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1 Introduction
This is the inheritance of the idea of [, Theorem ] which gives a new interpretation of
Jensen’s inequality by ϕ-mean. The finite form of Jensen’s inequality proved by Jensen in
 asserts that if t, . . . , tn are positive numbers with

∑n
i= ti =  and f is a continuous

convex (resp. concave) function on a real interval I , then

f

( n∑
i=

tixi

)
≤

n∑
i=

tif (xi)

(
resp. f

( n∑
i=

tixi

)
≥

n∑
i=

tif (xi)

)

holds for all x, . . . ,xn ∈ I .
We first introduce a concept called ‘(∗,◦)-convex (or concave)’ for a continuous func-

tion from a topological abelian semigroup (I,∗) to another topological ordered abelian
semigroup (J ,◦) and give an interesting example of such a function (see Remark ). Our
purpose of this paper is to give a finite form of Jensen’s inequality for such a function under
some assumption (see Theorem ). Also, as an application, we give a refinement of a mean
inequality (see Theorem ).

2 Terminology andmain theorem
Let I be a topological space, and let ∗ be a topological abelian semigroup operation on I .
For any x ∈ I and n ∈ N with n ≥ , define the nth power x(n)∗ of x recursively by x()∗ = x
and x(n+)∗ = x(n)∗ ∗ x for n≥ . We assume that

(�) any nth-power function x �→ x(n)∗ is a bijection of I onto itself.

© 2013 Nakasuji and Takahasi; licensee Springer. This is anOpen Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
mailto:sin_ei1@yahoo.co.jp
http://creativecommons.org/licenses/by/2.0


Nakasuji and Takahasi Journal of Inequalities and Applications 2013, 2013:408 Page 2 of 11
http://www.journalofinequalitiesandapplications.com/content/2013/1/408

By the assumption (�), for each x ∈ I and n ∈N, there exists a unique element a of I such
that a(n)∗ = x. Denote by x(/n)∗ such an element a. Moreover, we define

x(m/n)∗ =
(
x(/n)∗

)(m)∗

for eachm,n ∈ N. Then we can easily see that this definition is well defined, that is,

m
n

=
m′

n′ ⇒ (
x(/n)∗

)(m)∗ =
(
x(/n

′)∗)(m′)∗ (∀x ∈ I).

In this case, we can easily show that the following power laws:

x(p+q)∗ = x(p)∗ ∗ x(q)∗ , x(pq)∗ =
(
x(p)∗

)(q)∗ and (x ∗ y)(p)∗ = x(p)∗ ∗ y(p)∗ ()

for all p,q ∈ Q+ and x, y ∈ I . Here Q+ denotes the set of all positive rational numbers.
Moreover, we assume that

(�) for each x ∈ I , the function p �→ x(p)∗ is continuous on Q+ and it has a continuous
extension to R+, say t �→ x(t)∗ .

Here R+ denotes the set of all positive real numbers. Therefore power laws () hold for all
p,q ∈ R+. Denote byA+(I) the set of all topological abelian semigroup operations on I sat-
isfying the assumptions (�) and (�). Our assumption (�) leads to the following important
concept called ‘mean’. For each x, y ∈ I , put

M∗(x, y) = (x ∗ y)(/)∗ .

We callM∗(x, y) the mean of x and y with respect to the operation ∗.
Moreover, let J be a topological ordered space with relation ≤, and denote by A

+(J ,≤)
the set of all operations ◦ ∈A+(J) such that

(�) a ≤ b ⇔ a ◦ c≤ b ◦ c (a,b, c ∈ J)

and

(�) a≤ b ⇒ a(t)◦ ≤ b(t)◦ (a,b ∈ J , t ∈ R+).

Let C(I, J) be the set of all continuous functions from I to J . Take ∗ ∈A+(I), ◦ ∈A
+(J ,≤)

and f ∈ C(I, J) arbitrarily. If f satisfies

f
(
M∗(x, y)

) ≤ M◦
(
f (x), f (y)

) (
resp. f

(
M∗(x, y)

) ≥ M◦
(
f (x), f (y)

))
for all x, y ∈ I , then we say that f is said to be (∗,◦)-convex (resp. concave).
The following theorem states a finite form of Jensen’s inequality for a (∗,◦)-convex (or

concave) function.

