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1 Introduction and preliminaries
The stability problem of functional equations originated from a question of Ulam [] con-
cerning the stability of group homomorphisms:
Let (G,∗) be a group and let (G,�,d) be a metric group with the metric d(·, ·). Given

ε > , does there exist a δ(ε) >  such that if a mapping h :G →G satisfies the inequality
d(h(x ∗ y),h(x)� h(y)) < δ for all x, y ∈ G, then there is a homomorphism H :G →G with
d(h(x),H(x)) < ε for all x ∈ G?
If the answer is affirmative, we say that the equation of homomorphismH(x∗y) =H(x)�

H(y) is stable.
Since Ulam’s question, recently, many authors have given many answers and proved

many kinds of functional equations in various spaces, for example, Banach algebras [],
random normed spaces [–], fuzzy normed spaces [, ], non-Archimedean Banach
spaces [], non-Archimedean lattice random spaces [], inner product spaces [–]
and others [–].
In this paper, using the fixed point method, we prove the generalized Hyers-Ulam sta-

bility of homomorphisms and derivations in Lie C∗-algebras for the following additive
functional equation (see []):

m∑
i=

f

(
mxi +

m∑
j=,j �=i

xj

)
+ f

( m∑
i=

xi

)
= f

( m∑
i=

mxi

)
(.)

for allm ∈N with m ≥ .
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2 Stability of homomorphisms and derivations in C∗-algebras
Throughout this section, assume that A is a C∗-algebra with a norm ‖ · ‖A and B is a
C∗-algebra with a norm ‖ · ‖B.
For any mapping f : A→ B, we define

Dμf (x, . . . ,xm) :=
m∑
i=

μf

(
mxi +

m∑
j=,j �=i

xj

)
+ f

(
μ

m∑
i=

xi

)
– f

(
μ

m∑
i=

mxi

)

for all μ ∈ T
 := {ν ∈ C : |ν| = } and x, . . . ,xm ∈ A.

Recall that a C-linear mappingH : A→ B is called a homomorphism in C∗-algebras ifH
satisfies H(xy) =H(x)H(y) and H(x∗) =H(x)∗ for all x, y ∈ A.
Recently, in [], O’Regan et al. proved the generalized Hyers-Ulam stability of homo-

morphisms in C∗-algebras for the functional equation Dμf (x, . . . ,xm) = .

Theorem . [] Let f : A → B be a mapping for which there are functions ϕ : Am →
[,∞), ψ : A → [,∞) and η : A→ [,∞) such that

lim
j→∞m–jϕ

(
mjx, . . . ,mjxm

)
= ,

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm),∥∥f (xy) – f (x)f (y)

∥∥
B ≤ ψ(x, y),

lim
j→∞m–jψ

(
mjx,mjy

)
= ,

∥∥f (x∗) – f (x)∗
∥∥
B ≤ η(x),

lim
j→∞m–jη

(
mjx

)
= 

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ mLϕ(x, , . . . , )

for all x ∈ A, then there exists a unique homomorphism H : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ 

m –mL
ϕ(x, , . . . , )

for all x ∈ A.

Theorem . [] Let f : A → B be a mapping for which there are functions ϕ : Am →
[,∞), ψ : A → [,∞) and η : A→ [,∞) such that

lim
j→∞mjϕ

(
m–jx, . . . ,m–jxm

)
= ,

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm),∥∥f (xy) – f (x)f (y)

∥∥
B ≤ ψ(x, y),

lim
j→∞mjψ

(
m–jx,m–jy

)
= ,
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∥∥f (x∗) – f (x)∗
∥∥
B ≤ η(x),

lim
j→∞mjη

(
m–jx

)
= 

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(x, , . . . , )≤ L
m

ϕ(mx, , . . . , )

for all x ∈ A, then there exists a unique homomorphism H : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ L

m –mL
ϕ(x, , . . . , )

for all x ∈ A.

Recall that a C-linear mapping δ : A→ A is called a derivation on A if δ satisfies δ(xy) =
δ(x)y + xδ(y) for all x, y ∈ A.
In [], also, O’Regan et al. proved the generalized Hyers-Ulam stability of derivations

on C∗-algebras for the functional equation Dμf (x, . . . ,xm) = .

Theorem . [] Let f : A → B be a mapping for which there are functions ϕ : Am →
[,∞) and ψ : A → [,∞) such that

lim
j→∞m–jϕ

(
mjx, . . . ,mjxm

)
= ,

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm),∥∥f (xy) – f (x)y – xf (y)

∥∥
B ≤ ψ(x, y),

lim
j→∞m–jψ

(
mjx,mjy

)
= 

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ mLϕ(x, , . . . , )

for all x ∈ A, then there exists a unique derivation δ : A → A such that

∥∥f (x) – δ(x)
∥∥
B ≤ 

m –mL
ϕ(x, , . . . , )

for all x ∈ A.

