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Abstract
For a prestarlike function f of nonnegative order α, 0≤ α < 1, and a close-to-convex
function zg of order α, the convolution g ∗ f ′ is shown to be zero-free in the open unit
disk. The result can be applied to a wide spectrum of interesting approximants,
including those involving the Cesàro means and Jacobi polynomials. If zg is also
prestarlike, then the range of g * f ′ is shown to be contained in a sector with opening
angle strictly less than 2π .
MSC: 30C45; 33C05; 40G05; 41A10

1 Introduction
LetA be the class of analytic functions f (z) = z+

∑∞
n= anzn in the unit disk D = {z : |z| < }

of the complex plane, and let S be its subclass consisting of univalent functions. For μ < ,
let S∗(μ) and C(μ) be the subclasses of A consisting respectively of starlike and convex
functions of order μ defined analytically by

f ∈ S∗(μ) ⇔ Re

(
zf ′(z)
f (z)

)
> μ, and f ∈ C(μ) ⇔ Re

(
 +

zf ′′(z)
f ′(z)

)
> μ.

For brevity, denote C := C() and S∗ = S∗(). The closely-related class K(μ) of close-to-
convex functions of order μ consists of functions f ∈A satisfying

Re
zf ′(z)
g(z)

> 

for some g ∈ S *(μ). Evidently, for ≤ μ < , C(μ) ⊂ S∗(μ) ⊂K(μ)⊂K :=K()⊆ S .
For f (z) =

∑∞
k= akzk and g(z) =

∑∞
k= bkzk in D, the convolution (or Hadamard product)

f ∗ g is given by the series (f ∗ g)(z) = ∑∞
k= akbkzk . The Cesàromeans of a given function is

of special interest in this paper. It is the convolution between the function with the Cesàro
polynomial. Specifically, let σ

β
n be the Cesàro polynomial of nonnegative order β defined

by

σβ
n (z) =

n!
( + β)n

n∑
k=

( + β)n–k
(n – k)!

zk (n ∈N),
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whereN is the set of positive integers. Here (a)k denotes the Pochhammer symbol given by
(a) =  and (a)k = a(a + )k–, k ∈ N. The Cesàro means σ

β
n (z, f ) of order β for a function

f (z) =
∑∞

k= akzk is

σβ
n (z, f ) := σβ

n (z) ∗ f (z) =
n!

( + β)n

n∑
k=

( + β)n–k
(n – k)!

akzk (n ∈N).

The works of [, ] elucidated the geometric properties of the Cesàro polynomial.
A function f is said to be zero-free in D if f (z) 
=  for all z ∈ D. The outer functions,

which play an important role in the theory ofHp spaces, are functions of the form

F(z) = eiγ exp
(


π

∫ π



eit + z
eit – z

logψ(t)dt
)

(z ∈D),

where γ ∈ R, ψ(t) ≥ , logψ(t) ∈ L and ψ(t) ∈ Lp. It is known [, ] that the derivatives
of bounded convex functions are outer functions.
Taylor series or its partial sums are of course natural approximants to a given function.

However, Barnard et al. [] showed that the Taylor approximants of outer functions can
vanish in D, while the Cesàro means of order one for the derivative of convex functions
are zero-free. It is therefore [, ] natural to investigate the problem of finding a suitable
polynomial approximant for a given outer function f that retains the zero-free property
of f .
Swaminathan [] showed the zero-free property of the Cesàro means σ

β
n and polyno-

mial approximants associated with Jacobi polynomials for the derivative of a prestarlike
function of a certain order. Prestarlike functions []Rμ of order μ, μ < , consists of func-
tions f ∈ A satisfying f ∗ kμ ∈ S *(μ), kμ(z) := z/( – z)–μ, while R consists of functions
f ∈ A satisfying Re(f (z)/z) > /. Evidently, R/ = S *(/) and R = C . The works by [–
] contained interesting exposition on prestarlike functions.
For prestarlike (and convex) functions f , the present work finds approximants derived

from the convolution between f ′ and g , where zg are close-to-convex of nonnegative or-
der. This general result can be widely applied to include a range of interesting polynomial
approximants, and thus connects with the earlier works by [, , ]. Section  gives ex-
amples of such applications. If zg is also prestarlike, then the range of g * f ′ is shown to be
contained in a sector with opening angle strictly less than π .
The following two results will be required.

Lemma . []
(i) If f , g ∈Rμ, μ ≤ , then f ∗ g ∈Rμ.
(ii) If μ ≤ β ≤ , thenRμ ⊂Rβ .
(iii) If f ∈ S *(μ) (or K(μ)) and g ∈Rμ, μ < , then f ∗ g ∈ S *(μ) (or K(μ)).
(iv) Rμ ⊂ S if and only if μ ≤ /.