Theorem  Let ∗ ∈A+(I) and ◦ ∈A
+(J ,≤). If f ∈ C(I, J) is (∗,◦)-convex, then

f
(
x(t)∗ ∗ · · · ∗ x(tn)∗n

) ≤ f (x)(t)◦ ◦ · · · ◦ f (xn)(tn)◦

holds for all n ∈N, x, . . . ,xn ∈ I and t, . . . , tn ∈ R+ with t + · · · + tn = .
If f is (∗,◦)-concave, then the inequality above is reversed.
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Remark  Let R
+ be the product space of R+ with ordinary topology. Let ∗ be the opera-

tion on R
+ defined by

(a,b) ∗ (c,d) = (ac,ad + bc)

for each (a,b), (c,d) ∈ R
+. Then ∗ is a topological abelian semigroup operation on R

+ (cf.
[, p.-]). In fact, (R

+,∗) is topologically isomorphic to an abelian subsemigroup of
the semigroup of all ×  matrices with usual product under the following mapping:

(a,b) �→
(
a b
 a

)
.

Note that

(a,b)(n)∗ =
(
an,nan–b

)
and (a,b)(/n)∗ =

(
a/n,

b
na–/n

)

for all n ∈N. Then a simple calculation implies that

(a,b)(m/n)∗ =
(
am/n,

m
n
a

m
n –b

)

for eachm,n ∈N. Therefore we see that ∗ ∈A+(R
+). In this case, we obtain from a simple

calculation that

M∗
(
(a,b), (c,d)

)
=

(√
ac,

ad + bc

√
ac

)

for each (a,b), (c,d) ∈ R
+.

Now let · be the ordinary multiplication on R+. Since R+ becomes a topological ordered
space with the ordinary topology and the ordinary order ≤, we have that · ∈ A

+(R+,≤)
andM·(x, y) =

√xy for each x, y ∈ R+. Let α and β be real numbers and put

fα,β (a,b) = aαbβ

for each (a,b) ∈ R
+. Then fα,β is a continuous function from R

+ to R+ such that

fα,β
(
M∗

(
(a,b), (c,d)

))
= (

√
ac)α–β

(
ad + bc



)β

and

M·
(
fα,β (a,b), fα,β (c,d)

)
= (

√
ac)α(

√
bd)β

for each (a,b), (c,d) ∈ R
+. Therefore we can easily see that if β ≤  (resp. β ≥ ), then fα,β

is (∗, ·)-convex (resp. (∗, ·)-concave).

Remark  Let E be a nontrivial real interval with the ordinary topology and the ordinary
order ≤. In this case, Craigen and Pales [] showed that if ◦ is a continuous cancellative

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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semigroup operation on E, then there exists a continuous order-preserving bijection ϕ of
E onto another (necessarily unbounded) real interval such that

a ◦ b = ϕ–(ϕ(a) + ϕ(b)
)

for all a,b ∈ E (cf. Aczel [, ]). Therefore we can easily see that if ϕ(E) = R+, then all
continuous cancellative semigroup operations on E are in A

+(E,≤).

Remark  It is clear that a direct product of R+ admits a semigroup operation in A
+

that is given as the product of semigroup operations on each R+. However, the semigroup
operation on R

+ described in Remark  does not satisfy properties (�) and (�). So, it
would be of interest to give an example of an ordered abelian semigroup with a semigroup
operation inA

+, which is not isomorphic, as a topological semigroup, to the direct product
of the topological semigroup R+.

3 Lemmas and proof of Theorem 1
Throughout this section, let I and J be as in Section  and suppose that ∗ ∈ A+(I), ◦ ∈
A

+(J ,≤) and that f ∈ C(I, J) is (∗,◦)-convex.

Remark  If f ∈ C(I, J) is (∗,◦)-concave, then all inequalities in this section are reversed.

