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1 Introduction andmain results
It is well known thatMorrey first introduced the classical Morrey spaces to investigate the
local behavior of solutions to second-order elliptic partial differential equations (PDEs) in
[]. In recent years there has been an explosion of interest in the study of the boundedness
of operators on Morrey-type spaces. It was found that many properties of solutions to
PDEs are concerned with the boundedness of some operators on Morrey-type spaces. In
fact, the better inclusion between Morrey and Hölder spaces permits to obtain higher
regularity of the solutions to different elliptic and parabolic boundary problems. Given
f ∈ Lploc(Rn) and  ≤ p≤ q < ∞, Morrey spaces are defined by (cf. [])

Mp,q
(
R

n) = {
f : ‖f ‖Mp,q(Rn) = sup

B

(


|B|– p
q

∫
B

∣∣f (x)∣∣p dx) 
p
< ∞

}
,

where the supremum is taken over all the balls in R
n. Obviously, Mp,p(Rn) = Lp(Rn). For

more connections between Morrey spaces and some other function spaces, see [].
We will introduce two important operators including the Hardy-Littlewood maximal

operator and the Calderón-Zygmund singular integral operator. Given f ∈ Lloc(Rn), the
Hardy-Littlewood maximal operatorM is defined by

Mf (x) = sup
B�x


|B|

∫
B

∣∣f (y)∣∣dy, x ∈R
n.

The Calderón-Zygmund singular integral operator is defined by

Tf (x) = p.v.
∫
Rn

K(x – y)f (y)dy,

© 2013 Shi et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribu-
tion License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
mailto:zwfu@mail.bnu.edu.cn
http://creativecommons.org/licenses/by/2.0


Shi et al. Journal of Inequalities and Applications 2013, 2013:390 Page 2 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/390

where K is the general Calderón-Zygmund kernel satisfying the following conditions:

∣∣K(x)
∣∣ ≤ C

|x|n ,
∣∣∇K(x)

∣∣ ≤ C
|x|n+ , x �= 

and ∫
r≤|x|≤R

K(x)dx = ,  < r < R < ∞.

The operators M and T play a key role in harmonic analysis since the operator M
could control much crucial quantitative information concerning the given functions de-
spite their larger size, while the operator T , with Hilbert transform as its prototype, is
closely connected with PDEs, operator theory and other fields; see [] for more details. In
, Chiarenza and Frasca [] obtained the boundedness of M and T on Mp,q(Rn). For
the boundedness of operators inMorrey spaces on homogeneous spaces, see []. For some
results on the boundedness for themultilinear singular integral operators onMorrey-type
spaces, see [].
Weighted inequalities arise naturally in Fourier analysis, but their use is best justified by

the variety of applications in which they appear. For example, the theory of weights is of
great importance in the study of boundary value problems for Laplace’s equations on Lip-
schitz domains. Other applications of weighted inequalities include extrapolation theory,
vector-valued inequalities, and estimates for certain classes of nonlinear mathematical
physics equations (see []). It is worth pointing out that many authors are interested in
the weighted norm inequalities when the weight function belongs to the Muckenhoupt
classes. Let w(x) ≥  and w(x) ∈ Lloc(Rn). We say that w ∈ Ap (the Muckenhoupt class) for
 < p < ∞ if there is a constant C >  such that

sup
B⊂Rn

(


|B|
∫
B
w(x)dx

)(


|B|
∫
B
w(x)–p

′
dx

)p–

< ∞,

where /p + /p′ = . w ∈ A if there is a constant C >  such thatMw(x) ≤ Cw(x).
For any nonnegative locally integrable function w and any Lebesgue measurable func-

tion f , the norm of the weighted Lebesgue space was defined by the norm

‖f ‖Lp(w) =
(∫

Rn

∣∣f (x)∣∣pw(x)dx)/p

,  ≤ p < ∞.

Ifw≡ , we denote ‖f ‖Lp(w) simply by ‖f ‖Lp(Rn). It is well known thatM andT are bounded
operators on Lp(w) with w ∈ Ap ( < p < ∞). For the boundedness of sublinear operators
on Lp(w), see [].
Komori and Shirai [] introduced a version of theweightedMorrey spaceMp,λ(w), which

is a natural generalization of the weighted Lebesgue space Lp(w). Let  ≤ p < ∞,  < λ < 
and w be a weight function. Then the spacesMp,λ(w) are defined by

Mp,λ(w) =
{
f : ‖f ‖Mp,λ(w) = sup

B⊂Rn

(


w(B)λ

∫
B

∣∣f (x)∣∣pw(x)dx)/p

<∞
}
,

wherew(B) =
∫
B w(x)dx. It is obvious that ifw≡ , thenMp,–p/q(w) =Mp,q(Rn). Forw ∈ Ap

( ≤ p < ∞), Mp,(w) = Lp(w) and Mp,(w) = L∞(w). In [], the authors investigated the

http://www.journalofinequalitiesandapplications.com/content/2013/1/390


Shi et al. Journal of Inequalities and Applications 2013, 2013:390 Page 3 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/390

boundedness of the operators M and T on Mp,λ(w) with w ∈ Ap. Wang and Liu [] stud-
ied the boundedness of the Bochner-Riesz means on Mp,λ(w) with w ∈ Ap ( ≤ p < ∞).
In [], we discussed the norm inequalities for oscillatory singular integral operators on
this space. It is of interest to know whether there is a criterion for the boundedness of
operators on Mp,λ(w), which is the motivation of this paper. The goal of this paper is to
extend some known results in [–] and to establish the boundedness of some sublinear
operators and their commutators on the weighted Morrey spaces under some size condi-
tions. These conditions were first proposed by Li and Yang [] and are satisfied bymost of
the operators in harmonic analysis. As applications, the strong solutions of nondivergence
elliptic equations with VMO coefficients will be given.
LetDk = {x ∈R

n : |x| ≤ k},Ak =Dk\Dk– for k ∈ Z and χE be the characteristic function
of the set E. Then we can formulate our main theorems as follows.

