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(X x-x*)=0, WxeC. (A)

In this paper, we consider the following variational inequality. Find a point x* € C
such that

(F-yfix x-x*)=0, VxeC, (B)

and, for solutions of the variational inequality (B) with the feasibility set C, which is the
intersection of the set of solutions of an equilibrium problem and the set of a
solutions of a variational inclusion, construct the two composite schemes, that is, the
implicit and explicit schemes to converge strongly to the unique solution of the
variational inequality (B).

Recently, many authors introduced some kinds of algorithms for solving the
variational inequality problems, but, in fact, our two schemes are more simple for
finding solutions of the variational inequality (B) than others.
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1 Introduction

A very common problem in areas of mathematics and physical sciences consists of trying
to find a point in a nonempty closed convex subset C of a Hilbert space H. This problem
is related to the variational inequality problem (A). One frequently employed approach in
solving the variational inequality problems is the approximation methods. Some approx-
imation methods for solving variational inequality problems and the related optimization

problems can be found in [1-16].
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In this paper, we consider the following variational inequality. Find a point x* € C such
that

((F—yf)x*,x—x*)zo, Vx e C, (B)

where C is the intersection of the set of solutions of an equilibrium problem and the set of a
variational inclusion. In fact, the reason that we focus on the set C in the equilibrium prob-
lems and the variational inclusion problems, plays a very important role in many practical
applications.

For this purpose, we construct the following composite schemes, that is, the implicit

scheme {x,} and the explicit scheme {x,}, respectively,

x = [I = t(F = yf)Jrs = 2A)S, (I — uB)x,, Vte (o, . _lyr ) (1.1)
and
Xn+l = [[ - an(F - Vf)]]R,)»(I - )‘A)SM(I - MB)xm Vn >0. (12)

Our idea is to involve directly the operator F — yf to generate the two composite schemes
(1.1) and (1.2) that converge strongly to solutions of the variational inequality problem (B).
In fact, our two schemes are very simple.

2 Preliminaries

In this section, we introduce some notations and useful conclusions for our main results.
Let H be a real Hilbert space. Let B: H — H be a nonlinear mapping, let ¢ : H — R be

a function, and let ® : H x H — R be a bifunction.

Now, we consider the following equilibrium problem. Find a point x € C such that
O, y) + ¢(y) —ex) + (Bx,y—x) >0, VyeC. (2.1)
The set of solutions of problem (2.1) is denoted by EP. The equilibrium problems in-
clude fixed point problems, optimization problems and variational inequality problems as

special cases. For the related works, see [17-30].
Let f : H — H be a t-contraction, that is, there exists a constant t € [0,1) such that

lf®) -fo)| <<lx-yl, VxyeH,
and let S: H — H be a nonexpansive mapping, that is,
[Sx—Syll < llx=yll, Vx,ye€H.

Recall that a mapping A : H — H is said to be a-inverse strongly monotone if there exists
a constant « > 0 such that

(Ax — Ay, x —y) > a||Ax — Ay|®>, Vx,y€C.
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A mapping F : H — H is said to be strongly positive if there exists a constant p > 0 such
that (Fx,x) > p|lx|? forallx € H.

Let A: H — H be a single-valued nonlinear mapping, and let R : H — 2/ be a set-valued
mapping.

Now, we consider the following variational inclusion. Find a point x € H such that

0 € A(x) + R(x), (2.2)

where 6 is the zero element in H. The set of solutions of problem (2.2) is denoted by (4, R).
The variational inclusion problems have been considered extensively in [31-38] and the
references therein.

A set-valued mapping T : H — 2/ is said to be monotone if, for all x,y € H, f € Tx and
g € Ty imply (x - y,f — g) > 0. A monotone mapping T : H — 2 is said to be maximal
if its graph G(T) is not properly contained in the graph of any other monotone mapping.
It is known that a monotone mapping T is maximal if and only if, for any (x,f) € H x H,
(x—y,f—g) >0 forall (y,g) € G(T) implies f € Tx.