Lemma  The inequality

f
(
x(/)∗ ∗ · · · ∗ x(/

n)∗
n

) ≤ f (x)(/)◦ ◦ · · · ◦ f (xn–)(/n–)◦ ◦ [
f
(
x(/)∗n

)](/n–)◦
holds for all n ∈N and x, . . . ,xn ∈ I .

Proof Let n ∈N and x, . . . ,xn ∈ I . Since f is (∗,◦)-convex, it follows that

f
(
x(/)∗ ∗ x(/

)∗
 ∗ · · · ∗ x(/

n)∗
n

)
= f

((
x ∗ x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

)(/)∗)
≤ (

f (x) ◦ f
(
x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

))(/)◦
= f (x)(/)◦ ◦ [

f
(
x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

)](/)◦
= f (x)(/)◦ ◦ [

f
((
x ∗ x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

)(/)∗)](/)◦
≤ f (x)(/)◦ ◦ [(

f (x) ◦ f
(
x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

))(/)◦](/)◦
= f (x)(/)◦ ◦ f (x)(/)◦ ◦ [

f
(
x(/)∗ ∗ · · · ∗ x(/

n–)∗
n

)](/)◦
· · ·

≤ f (x)(/)◦ ◦ f (x)(/)◦ ◦ · · · ◦ f (xn–)(/n–)◦ ◦ [
f
(
x(/)∗n

)](/n–)◦ .
Therefore we obtain the desired inequality. �

Let p and q be two nonnegative rational numbers. We define x(p)∗ ∗ y(q)∗ = y(q)∗ if p = ,
q >  and x(p)∗ ∗y(q)∗ = x(p)∗ if q = , p > .We also define in the same way as for ◦. Applying
these notations, we show the following lemma.

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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Lemma  The inequality f (x(p)∗ ∗ y(–p)∗ ) ≤ f (x)(p)◦ ◦ f (y)(–p)◦ holds for all x, y ∈ I and
p ∈ R+ with  < p < .

Proof Let x, y ∈ I and p ∈ R+ with  < p < . By the binary system, we have the expansion
p =

∑∞
i= pi/i, where pi ∈ {, } (i = , , . . .). Since pi ∈ {, } (i = , , . . .), it follows that

lim
n→∞

[
f
(
x(p)∗ ∗ y(–p)∗

)](/)◦ ◦ · · · ◦ [
f
(
x(pn–)∗ ∗ y(–pn–)∗

)](/n–)◦
= lim

n→∞
[
f (x)(p/)◦ ◦ f (y)((–p)/)◦] ◦ · · ·

◦ [
f (x)(pn/

n–)◦ ◦ f (y)((–pn–)/n–)◦]
= lim

n→∞ f (x)(
∑n–

i= pi/i)◦ ◦ f (y)(
∑n–

i= (–pi)/
i)◦

= f (x)(p)◦ ◦ f (y)(–p)◦ .

So, putting

an =
[
f
(
x(p)∗ ∗ y(–p)∗

)](/)◦ ◦ · · · ◦ [
f
(
x(pn–)∗ ∗ y(–pn–)∗

)](/n–)◦
for each n ∈ N, we have

lim
n→∞an = f (x)(p)◦ ◦ f (y)(–p)◦ . ()

Put

N =
{
n ∈N : f

((
x(pn)∗ ∗ y(–pn)∗

)(/)∗) = f
(
x(/)∗

)}
and

N =
{
n ∈ N : f

((
x(pn)∗ ∗ y(–pn)∗

)(/)∗) = f
(
y(/)∗

)}
.

Since

f
((
x(pn)∗ ∗ y(–pn)∗

)(/)∗) =
⎧⎨
⎩f (x(/)∗ ) (pn = ),

f (y(/)∗ ) (pn = )

for each n ∈ N, it follows that N =N ∪N. Then either N or N are infinite. Put

en =
[
f
((
x(pn)∗ ∗ y(–pn)∗

)(/)∗)](/n–)◦
for each n ∈ N. If N is infinite, then we have

lim
n∈N

en ◦ f (x(/)∗) = lim
n∈N

(
f
(
x(/)∗

))(+/n–)◦ = f
(
x(/)∗

)
. ()

