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Abstract
Let G be a simple connected graph of order n,m edges, maximum degree �1 and
minimum degree δ. Li et al. (Appl. Math. Lett. 23:286-290, 2010) gave an upper bound
on number of spanning trees of a graph in terms of n,m, �1 and δ:

t(G)≤ δ
(2m –�1 – δ – 1

n – 3

)n–3
.

The equality holds if and only if G∼= K1,n–1, G ∼= Kn, G ∼= K1 ∨ (K1 ∪ Kn–2) or G ∼= Kn – e,
where e is any edge of Kn. Unfortunately, this upper bound is erroneous. In particular,
we show that this upper bound is not true for complete graph Kn.
In this paper we obtain some upper bounds on the number of spanning trees of

graph G in terms of its structural parameters such as the number of vertices (n), the
number of edges (m), maximum degree (�1), second maximum degree (�2),
minimum degree (δ), independence number (α), clique number (ω). Moreover, we
give the Nordhaus-Gaddum-type result for number of spanning trees.
MSC: 05C50; 15A18

Keywords: graph; spanning trees; independence number; clique number; first
Zagreb index

1 Introduction
Let G = (V ,E) be a simple connected graph with a vertex set V (G) = {v, v, . . . , vn} and
an edge set E(G). Its order is |V (G)|, denoted by n, and its size is |E(G)|, denoted by m.
For vi ∈ V (G), the degree (= number of the first neighbors) of the vertex vi is denoted by
di. The maximum vertex degree is denoted by � , the second maximum by �, and the
minimum vertex degree δ. The number of spanning trees ofG, denoted by t(G), is the total
number of distinct spanning subgraphs of G that are trees.
The Laplacian matrix of a graph G is L(G) = D(G) – A(G), where D(G) is the diagonal

matrix of vertex degrees, and A(G) is the (, )-adjacency matrix of graph G. Let λ ≥
λ ≥ · · · ≥ λn =  denote the eigenvalues of L(G). They are usually called the Laplacian
eigenvalues of G. When more than one graph is under discussion, we may write λi(G)
instead of λi. For a connected graph of order n, it has been proven [] that

t(G) =

n

n–∏
i=

λi. ()
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The normalized Laplacian matrix of G is denoted by L and defined to be

L =D(G)–

 L(G)D(G)–


 ,

where L(G) is the Laplacian matrix and D(G) is the diagonal matrix of vertex degrees of
graph G. The eigenvalues of L are non-negative, we label them so that  = ρn ≤ ρn– ≤
· · · ≤ ρ ≤ ρ. For a connected graph of order n, it has been proven [] that

t(G) =

m

n∏
i=

di
n–∏
i=

ρi. ()

We now give some known popular upper bounds on t(G)
. Grimmett [].

t(G) ≤ 
n

(
m
n – 

)n–

. ()

. Grone and Merris [].

t(G) ≤
(

n
n – 

)n–(∏n
i= di
m

)
. ()

. Nosal [].

t(G) ≤ nn–
(

r
n – 

)n–

. ()

. Kelmans [, p.].

t(G) ≤ nn–
(
 –


n

)m

. ()

. Das [].

t(G) ≤
(
m –� – 

n – 

)n–

. ()

The third bound only applies to regular graphs of degree r. The first three bounds are
sharp for complete graphs only. The fifth bound is sharp for star or complete graph.More-
over, the bound in () was also obtained byMcKay []. Chung et al. [] studied the number
of spanning trees for regular graphs. As usual, Kn, Kp,q (p + q = n) and K,n– denote, re-
spectively, the complete graph, the complete bipartite graph and the star on n vertices.
The paper is organized as follows. In Section , we give a list of some previously known

results. In Section , we obtain some upper bounds on the number of spanning trees. In
Section , we obtain Nordhaus-Gaddum-type result for the number of spanning trees of
graph G.
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2 Lemmas
In this section, we shall list some previously known results that will be needed in the next
two sections. The next lemma is firstly obtained in Theorem . [].

Lemma  ([]) Let G be a connected graph of order n. Then λ = λ = · · · = λn– if and only
if G ∼= Kn.

We now give a lower bound on the sum of the largest two Laplacian eigenvalues of
graph G.