Let R : H — 2H be a maximal monotone set-valued mapping. We define the resolvent
operator Jg; associated with R and A as follows:

Jro =T +AR)Hx), VxeH,

where A is a positive number. It is worth mentioning that the resolvent operator Jz; is
single-valued, nonexpansive and 1-inverse strongly monotone and, further, a solution of
problem (2.2) is a fixed point of the operator Jz; (I — LA) for all A > 0.

Throughout this paper, we assume that a bifunction ® : H x H — R and a convex func-
tion ¢ : H — R satisfy the following conditions:

(H1) O(x,x) =0 for all x € H;

(H2) © is monotone, i.e., O(x,y) + O(y,x) <0 for all x,y € H;

(H3) forally € H, x — ©O(x,y) is weakly upper semi-continuous;

(H4) forallx € H, y+ B(x,y) is convex and lower semi-continuous;

(H5) forallx € H and p > 0, there exists a bounded subset D, C H and y, € H such

that, for any z € H \ Dy,

1
O(z,5x) + 9(x) — 0(2) + m (yx—2z,2-x) <0.
Lemma 2.1 [39] Let H be a real Hilbert space. Let © : H x H — R be a bifunction, and

let ¢ : H— R be a proper lower semi-continuous and convex function. For any i > 0 and
x € H, define a mapping S, : H — H as follows:

1
Sux) = {zeH:@(z,y) +o») -+ —(y—z,z—x) > O,VyeH}, Vx € H.
"
Assume that conditions (H1)-(H5) hold. Then we have the following results:
(1) ForeachxeH, S, (x) #¥ and S, is single-valued.

(2) S, isfirmly nonexpansive, i.e., for any x,y € H,

”Sux - S;Ly||2 = <Sux - Suy’x —J’>~
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(3) Fix(S,(I — uB)) = EP.
(4) EP is closed and convex.

Lemma 2.2 [40] LetR: H — 2 be a maximal monotone mapping, andlet A : H — H bea
Lipschitz-continuous mapping. Then the mapping (R +A) : H — 2 is maximal monotone.

Lemma 2.3 [8] Let H be a real Hilbert space. Let the mapping A : H — H be a-inverse

strongly monotone, and let A > 0 be a constant. Then, we have
| (= 24)% = (1 = 24)y|” < = I + 20 - 20) | Ax - Ay|%, ¥y € H.
In particular, if 0 < A <2a, then I — AA is nonexpansive.

Lemma 2.4 [41] Assume that {a,} is a sequence of nonnegative real numbers satisfying
an < (- yna, + 8, where {y,} is a sequence in (0,1), and {3,} is a sequence such that

(@) 2252 vn = 005
(b) limsup,_, ., i—’; <0o0r) 22 8, < 00.

Then lim,,_, o a, = 0.

3 Main results
In this section, we give our main results. In the sequel, we assume the following conditions

are satisfied.

Condition 3.1 H isareal Hilbert space. ¢ : H — R is alower semi-continuous and convex
function, and ® : H x H — R is a bifunction satisfying conditions (H1)-(H5).

Condition 3.2 F is a strongly positive bounded linear operator with coefficient 0 < p <1,
f:H — H is a t-contraction satisfying p > 7, where y > 0 is a constant, and R: H — 2/

is a maximal monotone mapping.

Condition 3.3 A,B: C — Carean «-inverse strongly monotone operator and a 8-inverse

strongly monotone operator, respectively.
Condition 3.4 A and u are two constants such that 0 < A <2« and 0 < < 28.
Condition 3.5 Q:= EPNI(A,R) is nonempty.

Now, we first consider the following scheme.