Therefore it follows from () and () that

f (x)(p)◦ ◦ f (y)(–p)◦ ◦ f (x(/)∗) = lim
n∈N

an ◦ en ◦ f (x(/)∗). ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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Also we have from Lemma  that

f
(
x(

∑n
i= pi/

i)∗ ∗ y(
∑n

i=(–pi)/
i)∗)

= f
((
x(p)∗ ∗ y(–p)∗

)(/)∗ ∗ · · · ∗ (
x(pn)∗ ∗ y(–pn)∗

)(/n)∗)
≤ [

f
(
x(p)∗ ∗ y(–p)∗

)](/)◦ ◦ · · · ◦ [
f
(
x(pn–)∗ ∗ y(–pn–)∗

)](/n–)◦
◦ [

f
((
x(pn)∗ ∗ y(–pn)∗

)(/)∗)](/n–)◦
= an ◦ en

for all n ∈N. Then it follows from (�) that

f
(
x(

∑n
i= pi/

i)∗ ∗ y(
∑n

i=(–pi)/
i)∗) ◦ f (x(/)∗) ≤ an ◦ en ◦ f (x(/)∗) ()

for all n ∈N. Letting n ∈N → ∞ in (), we obtain from () that

f
(
x(p)∗ ∗ y(–p)∗

) ◦ f (x(/)∗) ≤ f (x)(p)◦ ◦ f (y)(–p)◦ ◦ f (x(/)∗). ()

Canceling f (x(/)∗ ) in () by (�), we obtain the desired inequality. Similarly, the desired
inequality is obtained in case that N is infinite. �

Lemma  The inequality

f
(
(x ∗ · · · ∗ xn)(/n)∗

) ≤ (
f (x) ◦ · · · ◦ f (xn)

)(/n)◦
holds for all n ∈N and x, . . . ,xn ∈ I .

Proof It is clear that the lemma holds for n = . Suppose the lemma holds for n = k. Let
x, . . . ,xk ,xk+ ∈ I and put

a =
(
f (x) ◦ · · · ◦ f (xk)

)(/k)◦ and x = (x ∗ · · · ∗ xk)(/k)∗ .

Then a ≥ f (x) by hypothesis, and hence a(k/k+)◦ ≥ f (x)(k/k+)◦ by (�). It follows from (�)
that

a(k/k+)◦ ◦ f (xk+)(/k+)◦ ≥ f (x)(k/k+)◦ ◦ f (xk+)(/k+)◦ .

Therefore we have from Lemma  that

(
f (x) ◦ · · · ◦ f (xk+)

)(/k+)◦ = (
a(k)◦ ◦ f (xk+)

)(/k+)◦
= a(k/k+)◦ ◦ f (xk+)(/k+)◦

≥ f (x)(k/k+)◦ ◦ f (xk+)(/k+)◦

≥ f
(
x(k/k+)∗ ∗ x(/k+)∗k+

)
= f

(
(x ∗ · · · ∗ xk ∗ xk+)(/k+)∗

)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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In otherwords, the lemmaholds for n = k+. Then, bymathematical induction, the lemma
holds for all n ∈N. �

Lemma  The inequality

f
(
x(p)∗ ∗ · · · ∗ x(pn)∗n

) ≤ f (x)(p)◦ ◦ · · · ◦ f (xn)(pn)◦

holds for all x, . . . ,xn ∈ I , n ∈N and p, . . . ,pn ∈Q+ with p + · · · + pn = .

Proof This result follows directly from Lemma . �

We are now in a position to prove Theorem .

Proof Let n ∈ N, x, . . . ,xn ∈ I and t, . . . , tn ∈ R+ with t + · · · + tn = . For each  ≤ i ≤ n,
choose a sequence {pik}∞k= in Q+ which converges to ti. Put qk = pk + · · · + pnk for each
k ∈N. Then we have from Lemma  that

f
(
x(pk /qk )∗ ∗ · · · ∗ x(pnk /qk )∗n

) ≤ f (x)(pk /qk )◦ ◦ · · · ◦ f (xn)(pnk /qk )◦ . ()

Hence, after taking the limit with respect to k in (), we obtain the desired inequality:

f
(
x(t)∗ ∗ · · · ∗ x(tn)∗n

) ≤ f (x)(t)◦ ◦ · · · ◦ f (xn)(tn)◦ .