Theorem . [] Let f : A → B be a mapping for which there are functions ϕ : Am →
[,∞) and ψ : A → [,∞) such that

lim
j→∞mjϕ

(
m–jx, . . . ,m–jxm

)
= ,

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm),∥∥f (xy) – f (x)y – xf (y)

∥∥
B ≤ ψ(x, y),

lim
j→∞mjψ

(
m–jx,m–jy

)
= 
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for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ L
m

ϕ(x, , . . . , )

for all x ∈ A, then there exists a unique derivation δ : A → A such that

∥∥f (x) – δ(x)
∥∥
B ≤ L

m –mL
ϕ(x, , . . . , )

for all x ∈ A.

3 Stability of homomorphisms in Lie C∗-algebras
A C∗-algebra C , endowed with the Lie product

[x, y] :=
xy – yx



on C , is called a Lie C∗-algebra (see [, –]).

Definition . Let A and B be Lie C∗-algebras. A C-linear mapping H : A→ B is called a
Lie C∗-algebra homomorphism if H([x, y]) = [H(x),H(y)] for all x, y ∈ A.

Throughout this section, assume that A is a Lie C∗-algebra with a norm ‖ · ‖A and B is a
Lie C∗-algebra with a norm ‖ · ‖B.
Now, we prove the generalized Hyers-Ulam stability of homomorphisms in Lie C∗-

algebras for the functional equation Dμf (x, . . . ,xm) = .

Theorem . Let f : A → B be a mapping for which there are functions ϕ : Am → [,∞)
and ψ : A → [,∞) such that

lim
j→∞m–jϕ

(
mjx, . . . ,mjxm

)
= , (.)

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm), (.)∥∥f ([x, y]) – [

f (x), f (y)
]∥∥

B ≤ ψ(x, y), (.)

lim
j→∞m–jψ

(
mjx,mjy

)
=  (.)

for all μ ∈ T and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ mLϕ(x, , . . . , )

for all x ∈ A, then there exists a unique Lie C∗-algebra homomorphismH : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ 

m –mL
ϕ(x, , . . . , ) (.)

for all x ∈ A.
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Proof By the same method as in the proof of Theorem ., we can find the mapping H :
A→ B given by

H(x) = lim
n→∞

f (mnx)
mn

for all x ∈ A. Thus it follows from (.) that

∥∥H(
[x, y]

)
–

[
H(x),H(y)

]∥∥
B = lim

n→∞


mn

∥∥f (mn[x, y]
)
–

[
f
(
mnx

)
, f

(
mny

)]∥∥
B

≤ lim
n→∞


mn ψ

(
mnx,mny

)
= 

for all x, y ∈ A, and so

H
(
[x, y]

)
=

[
H(x),H(y)

]
for all x, y ∈ A. Therefore, H : A → B is a Lie C∗-algebra homomorphism satisfying (.).
This completes the proof. �

Corollary . Let  < r <  and θ be nonnegative real numbers. If f : A → B is a mapping
such that

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ θ

(‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA
)
,∥∥f ([x, y]) – [

f (x), f (y)
]∥∥

B ≤ θ · ‖x‖rA · ‖y‖rA

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A, then there exists a unique Lie C∗-algebra homomor-

phism H : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ θ

m –mr ‖x‖rA

for all x ∈ A.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xm) = θ
(‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA

)
, ψ(x, y) := θ · ‖x‖rA · ‖y‖rA

for all x, . . . ,xm,x, y ∈ A and putting L =mr–. �

Theorem . Let f : A → B be a mapping for which there are functions ϕ : Am → [,∞)
and ψ : A → [,∞) satisfying (.)-(.) for all μ ∈ T

 and x, . . . ,xm,x, y ∈ A. If there
exists  < L <  such that

ϕ(x, , . . . , )≤ L
m

ϕ(x, , . . . , )

for all x ∈ A, then there exists a unique Lie C∗-algebra homomorphismH : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ L

m –mL
ϕ(x, , . . . , )

for all x ∈ A.
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Corollary . Let r >  and θ be nonnegative real numbers. If f : A → B is a mapping such
that

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ θ · (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA

)
,∥∥f ([x, y]) – [

f (x), f (y)
]∥∥

B ≤ θ · ‖x‖rA · ‖y‖rA

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A, then there exists a unique Lie C∗-algebra homomor-

phism H : A→ B such that

∥∥f (x) –H(x)
∥∥
B ≤ θ

mr –m
‖x‖rA

for all x ∈ A.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xm) = θ · (‖x‖rA + ‖x‖rA + · · · + ‖xm‖rA
)
,

ψ(x, y) := θ · ‖x‖rA · ‖y‖rA

for all x, . . . ,xm,x, y ∈ A and putting L =m–r . �

4 Stability of derivations in Lie C∗-algebras
Definition . Let A be a Lie C∗-algebra. A C-linear mapping δ : A → A is called a Lie
derivation if δ([x, y]) = [δ(x), y] + [x, δ(y)] for all x, y ∈ A.