Algorithm 3.1 For any ¢ € (0, ,)}7)' define a net {x;} as follows:

x = [I = t(F = yf)Jra( = 2A)S, (I — 1B)x;. (3.1)

Remark 3.2 The net {x,} defined by (3.1) is well-defined. In fact, from Lemmas 2.1 and
2.3, we know that the mappings / — 1A and / — B and S, are nonexpansive. For any x € H,
we define a mapping Wyx = [I — £(F — yf)Jr,(I — LA)S, (I — uB)x. We note that [ — ¢F is
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positive and || — tF|| <1 - tp. Hence we have

Wex = Wiyl = ||[1 = ¢(F = yf)Jra (I = 2A)S, (I - uB)x
— (1= o(F = yf))rsll = 2A)S,.(I - uB)y||
< |l = tF || oy (I = 2A)S, (I = uB)x = Jrs (I = 2A)S, (I - uB)y |
+ty | (Jra I = 2A)S,.(I = uB)x) —f (Joa I = 2A)S,.(I - uB)y) |

<@-pO)lx-yll +tyrle—yll = [1- (o - yo)t]lx -yl

This shows that W is a contraction. Therefore, W has a unique fixed point, which is de-

noted by x;.

Theorem 3.3 The net {x,} defined by (3.1) converges strongly to the unique solution x € Q
of the following variational inequality:

(F-yf)xy-%)>0, VyeQ. (3.2)

Remark 3.4 First, we can check easily that F — yf is strongly monotone with coefficient
p — y 7. Now, we show the uniqueness of the solution of the variational inequality (3.2).
Suppose that x* € Q and x € Q2 both are solutions to (3.2). Then we have

(F-yfa,z-x%)=0, (F-yHrx"-&)>o0.
Adding up the last two inequalities gives
((F=ypi—(F - yf)x", - ") <0,
The strong monotonicity of F — yf implies that x = x*, and so, the uniqueness is proved.
Next, we give the detail proofs of Theorem 3.3.

Proof Pick up x* € Q. It is clear that S, (x* — uBx*) = Jp (x* — LAx*) = x*. Set z, = S, (%, —
uBx;) and y; = Jr, (z; — AAz;) for all £ € [0, 1]. It follows from Lemma 2.3 that
lye = x*|| = [ Jra(ze — AAz¢) = Jro (5 — 2Ax") |
< H (z¢ — MAz) — (x* - AAx*) H

o —

and

o2~ = 1, = 1B) 5, — B
< || 6o — pBixy) — (5" — ") |
< e + e ~28) | B~ B

< e, (3.3)
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Therefore, we have
e =2 < floee = 7.
From (3.1), we get

e = = [[1 = 6F = v ) ]y - 7|
= U= (=) [ + 2y [£00) —f () [ + | (F -y
< (= pt)|ye =" + tye|ye =" + ] (F ~ y )|

I(F = yf)x"|
p_ )

<[1-(p-yot]|x =] + (0 - yo)t
YT

and so,

x*H < ||(F—)’f)x*||.

(B
p-yT

Therefore, the net (x;) is bounded, and so {y;}, {z;:}, {Fy;} and {fy;} are all bounded. It
follows from (3.3) and Lemma 2.3 that

”yt - ”2 = ”]R,A (2 — MAz;) —Jra (x* - )‘Ax*) ||2
< e~ 2Az) ~ (3"~ 24x) |
< =" + 26~ 20) Az~ Ax |

< ”xt —x* ”2 + (- 2/3)”th — Bx* H2 + A= 2a)HAzt - Ax* Hz (3.4)
By (3.1), we obtain

e =" [* = |7 = dF =y )Ly =
<[lye =] + el E = vp])
= lye =21 + el = [N E = vAhye] + Al E = we])

< ye—*|* + M, (3.5)

where M > 0 is some constant satisfying

1
sup{2||yt—x*H ||(F—yf)ytH +t||(F—yf)y,||2:te (0, )} <M.
p-yT

By (3.4) and (3.5), we have

2

’

||yt - x* ||2 < ||y, -x* ||2 +tM + (e —2/3)||th — Bx* ||2 + A0 —205)”Azt - Ax*

and so,

(128 - )| Bx; - Bx*||* + (20 — 3)|| Az — Ax*|* < M,
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which implies that
lim”Azt - Ax* || =0, lim”th — Bx* H =0.
t—0 t—0

Since S, is firmly nonexpansive, we have

oo =21 = 1500 aB) - 5, - )
< (xt — uBx; — (x* - ;LBx*),zt - x*)
1
L b= (5 - )+ |

- e B - (- 1B ~ (22 - ) )

1

< S (lwe=a "+ oo =2 = e~ 2 = (B - B) )
1

=5l =2+ o=~ o~ 2al?