Of course, if f is (∗,◦)-concave, the above inequality is reversed, as stated in Remark .
This completes the proof of Theorem . �

4 Applications
Let K be a topological ordered space with order ≤, and let ◦, ∗ and � be three operations
in A

+(K ,≤) which have the following properties:

(a ◦ b) ∗ c = (a ∗ c) ◦ (b ∗ c) (∀a,b, c ∈ K), ()

∃e ∈ K : e ∗ x = x (∀x ∈ K), ()

a � b = a ◦ b ◦ (a ∗ b) (∀a,b ∈ K). ()

In this case, it is clear that an element e in () is unique.

Lemma  The equality x(t)� ◦ e = (x ◦ e)(t)∗ holds for each x ∈ K and t ∈ R+.

Proof Take x ∈ K arbitrarily. By () and (), we have (a � b) ◦ e = (a ◦ e) ∗ (b ◦ e) for all
a,b ∈ K . By mathematical induction, we have

(x � · · · � xk) ◦ e = (x ◦ e) ∗ · · · ∗ (xk ◦ e) ()

for all k ∈N and x, . . . ,xk ∈ K . In particular, we have

x(k)� ◦ e = (x ◦ e)(k)∗ ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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for all k ∈N. Then we have

(x ◦ e)(n/m)∗ =
(
(x ◦ e)(n)∗)(/m)∗

=
(
x(n)� ◦ e)(/m)∗ by ()

=
((
x(n/m)�)(m)� ◦ e)(/m)∗

=
((
x(n/m)� ◦ e)(m)∗)(/m)∗ by ()

= x(n/m)� ◦ e

for all n,m ∈N. Therefore x(p)� ◦ e = (x ◦ e)(p)∗ holds for all p ∈ Q+. Take t ∈ R+ arbitrarily,
and choose a sequence {pn} in Q+ which converges to t. Then

x(t)� ◦ e = lim
n→∞x(pn)� ◦ e = lim

n→∞(x ◦ e)(pn)∗ = (x ◦ e)(t)∗

holds and so the proof is complete. �

Lemma  Suppose that M∗(a,b) ≤ M◦(a,b) holds for all a,b ∈ K . Then M∗(a,b) ≤
M�(a,b)≤ M◦(a,b) holds for each a,b ∈ K .

Proof Let a,b ∈ K . We first show thatM∗(a,b)≤ M�(a,b). Since

(
(a ∗ b)(/)∗

)()◦ ≤ a ◦ b,

it follows from Lemma  that

(
(a ∗ b)(/)∗ ◦ e)()∗ = (a ∗ b) ◦ (

(a ∗ b)(/)∗
)()◦ ◦ e

≤ (a ∗ b) ◦ (a ◦ b) ◦ e
= (a � b) ◦ e
=

(
(a � b)(/)�

)()� ◦ e
=

(
(a � b)(/)� ◦ e)()∗ .

Therefore we obtain from (�) for ∗ that

(a ∗ b)(/)∗ ◦ e≤ (a � b)(/)� ◦ e.

Canceling e in the above inequality, we obtain the desired inequality.
We next show thatM�(a,b)≤ M◦(a,b). Since

a ∗ b ≤ (
(a ◦ b)(/)◦)()∗ ,

it follows from Lemma  that

(
(a � b)(/)� ◦ e)()∗ = (

(a � b)(/)�
)()� ◦ e

= (a � b) ◦ e

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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= (a ∗ b) ◦ a ◦ b ◦ e
≤ (

(a ◦ b)(/)◦)()∗ ◦ a ◦ b ◦ e
=

(
(a ◦ b)(/)◦ ◦ e)()∗ .

Therefore we obtain from (�) for ∗ that

(a � b)(/)� ◦ e ≤ (a ◦ b)(/)◦ ◦ e.

Canceling e in the above inequality, we obtain the desired inequality and so the proof is
complete. �

The following result is a refinement of the mean inequality.