Throughout this section, assume that A is a Lie C∗-algebra with a norm ‖ · ‖A.
Finally, we prove the generalized Hyers-Ulam stability of derivations on Lie C∗-algebras

for the functional equation Dμf (x, . . . ,xm) = .

Theorem . Let f : A → A be a mapping for which there are functions ϕ : Am → [,∞)
and ψ : A → [,∞) such that

lim
j→∞m–jϕ

(
mjx, . . . ,mjxm

)
= , (.)

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm), (.)∥∥f ([x, y]) – [

f (x), y
]
–

[
x, f (y)

]∥∥
B ≤ ψ(x, y), (.)

lim
j→∞m–jψ

(
mjx,mjy

)
=  (.)

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ mLϕ(x, , . . . , )

for all x ∈ A, then there exists a unique Lie derivation δ : A→ A such that

∥∥f (x) – δ(x)
∥∥
B ≤ 

m –mL
ϕ(x, , . . . , ) (.)

for all x ∈ A.
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Proof By the same method as in the proof of Theorem ., there exists a unique C-linear
mapping δ : A→ A satisfying (.). Also, we can find the mapping δ : A→ A given by

δ(x) = lim
n→∞

f (mnx)
mn (.)

for all x ∈ A. Thus it follows from (.), (.) and (.) that

∥∥δ
(
[x, y]

)
–

[
δ(x), y

]
–

[
x, δ(y)

]∥∥
A

= lim
n→∞


mn

∥∥f (mn[x, y]
)
–

[
f
(
mnx

)
, ·mny

]
–

[
mnx, f

(
mny

)]∥∥
A

≤ lim
n→∞


mn ψ

(
mnx,mny

)
= 

for all x, y ∈ A, and so

δ
(
[x, y]

)
=

[
δ(x), y

]
+

[
x, δ(y)

]
for all x, y ∈ A. Thus δ : A→ A is a Lie derivation satisfying (.). �

Corollary . Let  < r <  and θ be nonnegative real numbers. If f : A → A is a mapping
such that

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ θ · (‖x‖rA + · · · ‖xm‖rA

)
,∥∥f ([x, y]) – [

f (x), y
]
–

[
x, f (y)

]∥∥
A ≤ θ · ‖x‖rA · ‖y‖rA

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A, then there exists a unique derivation δ : A → A such

that

∥∥f (x) – δ(x)
∥∥
A ≤ θ

m –mr ‖x‖rA

for all x ∈ A.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xm) := θ · (‖x‖rA + · · · + ‖xm‖rA
)

and

ψ(x, y) := θ · ‖x‖rA · ‖y‖rA

for all x, . . . ,xm,x, y ∈ A and putting L =mr–. �

Theorem . Let f : A → A be a mapping for which there are functions ϕ : Am → [,∞)
and ψ : A → [,∞) such that

lim
j→∞mjϕ

(
m–jx, . . . ,m–jxm

)
= ,

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ ϕ(x, . . . ,xm),
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∥∥f ([x, y]) – [
f (x), y

]
–

[
x, f (y)

]∥∥
B ≤ ψ(x, y),

lim
j→∞mjψ

(
m–jx,m–jy

)
= 

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A. If there exists  < L <  such that

ϕ(mx, , . . . , )≤ L
m

ϕ(x, , . . . , )

for all x ∈ A, then there exists a unique Lie derivation δ : A→ A such that

∥∥f (x) – δ(x)
∥∥
B ≤ L

m –mL
ϕ(x, , . . . , )

for all x ∈ A.

Proof The proof is similar to the proof of Theorem .. �

Corollary . Let r >  and θ be nonnegative real numbers. If f : A → A is a mapping such
that

∥∥Dμf (x, . . . ,xm)
∥∥
B ≤ θ · (‖x‖rA + · · · ‖xm‖rA

)
,∥∥f ([x, y]) – [

f (x), y
]
–

[
x, f (y)

]∥∥
A ≤ θ · ‖x‖rA · ‖y‖rA

for all μ ∈ T
 and x, . . . ,xm,x, y ∈ A, then there exists a unique Lie derivation δ : A → A

such that

∥∥f (x) – δ(x)
∥∥
A ≤ θ

mr –m
‖x‖rA

for all x ∈ A.

Proof The proof follows from Theorem . by taking

ϕ(x, . . . ,xm) := θ · (‖x‖rA + · · · ‖xm‖rA
)

and

ψ(x, y) := θ · ‖x‖rA · ‖y‖rA

for all x, . . . ,xm,x, y ∈ A and putting L =m–r . �
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