+2M<th—Bx ,xt—zt)—u ||Bx,5—Bx ||2),

and so,

2o = |* < [ = 2% | = e = 200? + 200 | Bty — B | e = ). (3.6)

Since Jr, is 1-inverse strongly monotone, we have
e =2*|* = Vralee - 2Aze) — Jon (6" - 1Ax")|*
< <zt — Mz — (x* - AAx*),yt - x*)
1
- Ml 2 =) o -
— ||ze = 2Az, — (8" = AAX*) = (y, — x¥) ||2)

< Sl " + Iy =" =z =30~ 2 (Az - 4x7)[)

Ib—‘ [\)|D—l

= b= - -
+ 2)»<AZ[ —Ax*,Z[ _yt) — )\,2 ||Azt —

* 2)’

which implies that

lye = 2|)* < |2 —*|* = Iz = 3ell® + 22| Aze — Ax* | l12¢ = el

Thus, by (3.6) and (3.7), we obtain

lye =2 > < o = 2| * = % = 211 + 24| Bxe = Bx* | 12 —

— llze =y l1? + 24 ]| Az — Ax* |1z = .. (3.8)
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Substituting (3.5) into (3.8), we get

lye = |” < |3 =% || + eM = 12, — 21 + 200 Bos = Ba*| ;- ¢

= llz —J’t||2 + 2)~||Azt - Ax* ” llze = yell.
Thus, we derive

| —Zt||2 + |z —J’t”2 <M+ 2,U«||th — Bx* ” lloc: — z¢ || + 2)~||Azt - Ax* ” llze = yells

and so,
lim ||x; — z¢|| =0, lim ||z, — y¢|| = 0.
t—0 t—0

By (3.1), we obtain

e =]

([1 - t(F = vN]ye — 5", 2 — x%)

([1-t(F=yN)]ye - [1 - tF =y ]a* 20 — &%) = {(F = yf)x*, %, — x¥)

< (U= p0) e e — " + 7[00 () | 0" = e =y’ =)

<[1-(o-yo)t]|2e —x* ||2 —t{(F - yf)x*, 2 — x%).

It follows that

||xt —x* H2 < _,0 _lyf((F— v)x*, % —x*). (3.9)

Next, we show that the net {x,} is relatively norm-compact as t — 0*. In fact, assume
that {t,} C (0,1) is such that ¢, — 0" as n — oo. Put &, := &, ¥, := 1, and z,, := z;,. From
(3.9), we have

||x,, —x* ||2 <- T((F— y)x*, x, —x*), Vx* € Q. (3.10)

Since {x,} is bounded, without loss of generality, we may assume that {x,} converges
weakly to a point x € H.

Next, we prove that x € Q. We first show that ¥ € EP. By z, = S,,(x,, — uBx,), we know
that

1
®(zn:y) + (P()/) - <P(Zn) + ;(y ~ZnZp — (xn - /'Lan)) >0, Vy €H.
It follows from (H2) that

1
9() — (za) + ;(y—zmzn - (%4 — uBx,)) = O(,2,), Vy€H,
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and so,

Zp; — (%, — UBxy;)

> >0, zy), VyeH. (3.11)
uw

() = ¢(zn,) + <y = Zn
Forany ¢ € (0,1] and y € H, let u; = ty + (1 — t). It follows from (3.11) that

(U =z, Buy) > (uy — 2., Buy) — @(ue) + @(25;)

Zp; — (%, — uBxy;)
—\uy -z, ————

> + ®(utvzni)
M

= (uy — 2, Buy — Bzy,;) + (s — 2y, Bz, — Bxy;) — (1)

Zn

. — Xy
+ <P(Zni) - <ut — Zn;» - m i > + ®(ut: Zni)~

Since ||z,; — x,,;|| = 0, we have ||Bz,, — Bx,, || — 0. Further, by the monotonicity of B, we
have (u; — z,,, Bu; — Bz,,) > 0. Thus, from (H4) and the weakly lower semi-continuity of