Lemma  ([]) Let G be a connected graph of order n > . Then λ + λ ≥ � +� + .

Lemma  ([]) Let G be a graph on n vertices, which has at least one edge. Then

λ ≥ � + . ()

Moreover, if G is connected, then the equality in () holds if and only if � = n – .

A well-known theorem in an algebraic graph theory is the interlacing of the Laplacian
spectrum in Theorem .. [].

Lemma  ([]) Let G be a graph of n vertices, and let H be a subgraph of G obtained by
deleting an edge in G. Then

λ(G) ≥ λ(H) ≥ λ(G) ≥ λ(H) ≥ · · · ≥ λn–(G)≥ λn–(H)≥ λn(G) ≥ λn(H) = ,

where λi(G) is the ith largest Laplacian eigenvalue of G, and λi(H) is the ith largest Lapla-
cian eigenvalue of H .

Lemma  ([]) Let G be a simple graph with the Laplacian spectrum

{ = λn,λn–, . . . ,λ,λ}.

Then the Laplacian spectrum of G is {,n– λ,n– λ, . . . ,n– λn–,n– λn–}, where G is the
complement graph of G.

We also have the following result, which is obtained in [].

Lemma  ([]) Let G be a graph of order n without isolated vertices. Then ρ = ρ = ρ =
· · · = ρn– if and only if G ∼= Kn.

The result is the following lemma, known as Kober’s inequality.

Lemma  ([]) Let x,x, . . . ,xn be non negative numbers, and also let

α =

n

n∑
i=

xi and γ =

( n∏
i=

xi

)/n
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be their arithmetic and geometric means. Then


n(n – )

∑
i<j

(
√
xi –

√xj) ≤ α – γ ≤ 
n

∑
i<j

(
√
xi –

√xj).

Moreover, the equality holds if and only if x = x = · · · = xn.

3 Bounds on the number of spanning trees
In [], an upper bound for t(G) is obtained as follows.

Theorem  ([]) Let G be a connected graph of order n (n > ) with m edges, maximum
degree � and minimum degree δ. Then

t(G) ≤ δ

(
m –� – δ – 

n – 

)n–

.

The equality holds if and only if G ∼= K,n–, G ∼= Kn, G ∼= K ∨ (K ∪ Kn–) or G ∼= Kn – e,
where e is any edge of Kn.

Here we show that Theorem  is not true for complete graph Kn. For this, we need the
following lemma.

Lemma  For positive integer a > ,

(
 +


a(a + )

)a

<  +


a + 
. ()

Proof We have

(
 +


a(a + )

)a

=  +


a + 
+

(
a


)


a(a + )
+

(
a


)


a(a + )
+ · · · +

(
a
a

)


aa(a + )a
. ()

In fact, this satisfies

<  +


a + 
+


!(a + )

+


!(a + )
+


!(a + )

+ · · · + 
a!(a + )a

<  +


a + 
+


a + 

(


(a + )
+


(a + )

+


(a + )
+ · · · + 

a–(a + )a–

)

=  +


a + 
+


(a + )

 – 
a–(a+)a–

 – 
(a+)

.

Now, we have to show that


a + 

+


(a + )
·
 – 

a–(a+)a–

 – 
(a+)

<


a + 
,
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that is,

a–(a + )a > –(a + ),

which is always true, as a is a positive integer. This completes the proof. �

Upper bound of t(G) in Theorem  is not true for Kn (n > ). It is well known that t(Kn) =
nn–. Here, we have to show that

(n – )
(
n(n – ) + 

n – 

)n–

< t(Kn) = nn–. ()

Now, putting a = n –  in (), we get

(
 +


n(n – )

)n–

<  +


n – 
,

which gives result ().
Hence the correct statement is as follows.

Theorem  ([]) Let G ( 	= Kn) be a connected graph of order n (n > ) with m edges,max-
imum degree � and minimum degree δ. Then

t(G) ≤ δ

(
m –� – δ – 

n – 

)n–

()

with the equality holding in () if and only if G ∼= K,n–,G ∼= K∨ (K∪Kn–) or G ∼= Kn–e,
where e is any edge of Kn.

