and let F :H → H be an L-Lipschitzian and
η-strongly monotone mapping for some constants L,η > . Let {Si}Ni= be N γi-strictly pseu-
docontractive self-maps of H such that

C =
N⋂
i=

Fix(Si) = ∅.

Let αi ∈ [γi, ), μ ∈ (, η/L). Assume that {λk}, {β i
k} ⊂ (, ) satisfy (.). Then the se-

quence {xk} defined by (.) with Ti replaced by T̃i of (.) converges strongly to the unique
element p∗ of (.).

4 Numerical example
Consider the following optimization problem: find an element

p∗ ∈ C : ϕ
(
p∗) =min

C
ϕ(x),

http://www.journalofinequalitiesandapplications.com/content/2013/1/419
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Table 1 Iterations of scheme (1.9), where starting point x0 = (4; 15)

kth xk by algorithm (1.9)

0 (4.00000;15.00000)
10 (4.10755;13.434117)
20 (3.89572; 12.58288)

1,000 (1.52757; 3.110295)
1,500 (1.28179; 2.12718)
2,000 (1.13269; 1.53076)
2,500 (1.03367; 1.13468)
3,000 (0.99933; 0.99738)
3,500 (0.99938; 0.99517)
4,000 (0.99942; 0.99768)
4,500 (0.99945; 0.99781)
5,000 (0.99948; 0.99792)

where ϕ(x) = ‖x‖/, x = (x,x) ∈ E, Euclid space, and C = C ∩C, defined by

C =
{
(x,x) ∈ E : x – x +  ≤ 

}
,

C =
{
(x,x) ∈ E : x – x –  ≥ 

}
.

Clearly, the above problem possesses a unique solution p∗ = (; ) and F , the Fréchet
derivative of ϕ, is -Lipschitz continuous and (/)-strongly monotone. Starting with the
point x = (x ;x) = (; ), μ = / ∈ (; η/L) and λk = (k + )/, we obtained the result
in Table .
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