Theorem  Let K be a topological ordered space with order ≤ and ∗,◦,� ∈A
+(K ,≤) sat-

isfying (), () and (). If M∗(x, y) ≤ M◦(x, y) holds for all x, y ∈ K , then

x(t)∗ ∗ · · · ∗ x(tn)∗n ≤ x(t)� � · · · � x(tn)�n ≤ x(t)◦ ◦ · · · ◦ x(tn)◦n

holds for all n ∈N, x, . . . ,xn ∈ K and t, . . . , tn ∈ R+ with t + · · · + tn = .

Proof This follows immediately from Theorem  and Lemma . �

5 Examples
Throughout this section, let R+ be an ordinary topological ordered space.

Example  Put x ◦t y = (xt + yt)/t for each x, y ∈ R+ and t ∈ R\{}. Then each ◦t is a topo-
logical abelian semigroup operation on R+ such that x(n)◦t = n/tx and x(/n)◦t = (/n)/tx for
all n ∈N and x ∈ R+. Also, since

x(n/m)◦t =
(
x(/m)◦t

)(n)◦t = n/t(/m)/tx = (n/m)/tx

for each m,n ∈ N, t ∈ R\{} and x ∈ R+, it follows that ◦t ∈ A
+(R+,≤) for each t ∈ R\{}.

Let x, . . . ,xn,α, . . . ,αn ∈ R+ with α + · · ·+αn = . Since x(α)◦t = α/tx for each x,α ∈ R+ and
t ∈ R\{}, we have that

x(α)◦t ◦t · · · ◦t x(αn)◦tn =
(
αxt + · · · + αnxtn

)/t ()

for all t ∈ R\{}. Note that

M◦s (x, y) =
(
xs + ys



)/s

≤
(
xt + yt



)/t

=M◦t (x, y)

for all x, y ∈ R+ and s, t ∈ R\{} with s ≤ t. Therefore Theorem  implies the following
well-known inequality:

(
αxs + · · · + αnxsn

)/s ≤ (
αxt + · · · + αnxtn

)/t ,
where s, t ∈ R\{} with s≤ t.

http://www.journalofinequalitiesandapplications.com/content/2013/1/408
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Example  Let t be a positive real number, and let ◦t be the operation on R+ defined in
Example . Then we have ◦t ∈A

+(R+,≤). Also, if x ∗ y = xy (x, y ∈ R+), then ∗ ∈A
+(R+,≤)

and x(α)∗ = xα for all x,α ∈ R+. Hence we have

M∗(x, y) =
√
xy≤

(
xt + yt



)/t

=M◦t (x, y)

for each x, y ∈ R+.
Let n ∈N and x, . . . ,xn,α, . . . ,αn ∈ R+ with α + · · · + αn = . Then it is clear that

x(α)∗ ∗ · · · ∗ x(αn)∗n = xα
 · · ·xαn

n . ()

If x � y = x ◦t y ◦t (x ∗ y) (x, y ∈ R+), then � ∈A
+(R+,≤) and three operations ∗, ◦ and � on

R+ satisfy (), () and (). If x,α ∈ R+, we have from Lemma  that

x(α)� ◦t  = (x ◦t )(α)∗ = (x ◦t )α =
(
xt + 

)α/t . ()

Then we have from () and () that

x(α)� � · · · � x(αn)�n ◦t  =
(
x(α)� ◦t 

) ∗ · · · ∗ (
x(αn)�n ◦t 

)
=

(
x(α)� ◦t 

) · · · (x(αn)�n ◦t 
)

=
(
xt + 

)α/t · · · (xtn + 
)αn/t ,

and hence

x(α)� � · · · � x(αn)�n =
((
xt + 

)α · · · (xtn + 
)αn – 

)/t . ()

Then we obtain from (), (), () and Theorem  that

xα
 · · ·xαn

n ≤ ((
xt + 

)α · · · (xtn + 
)αn – 

)/t ≤ (
αxt + · · · + αnxtn

)/t .
This is a refinement of the geometric-arithmetic mean inequality.
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