®, Z"’_% — 0 and z,;, — X weakly, it follows that
(e = %, Buy) > —p(ur) + (%) + O(uy, x). (3.12)
From conditions (H1), (H4) and (3.12), we also have

0 = ©(uz, ur) + @(ue) — (usr)
<t0(up,y) + (1 - 1)O(u, x) + to(y) + (1 — (%) — ¢(u)
= t[O(us,y) + () — o) ] + (1 - £)[ Oy, %) + ¢(F) - p(ur) ]
<t[O(usy) + () — @) + A - 1) (4 — X, Buy)

= ][O (ur,y) + 9(y) — p(ur)] + A - 1)ty — &, Buy),
and hence
0 < O(us,y) + 9() — p(ur) + (1 - 1) (y — %, Buy).
Letting t — 0, we have
O,y +¢(y) —ex)+ (y—%,Bx) >0, VyeH.

This implies that x € EP.

Next, we show that x € I(A, R). In fact, since A is a-inverse strongly monotone, A is a
Lipschitz continuous monotone mapping. It follows from Lemma 2.2 that R+ A is maximal
monotone. Let (v,2) € G(R + A), i.e.,, g — Av € R(v). Again, since y,, = Jr1(2,, — AAz,,), we
have z,, — LAz,, € (I + AR)(yy,), i.e., %(Zn,- — Y, — Mzy,) € R(yy,). By virtue of the maximal
monotonicity of R, we have

1
<V ~Ynj & —Av— X(an' — Y — )LAZn,')> >0,
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and so,

1
(V=9u g = <v — Y AV + X(zni -V — )»Az,,,.)>
1
= <v—y,,,,Av—Ay,,l. + Ay, — Az, + X(zn, —y,,l.)>
1
> (V_yn,vAyni _Azni> +A\V—=Yu, X(zni _yni) .
It follows from ||z, — y,|| = 0, ||Az, — Ay,|| — 0 and y,, — ¥ weakly that

lim (v—7,,8) = (v-%,¢) > 0.

n;— 00

It follows from the maximal monotonicity of A + R that 6 € (R + A)(%), i.e., ¥ € I(A,R).
Hence x € Q. Therefore, if we can substitute x for x* in (3.10), then we get

=112
lln — %" < -

v ((F =y )&%, — %). (3.13)

Consequently, the weak convergence of {x,} to X actually implies that x, — & strongly.
This shows the relative norm-compactness of the net {x;} as t — 0*.
Now, we return to (3.10). If we take the limit as # — oo in (3.10), then we get

& )" < -

<(F— yf)x*,fc—x*), Vx* € Q.
T
In particular, ¥ solves the following variational inequality
xeQ, ((F-yfa,x"-%>0, Va*eQ. (3.14)

We know that the variational inequality (3.14) is equivalent to its dual variational inequal-

ity
x€Q, (F-yNxx"-x=0, Vx*eQ.

Thus, by the uniqueness of the variational inequality, we deduce that the entire net {x;}
converges in norm to x as t — 0. This completes the proof. O

Next, we introduce an explicit scheme and prove its strong convergence to the unique
solution of the variational inequality (3.2).

Algorithm 3.5 For any xy € H, define the sequence {x,} generated iteratively by
X+l = [1 - an(F - yf)]]R,A(I - )\A)Su(l - /LB)X,,, Vn > 0, (315)
where {«,} is a real sequence in [0,1].

Theorem 3.6 Assume the following conditions are also satisfied:

Page 10 of 17
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(C1) limyooay=0andy o2, oy = 00;
(C2) limy,_ oo =22 =1.

Ap+l

Then the sequence {x,} generated by (3.15) converges strongly to the unique solution x € Q
of the variational inequality (3.2).