For  ≤ α < , let P(α) denote the class of all analytic functions p defined in D satis-
fying p() =  and Rep(z) > α. Also simply denote by P := P(). The result in [, Theo-
rem ., p.] can be expressed in the following form.

Lemma . [, Lemma , p.] Let α < , and  ≤ β < . If f ∈ Rα , g ∈ S∗(α) and p ∈
P(β), then there exists p ∈P(β) such that f ∗ gp = (f ∗ g)p.
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Ali et al. Journal of Inequalities and Applications 2013, 2013:401 Page 3 of 8
http://www.journalofinequalitiesandapplications.com/content/2013/1/401

2 Main results
Theorem . Let  ≤ α < . If f ∈Rα and zg ∈K(α), then g ∗ f ′ is zero-free in D.

Proof It is sufficient to show that g ∗ f ′ is a product of two zero-free functions inD. Rewrite
z(g ∗ f ′)(z) as

z
(
g ∗ f ′)(z) = z(zg)′(z) ∗ f (z). ()

Since zg ∈K(α), there exists a function h ∈ S∗(α) and p ∈P such that z(zg)′(z) = h(z)p(z).
Therefore, the expression on the right side of () can be written as

z(zg)′(z) ∗ f (z) =
(
(hp) ∗ f

)
(z).

Since f ∈Rα , and h ∈ S *(α), Lemma . yields a p ∈P such that

(
(hp) ∗ f

)
(z) = (h ∗ f )(z)p(z).

Therefore, () implies that

(
g ∗ f ′)(z) = (h ∗ f )(z)

z
p(z). ()

It also follows from Lemma .(iii) that h ∗ f ∈ S∗(α). Since S *(α) ⊂ S for  ≤ α < ,
(h * f )(z) =  if and only if z = . Therefore, (h(z) ∗ f (z))/z is zero-free in D. Further, as
Rep(z) > , () implies that g ∗ f ′ is a product of two zero-free functions, and, hence, it is
also zero-free in D. �

Lewis [] proved that zσβ
n ∈ K for β ≥ . Since R = C , Theorem . readily yields the

following result on the Cesàro means of the derivative of convex functions.

Corollary . [, Theorem , p.] If f ∈ C , then the function σ
β
n (z, f ′) = (σβ

n ∗ f ′)(z) is
zero-free in D for β ≥ .

3 Examples of approximants
For applications of Theorem ., this section looks at several interesting examples of ap-
proximants. For β ≥  and α ∈ [, ), define the polynomial

Gα,β (z) :=  +
n!

( + β)n

n∑
k=

( + β)n–k( – α)k
(n – k)!(k + )!

zk = σβ
n (z,h), ()

where

h(z) :=

⎧⎨
⎩– log(–z)

z , α = /,
(–z)α––
z(–α) , α 
= /.

()

The function zh is known to be extremal (see []) for many problems in the class C(α).
The following result on Cesàro means for convex function of nonnegative order will be
required.

http://www.journalofinequalitiesandapplications.com/content/2013/1/401
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Lemma. [, Theorem.] Let n ∈N. If f ∈ C(λ), / ≤ λ < , and β ≥ , then zσβ
n–∗ f ∈

K(λ).

Corollary . Let / ≤ α < , β ≥  and Gα,β be given by (). If f ∈ Rα , then Gα,β ∗ f ′ is
zero-free in D.

Proof We show that zGα,β ∈K(α). It follows from () that

zGα,β (z) = z +
n!

( + β)n

n∑
k=

( + β)n–k( – α)k
(n – k)!(k + )!

zk+

=

( n+∑
k=

( + β)n–k+
(n – k + )!

n!
( + β)n

zk
)

∗
( ∞∑

k=

( – α)k–
k!

zk
)

:=
(
zσβ

n ∗ τα

)
(z).

Since zτ ′
α(z) = z( – z)–(–α) ∈ S∗(α), Alexander’s theorem implies that τα ∈ C(α), and

hence Lemma . yields zGα,β ∈K(α). From Theorem ., we deduce that Gα,β ∗ f ′ is zero-
free in D. �

Remark . For α = /, simple computations show that (G/,β ∗ f ′)(z) = (σβ
n ∗ f /z)(z) =

σ
β
n (z, f /z). If f ∈ R/ = S∗(/), it follows from Corollary . that σ

β
n (z, f /z) 
=  in D. This

is a result of Ruscheweyh [].