Proof SinceG� Kn , we have μn– ≤ δ, where δ is the minimum degree inG. The remain-
ing part of the proof is same as in Theorem . []. �

We now give an upper bound on the number of spanning trees t(G) in terms of n,m, �

and δ.

Theorem  Let G be a connected graph on n vertices with m edges, maximum degree �

and minimum degree δ. Then

t(G) ≤ 
m

�δ

(
m –� – δ

n – 

)n–( n
n – 

)n–

()

with the equality holding in () if and only if G ∼= Kn.

Proof By the arithmetic-geometric mean inequality, we have

n–∏
i=

di ≤
(
m –� – δ

n – 

)n–

as m =
n∑
i=

di

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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and

n–∏
i=

ρi ≤
(
n – ρ

n – 

)n–

as n =
n–∑
i=

ρi.

Using the above results in (), we get

t(G) ≤ 
m

�δ

(
m –� – δ

n – 

)n–

ρ

(
n – ρ

n – 

)n–

. ()

Let us consider the function

f (x) = x(n – x)n–,  ≤ x ≤ .

Then we have

f ′(x) = (n – x)n–
[
n – (n – )x

]
,  ≤ x≤ .

Thus, f (x) is an increasing function on [, n
n– ] and a decreasing function on [

n
n– , ]. Hence

the maximum value of f (x) is

(
n

n – 

)n–

(n – )n–.

Using (), we get the required result in (). Thus, the first part of the proof is done.
Now, we suppose that the equality holds in (). Then all inequalities in the argument

abovemust be equalities. Thus, we have ρ = n
n– . From the equality in (), we get d = d =

· · · = dn– and ρ = ρ = · · · = ρn– = n
n– . Therefore, ρ = ρ = ρ = · · · = ρn–. By Lemma ,

G ∼= Kn.
Conversely, one can easily see that the equality holds in () for complete graph Kn. �

Here, we give an upper bound on the number of spanning trees t(G) in terms of n, m,
� and �.

Theorem  Let G be a connected graph on n vertices, m edges with maximum degree �

and second maximum degree �. Then

t(G) <


n(n – )n–
(� +� + )(m –� –� – )n–. ()

Proof By the arithmetic-geometric mean inequality, we have

λλ ≤
(

λ + λ



)

and

n–∏
i=

λi ≤
(
m – λ – λ

n – 

)n–

as m =
n–∑
i=

λi.
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Using the above results in (), we get

t(G) ≤ 
n

(
λ + λ



)

·
(
m – λ – λ

n – 

)n–

. ()

Let us consider a function

f (x) = x(m – x)n–.

We, thus, have

f ′(x) = x(m – x)n–
(
m – (n – )x

)
.

For x = λ + λ, we have f ′(x) ≤  as (n– )x ≥ m = 
∑n–

i= λi. Thus, f (x) is a decreasing
function and λ + λ ≥ � +� + , by Lemma , and hence

t(G) ≤ 
n(n – )n–

(� +� + )(m –� –� – )n–. ()

By contradiction, wewill show that the inequality in () is strict. Suppose that the equal-
ity holds in (). Then all the inequalities in the argument above must be equalities. Thus,
we have λ +λ = � +� + . From equality in (), we get λ = λ and λ = λ = · · · = λn–.
By Lemma , we have� +� + = λ +λ = λ ≥ (� +) ≥ � +� +, a contradiction.
This completes the proof. �

For  ≤ α ≤ n – , let CI(n,α) be a split graph on n vertices consisting of a Kα (comple-
ment of the complete graph on α vertices) and a Kn–α (complete graph on the remaining
n–α vertices), in which each vertex of theKα is adjacent to each vertex of theKn–α . There-
fore,

CI(n,α) = Kn–α ∨Kα .

We now give another upper bound on the number of spanning trees in terms of n and α.

Theorem  Let G be a simple connected graph of order n with an independence number α.
Then

t(G) ≤ nn–α–(n – α)α– ()

with the equality holding in () if and only if G ∼= CI(n,α).