Proof We write z, = S,,(I — uB)x, and y, = Jr, (2, — AAz,) for all n > 0. Then it follows
from Lemma 2.3 that, for any x* € €2,

lyn = x*|| = | Jri(zn = AAZ4) = Jri (x* = 2AxY) |
< |l(zn = 2Az,) - (x* - 2Ax™) |

Sy —
and

o = 8550~ )~ S5 — )|
< e — By - (5" — ) |
< -2 B 3

< Jan -] % (3.16)
Hence we have
Iy =] = I, -],
By induction, it follows from (3.15) that

|1 =% || = |[1 = €uE = v.) ]y — ¥
< [[7 = cnF = y)]yn = [1 = (P = y) ] | + 0| (F = v1)x"||
< T =anF)(yu =) | + 27 |[f ) —f (&%) || + ]| (F = v.1)2"]|

= (= poun) [y =" + @yt =& + cu | (F = v "

F_ *
< [1- (o= yo ]l -2 + (o -y, D
p-yT
< max{ o — x* ,W}
p-yT
< max{ 0 — x* ,W}
p-yT

Therefore, {x,} is bounded, and so, {z,}, {y.}, {Fy,} and {fy,} are all bounded. It follows
from (3.15) that
”xn+2 - xn+l|| = H [1 - an+l(F - yf)]yrﬁl - [1 - Oln(F - yf)]yn ||
= H [I — oty (F - yf)]yml - [I — 1 (F - ]/f)]yn ”

+ |an+1 - an| ”(F - )/f)yn ||
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< M = et Flllynar = yull + ety [f Gni) =) |
+ o1 =l | (F = vf)yu
= (A= potws)lynsr = Yull + Cnia ¥ Tlymsr = yull
+ ot — @l | (F = v )y |
=[1= (o = yOanar]|yner = yull + s = &l | (F = 1)y .- (3.17)

Note that

[0 = Yl = [ TR Zns1 = AAZui1) = Jro(2n — 1AZ,) ||
< 2w = AAzp1 = (2, — 1Az,) |
< 1Zn1 = zull
= || S ns1 — uBXus1) — Sy — B, |
< | @1 — uBxyi1) — (% — 1Bxy) |
< %1 = xull- (3.18)

Substituting (3.18) into (3.17), we get

19642 = X1l
= [1 — (o - J/T)Oanrl] %41 = Xnll + |tns1 — ol ” (F=yf)yn ”

i1 = ol ICF =y f)yull
Oyl pP-YT

= [1- (o = yO)ena | IIyni1 = ¥ull + (0 = ¥ Detyia

Notice that lim,,—, o, |1 — =22 | = 0. This, together with the last inequality and Lemma 2.4,

Ap+l

implies that
lim %41 — x4 = 0.
n—00
Again, using Lemma 2.3 and (3.16), we get

[y -]
= Vra(en = 2Az4) ~ Joa (2" - 2Ax%) |*
< |(an - 24z,) - (" - 2427) |

< ||z =& |* + A1 - 20) | Az, - Ax*|?

< ||x,, -x* ||2 +u(u —28) ”Bx,, — Bx* ”2 +A(A - 2a) ||Az,, — Ax* ||2 (3.19)
By (3.15), we obtain

e I | S A

<[y = + | =yl

Page 12 of 17
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= low =" + 2y = [ 1E =yl + el =209

< o] + ey, (3.20)
where M; > 0 is a constant satisfying
sup{ 2|y —%* | | (F = vy + an||(F= vy :n = 1) < M.
From (3.19) and (3.20), we have

[t =" = o =+ 12 = 28)] B, ~ B |

+AA - 2a) ”Az,, — Ax* ”2 + o, M,
and so,

1128 — )| Bx,, - Bx*|* + A(2a - 1) || Az, — Ax* |
< o= = [ =" [+

= (oen ="+ Jovmn =" [ loen = all + M,

which implies that
lim ”Bx,, — Bx* || =0, lim ||Az,, — Ax* || =0.
n— o0 n—0o00

Since S, is firmly nonexpansive, we have
2 = = il = 1eB) =, (5"~ B)
< (%4 — uBx, — (x* — uBx*), 2, — x*)
1
L (B - (5 = B[+ 2]
2
N = Bty (s~ )~ 2~ ) )