The next example relates to the Lerch transcendental function 
(z, s,a) [–] given
by


(z, s,a) =
∞∑
k=

zk

(k + a)s
,

z ∈ D, Re s >  and a ∈ C\{,–,–, . . .}. For Re s < , the summand (k + a)–s can be con-
tinuously extended to a = –k, and in this case, 
(z, s,a) is defined for all a ∈ C.

Lemma . [, Theorem .] Let f ∈ C(α), /≤ α < , and

Q(z) =


(n + )γ

n∑
k=

zk

(n +  – k)–γ

=
(–)γ

(n + )γ
(

(z, –γ , –n – ) – zn+
(z, –γ , )

)
, ()

n ∈N, γ ≥ . Then zQ ∗ f ∈K(α).

The following result is evident from Lemma . and Theorem ., and the details are
therefore omitted.

Corollary . Let f ∈Rα , /≤ α < . For γ ≥ , let

Hα,γ (z) :=


(n + )γ

n∑
k=

(n +  – k)γ ( – α)k
(k + )!

zk = (Q ∗ h)(z),

where h is given by () and Q by (). ThenHα,γ ∗ f ′ is zero-free in D.

http://www.journalofinequalitiesandapplications.com/content/2013/1/401
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Remark . Now let ak := (n+–k)γ /(n+)γ , γ ≥ , k = , , . . . ,n. A computation shows
that  = a ≥ a ≥ · · · ≥ an = /(n + )γ > . For α = /, Corollary . yields

(
H/,γ ∗ f ′)(z) =

( n∑
k=

akzk
)

∗
(
f (z)
z

)

= .

This is Ruscheweyh result [, Theorem , p.], obtained in his work on the extension
of the classical Kakeya-Eneström theorem. For α > /, Corollary . asserts more. If now

bk :=
(n +  – k)γ

(n + )γ
( – α)k

k!
, γ ≥ ,α ∈ (/, ),

then  = b ≥ b ≥ · · · ≥ bn = ( – α)n/(n!(n + )γ ) >  and

(
Hα,γ ∗ f ′)(z) =

( n∑
k=

bkzk
)

∗
(
f (z)
z

)

= .

Thus, the approximant is zero-free inD in spite of the fact that f may not be univalent (see
Lemma .(iv)).

For α ≤ /, Lewis [, Lemma , p.] proved that

qα
n (z) =

n!
( – α)n

n∑
k=

( – α)k
k!

( – α)n–k
(n – k)!

zk

is the derivative of a function inK(α). The polynomial qα
n is related [, p.] to the Jacobi

polynomial Pa,b
n (x) := (+a)n

n! F(–n,n + a + b + ;  + a; ( – x)/), x ∈ [–, ], by

qα
n
(
eiθ

)
=

n!( – α)n
( – α)n(/ – α)n

einθ/P(/–α,/–α)
n

(
cos(θ/)

)
,  ≤ θ ≤ π .

Here F is the Gaussian hypergeometric function [].
Consider now the polynomial

Qn,α(z) :=
n!

( – α)n

n∑
k=

( – α)k
k!

( – α)n–k
(n – k)!

zk

k + 
. ()

A computation gives (zQn,α)′ = qα
n , and, thus, zQn,α ∈ K(α), α ≤ /. The following result

is now easily derived from Theorem ..

Corollary . [, Theorem , p.] Let f ∈ Rα , α ≤ /, and Qn,α be given by (). Then
Qn,α ∗ f ′ is zero-free in D.

We next turn to consider zero-free non-polynomial approximants. Robinson [] (also
see [, p.]) introduced the polynomial

Iβ
n (z) :=  +

n∑
k=

k–∏
j=

n – j
β + n + j

zk = F(, –n;n + β ; –z),

http://www.journalofinequalitiesandapplications.com/content/2013/1/401
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and conjectured that zIβ
n ∈ R(–β)/, whenever β ≥  and n ∈ N. Ruscheweyh and Salinas

[] resolved the conjecture with the following more general result.

Lemma . [, Theorem , p.] Let λ ≥ – and β ≥ max{,–λ}. Then zIβ

λ (z) =
zF(, –λ;λ + β ; –z) ∈R(–β)/.

A consequence of Lemma . is that zI
λ– = ((λ + )/λ)Vλ ∈R = C for λ ≥ –/, where

Vλ(z) := λ/(λ + )zF(,  – λ;λ+ ;–z), λ >  is a continuous extension (see []) of the de
la Vallée Poussin means. Lemma . and Lemma .(ii) together imply that zIβ+

λ– ∈ C ⊂
K for λ >  and β ≥ . Theorem . now gives a non-polynomial approximant for outer
functions.