Proof By Lemma , we have

λi(G + e) ≥ λi(G), i = , , . . . ,n,

where e is an edge. So if we add one by one edges in G such that independence number α

is fixed of the resultant graph, then finally, we obtain a split graph CI(n,α). One can easily

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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see that

t(G) ≤ t
(
CI(n,α)

)
= nn–α–(n – α)α–

as Laplacian spectrum of CI(n,α) is α,α, . . . ,α︸ ︷︷ ︸
α–

, , , . . . , ︸ ︷︷ ︸
n–α+

, that is, Laplacian spectrum of

CI(n,α) is n,n, . . . ,n︸ ︷︷ ︸
n–α

,n – α,n – α, . . . ,n – α︸ ︷︷ ︸
α–

, , by Lemma .

Since G is connected, one can easily see that

t(G + e) > t(G).

This completes the proof of this theorem. �

We now give another upper bound on t(G) in terms of n,m and ω.

Theorem  Let G be a connected graph of order n,m edges and clique number ω. Then

t(G) ≤ ωω–(m –ω(ω – ))n–ω+

n(n –ω + )n–ω+ ()

with the equality holding if and only if G ∼= Kn.

Proof By the arithmetic-geometric mean inequality, we have

ω–∏
i=

λi ≤
(∑ω–

i= λi

ω – 

)ω–

and
n–∏

i=ω–

λi ≤
(∑n–

i=ω– λi

n –ω + 

)n–ω+

.

Since ω is the clique number of G, by using (), we get

t(G) =

n

ω–∏
i=

λi

n–∏
i=ω–

λi ≤ 
n

(∑ω–
i= λi

ω – 

)ω–

×
(∑n–

i=ω– λi

n –ω + 

)n–ω+

=


n(ω – )ω–(n –ω + )n–ω+A
ω–(m –A)n–ω+,

where A =
ω–∑
i=

λi. ()

Let us consider a function

f (x) = xω–(m – x)n–ω+.

Then, we have

f ′(x) = xω–(m – x)n–ω
(
m(ω – ) – (n – )x

)
.

Since λ ≥ λ ≥ · · · ≥ λn–, we have

(n –ω + )
ω–∑
i=

λi ≥ (n –ω + )(ω – )λω– ≥ (ω – )
n–∑

i=ω–

λi,

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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that is,

(n – )A = (n – )
ω–∑
i=

λi ≥ (ω – )
n–∑
i=

λi = m(ω – ).

By using this inequality above, we conclude that f (x) is a decreasing function, as
f ′(x)≤ . Since ω is a clique number of G, we must have λi ≥ ω, i = , , . . . ,ω – , and
hence A =

∑ω–
i= λi ≥ ω(ω – ). Thus, we have

f (x)≤ ωω–(ω – )ω–
(
m –ω(ω – )

)n–ω+.

Using the above result with (), we get the required result (). The first part of the proof
is done.
Now,we suppose that the equality holds in (). Then all the inequalities in the argument

above must be equalities. Thus, we have λ = λ = · · · = λω– = ω and λω– = λω = · · · =
λn– = ω. Hence λi = ω, i = , , . . . ,n – . By Lemma , G ∼= Kn.
Conversely, one can easily see that the equality holds in () for complete graph Kn. �

The first Zagreb indexM(G) is defined as follows:

M(G) =
n∑
i=

d
i .

The first Zagreb index M(G) was introduced in [] and elaborated in []. The main
properties of M(G) were summarized in []. Some recent results on the first Zagreb
index are reported in [–]. Now, we are ready to give some lower and upper bounds on
the number of spanning trees.

Theorem  Let G be a connected graph of order n with m edges and first Zagreb index
M(G). Then

t(G) ≥ 
n

[
m – (n – )(M(G) + m)

n – 

] n–


()

with the equality holding in () if and only if G ∼= Kn.Moreover,

t(G) ≤ 
n

[
m –M(G) + m

(n – )(n – )

] n–


()

with the equality holding in () if and only if G ∼= Kn.