< 5 (lwn ="+ w =" = o = 20 = 1 (Bra — B2") )

= N =

= 5 (=" + 2w =2 = Mt = 20

2),

+ 2u(Bxy — Bx*, %, — 2) — || Bx,y — Bx*|

and hence
2 =2 |* < Jom = %) = o = 2> + 21| By — B[ 1t = 2. (3.21)
Since J ;. is 1-inverse strongly monotone, we have

[y = = W en = 2Az) — T (6" — 2Ax") |

<(zn — Az, - (x* = MAX"),y, — x")
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1
etz 24 P Py
_ ||zn - Mz, - (x* - AAx*) - (yn —x*) ||2)

(2w =17+ =1 = 12 =0 = 2(A2s - 4x) )

=

[ = N =

(N2 =" + 3 = 2|* = 12 = 7ull?

2
+ ZA(AZn - Ax*,z, —yn) - ”Azn - Ax" ”2)’

which implies that
lyn = 2% < 2 = 2*|* = llzw = 9ul® + 24| Az — Ax* | 120 = 3. (3.22)
Thus, by (3.21) and (3.22), we obtain

[y =2 |” < |0 = &*|)* = 10 = 2l1? + 242 | B, = Bx*|| 1, — 2l

- ||Zn_yn||2 +2)L||Azn_Ax* ””Zn_yn”' (3.23)
Substituting (3.20) into (3.23), we get

[y =2 |” < |9 =% || + vy = I, = 21 + 28| By — B |12 — 2

- ”Zn _yn||2 + 2)‘”Azn _Ax* ” ”Zn _yn”-
Thus, we derive

2 2
”xn _Zn” + ”Zn _yn”

< o,M; + zl/L”an — Bx* H %, = zull + 2)»||AZ,,, - Ax* ” zw = yull,
and so,
lim ||x, —z,| =0, lim [z, — y,|l = 0.
n—0o0 n—00

Next, we prove that

lim sup —
P

n—00

_2” ((F=yf)x,x,—%) <0, (3.24)

where X is the unique solution of the variational inequality (3.2). To see this, we can take

a subsequence {x,, } of {x,} satisfying

limsup — ((F =y )&%, — %) (3.25)

n—00

F—yf)%,x, — %)= lim —
_ 1:(( V% =) k00 p—y7
and {x,, } converges weakly to a point x* as kK — o0. By the similar argument as in Theo-
rem 3.3, we can deduce x* € Q. Since ¥ solves the variational inequality (3.2), by combining
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(3.24) and (3.25), we get

n—00

2 2
limsup——((F — y )%, x, — X) = ————((F — y)x,x* - %) < 0.
S\ E=vf )= Eys )
Finally, we show that x, — X as n — oo. It follows from (3.15) that

a1 =% = (i1 = % 01 — )

= ([ = an(F = v)]yn — &, %001 — %)

=([I = on(F = y)]yn = [I — au(F = v) 5", %1 — %)
= au((F = yf)x" i1 — &%)

< U= = s =]+ o)) [ =
— a((F = yf)x*, 01 — x7)

<[1= (o =y )] ||lyn — o | [2nir = & | = ctu((F = y)a", %01 = x)

< [1= (o= yO)an] || = o | |1 = 2" | = cta((F = y)x*, 2011 = x)

(0 —yT)ay

1-
<
- 2

- an<(F - yf)x*rxnﬂ - x*>)

1
O I e

that is,

||xn+1 —x* “2 = [1 - (/0 - )/'L')Oln] ||xn _x* ||2 - 20{;1((1: - yf)x*¢xn+l _x*)

= (1= 8,)||on — x* ||2 + 8400,

where §,, = (0 — yt)a, and 0, = —p_iyr ((F—yf)x*, 2,41 —x*). It is easy to see that Y -, 8, =

oo and limsup,,_, ., 0, < 0. Hence, by Lemma 2.4, we conclude that the sequence {x,} con-
verges strongly to the point x*. This completes the proof. a
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