Corollary . If f ∈ C , then Iβ+
λ– (z, f ′) = (Iβ+

λ– ∗ f ′)(z) is zero-free in D for all λ >  and
β ≥ .

Remark . From [], it is known that limλ→∞ Iβ

λ (z)∗ f (z) = f (z). So if f ∈ C is bounded,
then Corollary . implies that Iβ+

λ– (z) is an approximant to the outer function f ′. Thus,
outer functions could also have zero-free non-polynomial approximants.

The following result on the prestarlikeness of functions, connected to the Gaussian hy-
pergeometric function, will be required to prove the next theorem.

Lemma . [, Theorem .] Let a,b ∈R satisfy b +  ≥ |a + |. Then

zF(,  + a,  + b, z) ∈R –a–b


.

Theorem . Let b ≥ / and –b ≤ a ≤  – b. Then the Cesàro means of order (a + b) for
the function F( + a + b,  + a;  + b; z) is zero-free in D.

Proof Let α = ( – a– b)/. Under the given hypothesis, it is evident that ≤ α ≤ /. The
Cesàro means of order a + b for the function F( + a + b,  + a;  + b; z) can be expressed
in the form

σ a+b
n (z) ∗ F( + a + b,  + a;  + b; z)

=

( n∑
k=

n!
( – α)n

( – α)n–k
(n – k)!

( – α)k
k!

zk

k + 

)
∗

( ∞∑
k=

( + a)k
( + b)k

(k + )zk
)

=
(
g ∗ f ′)(z),

where g(z) = Qn,α(z) is given by () and f (z) = zF(,  + a;  + b, z). It is known [] that
zg = zQn,α ∈ K(α) for α ≤ /. Straightforward computations show that b +  ≥ |a + |,
and, thus, Lemma . yields f ∈Rα . Therefore, it follows from Theorem . that g ∗ f ′ 
= 
in D. �

Example .
() Choosing a = b = /, Theorem . yields σ 

n(z, ( – z)–) is zero-free in D.
() Since F( + b, ;  + b; z) = ( – z)–, with a = , it follows that σ b

n (z) 
=  for
b ∈ [/, ] and z ∈ D.

http://www.journalofinequalitiesandapplications.com/content/2013/1/401
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() If b = –a = /, Theorem . shows that the nth partial sum of the Taylor series of
arctanh(

√
z)/

√
z is zero-free in D.

When both the source functions f and the approximant are prestarlike of certain order,
the result below shows that the range of the approximant satisfies a sector-like condition
on the boundary.

Theorem . Let f ∈ Rα and zg ∈ Rμ with (zg ∗ f )/z bounded in D, α,μ ≤ /. Then the
range of g ∗ f ′ is contained in a sector (from ) with the opening γπ for some γ < .

Proof Let f ∈Rα , α ≤ /. By Lemma .(ii), f ∈Rα ⊂R/ = S *(/). Rewrite g ∗ f ′ as

(
g ∗ f ′)(z) = 

z
(
z(zg)′ ∗ f

)
(z)

=

z

(
zg(z)

z(zg)′(z)
zg(z)

∗ f (z)
)
.

Since zg ∈Rμ ⊂R/ = S *(/), there exists a function p ∈P(/) satisfying

z(zg)′(z)
zg(z)

= p(z).

From Lemma ., there exists a function p ∈P(/) such that

(
g ∗ f ′)(z) = (zg ∗ f )(z)

z
p(z).

Since zg ∈ S *(/), and f ∈ S *(/), Lemma .(i) implies that zg ∗ f ∈ S *(/).
A result in [, Theorem .a, p.] shows that


z
(zg ∗ f )(z) ∈P(/).

Since (zg ∗ f )/z is bounded in D, there exists a γ such that

∣∣∣∣arg (zg ∗ f )(z)
z

∣∣∣∣ < γπ


, γ < .

Therefore,

∣∣∣∣arg(g ∗ f ′)(z)∣∣∣∣ =
∣∣∣∣arg

{
(zg ∗ f )(z)

z
p(z)

}∣∣∣∣
≤ γπ


+

π


= γπ , γ := (γ + )/ < .

�

Example . Let g be either Iβ+
n or σ

β+
n . The polynomial (zg ∗ f )/z is bounded in D.

Hence for β ≥ , Theorem . implies that the range of both Iβ+
n (z, f ′) and σ

β+
n (z, f ′) are

contained in a sector with opening γπ , γ < .

http://www.journalofinequalitiesandapplications.com/content/2013/1/401
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Remark . Example . reduces to a result of Swaminathan [, Theorem , p.] in the
case f ∈R = C and g(z) = σ

β+
n (z).
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