Proof We have

∑
i<j

(λi – λj) =



n–∑
i=

n–∑
j=

(
λ
i + λ

j – λiλj
)

=



[
(n – )

n–∑
i=

λ
i + (n – )

n–∑
j=

λ
j – 

n–∑
i=

λi

n–∑
j=

λj

]

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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= (n – )
n–∑
i=

λ
i –

( n–∑
i=

λi

)

= (n – )
n∑
i=

di(di + ) –

( n∑
i=

di

)

as
n–∑
i=

λ
i =

n∑
i=

di(di + ) and
n–∑
i=

λi =
n∑
i=

di

= (n – )
(
M(G) + m

)
– m as

n∑
i=

di = m. ()

SinceG is connected, λn– > . Now, by setting xi = λ
i , i = , , . . . ,n– and by Lemma ,

we obtain

∑n–
i= λ

i
n – 

–

(n–∏
i=

λ
i

)/n–

≤ M(G) + m –
m

n – 
, by ()

that is, by considering (),
∑n

i= di(di + )
n – 

–
(
nt(G)

)/n– ≤ M(G) + m –
m

n – 

since
∑n–

i= λ
i =

∑n
i= di(di + ). From this last inequality, we then get

(
nt(G)

)/n– ≥ m

n – 
–

(
n – 
n – 

)(
M(G) + m

)
, asM(G) =

n∑
i=

d
i ,

which gives the required result (). Similarly, by Lemma , we obtain

(
nt(G)

)/n– ≤ 
(n – )(n – )

(
m –M(G) + m

)
,

as required in (). Hence the first part of the proof is completed.
Now, we suppose that the equality holds in () or (). Then all the inequalities in the

argument above must be equalities. By Lemma , we have λ = λ = λ = · · · = λn–. By
Lemma , we get G ∼= Kn.
Conversely, one can easily see that the equalities in () and () hold for complete

graphs Kn. �

Example  For the three graphs G, G and G in Figure , t(G), t(G) and t(G) are ,
 and , respectively. The numerical results related to the bounds (that were mentioned
above) are listed in the following. At this point, we should note that these results are pre-
senting as rounded the one decimal place.

t(G) () () () () () () () () ()

G  . . .  . .  . .

G  . . .  . .  . .

G  .  . .    . .

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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Figure 1 Three graphs G1, G2 and G3.

4 Nordhaus-Gaddum-type results for the number of spanning trees of a graph
For a graph G , the chromatic number χ (G) is the minimum number of colors needed to
color the vertices of G in such a way that no two adjacent vertices are assigned the same
color. In , Nordhaus and Gaddum [] gave bounds involving the chromatic number
χ (G) of a graph G and its complement G :


√
n≤ χ (G) + χ (G) ≤ n + .

Motivated by the results above, we now obtain analogous conclusions for the number
of spanning trees.

Theorem  Let G be a connected graph on n ≥  vertices and m edges with a connected
complement G. Then

t(G) + t(G)

≤ 
n(n – )n–

× [
(� + )(m –� – )n– + (n –� – )

(
n(n – ) – m +� + 

)n–], ()

where � is the maximum degree in G.

Proof By Lemma , from (), we have

t(G) + t(G) =

n

n–∏
i=

λi +

n

n–∏
i=

(n – λi)

≤ 
n

[
λ

(
m – λ

n – 

)n–

+ (n – λ)
(
n(n – ) – m + λ

n – 

)n–]
by the arithmetic-geometric mean inequality

=


n(n – )n–
[
λ(m – λ)n– + (n – λ)

(
n(n – ) – m + λ

)n–]. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/395
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Let us consider a function

f (x) = x(m – x)n– + (n – x)
(
n(n – ) – m + x

)n– for � +  ≤ x≤ n.

We have

f ′(x) = (m – x)n–
(
m – (n – )x

)
–

(
n(n – ) – m + x

)n–((n – )x – m
)

= –
(
(n – )x – m

)[
(m – x)n– +

(
n(n – ) – m + x

)n–] < .

Thus, f (x) is a decreasing function on � +  ≤ x ≤ n. Using the result above in (), we
obtain the required result (). �

The next result presents another upper bound for t(G) + t(G). In fact, the proof of it is
clear by considering Theorem .

Theorem  Let G be a graph on n vertices and m edges. Then

t(G) + t(G)

≤ 
n(n – )(n–)/(n – )(n–)/

[(
m –M(G) + m

)(n–)/
+

(
n(n – )

(
n – n + 

)
+ m

(
m – (n – ) – 

)
–M(G)

)(n–)/], ()

where M(G) is the first Zagreb index of graph G. Moreover, the equality in () holds if
and only if G ∼= Kn or G ∼= Kn.
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