Theorem . Suppose that a sublinear operator T satisfies the size conditions

∣∣T f (x)
∣∣ ≤ C|x|–n‖f ‖L(Rn), (.)

when supp f ⊆ Ak , |x| ≥ k+ with k ∈ Z and

∣∣T f (x)
∣∣ ≤ C–kn‖f ‖L(Rn), (.)

when supp f ⊆ Ak , |x| ≤ k– with k ∈ Z. Let  < λ < . Then we have:
(a) If T is bounded on Lp(w) with w ∈ Ap, then T is bounded onMp,λ(w), where

 < p <∞.
(b) If T is bounded from L(w) to L,∞(w) with w ∈ A, then there exists a constant C > 

such that for all μ >  and all B,

w
({
x ∈ B : T f (x) > μ

}) ≤ Cμ–‖f ‖M,λ(w)w(B)
λ.

It is easy to check that both M and T satisfy the hypotheses of Theorem . (see [,
p.]). Therefore, when T is M or T , Theorem . agrees with [, Theorem .] and [,
Theorem.], respectively. If T is the Bochner-Rieszmeans, Theorem . is [, Theorem ,
Theorem ].

Corollary . Let  < p < ∞,  < λ <  and w ∈ Ap. Suppose that a sublinear operator T
satisfies the condition

∣∣T f (x)
∣∣ ≤ C

∫
Rn

|f (y)|
|x – y|n dy, x /∈ supp f (.)

for any integrable function f with compact support. If T is bounded on Lp(w), then T is
bounded on Mp,λ(w).

If w ≡ , Corollary . is [, Theorem .]. Theorem . is one of the main results of
this paper. It is easy to see that condition (.) implies size conditions (.) and (.) since
|x– y| > |x|/ when |x| ≥ k+, supp f ⊆ Ak while supp f ⊆ Ak , |x| ≤ k– imply that |x– y| >
|y|/. So, the proof of Corollary . is straightforward; see also Theorem  in [].

http://www.journalofinequalitiesandapplications.com/content/2013/1/390


Shi et al. Journal of Inequalities and Applications 2013, 2013:390 Page 4 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/390

Condition (.) was first introduced by Soria andWeiss []. It is worth pointing out that
(.) is satisfied by many operators in harmonic analysis, such as the Calderón-Zygmund
singular integral operator T , the Carleson maximal operator, Fefferman’s singular multi-
plier operator, Fefferman’s singular integral operator, oscillatory integral of Ricci and Stein
[], Bochner-Riesz means at the critical index, singular integral operators with oscillat-
ing kernels and so on. For more details, see [, Remark ] and [, p.]. Bandaliev []
studied the boundedness of a certain sublinear operator which satisfies (.) on weighted
variable Lebesgue spaces. For the boundedness of a certain sublinear operator which sat-
isfies (.) on product Hardy spaces, see [].
The bounded mean oscillation function space BMO was first introduced by John and

Nirenberg [] in the study of regular solutions of elliptic PDEs. A locally integrable func-
tion f will be said to belong to BMO if

‖f ‖BMO = sup
B�x


|B|

∫
B

∣∣f (y) – fB
∣∣dy < ∞,

where fB = 
|B|

∫
B f (y)dy.

The commutator formed by an operator N and a symbol function b is usually defined
by Nbf . The boundedness of Nb is worse than N (for example, the singularity, see also
[]). Coifman, Rochberg andWeiss [] first studied the boundedness ofNb in their study
of certain factorization theorems for generalized Hardy spaces. They showed that Nbf is
bounded on Lp(Rn),  < p < ∞, if and only if b ∈ BMO when N = T . Since then many
works concerning the topic of commutators of different operators with BMO functions
have come into existence. For some of other works, see [] and []. In [], the authors
proved the weighted boundedness forMb and Tb onMp,λ(w) with b ∈ BMO(Rn). We shall
extend the corresponding results of the sublinear operator to their commutators. For a
sublinear operator T , we will make the following assumption on its commutator T b:

∣∣T bf (x)
∣∣ ≤ C

∫
Rn

|b(x) – b(y)||f (y)|
|x – y|n dy, x /∈ supp f .

Theorem . Let  < p < ∞,  < λ < , w ∈ Ap, and let a sublinear operator T satisfy (.).
If T b is bounded on Lp(w) with b ∈ BMO(Rn), then T b is bounded on Mp,λ(w).

When T = T , Theorem . agrees with [, Theorem .] and [, Theorem .].
Let  < α < n. Then the fractional maximal operator and the fractional integral are de-

fined by

Mαf (x) = sup
B�x


|B|–α/n

∫
B

∣∣f (y)∣∣dy, x ∈R
n

and

Iαf (x) =
∫
Rn

f (y)
|x – y|n–α

dy,

respectively. An early impetus to the study of fractional integrals originated from the prob-
lem of fractional derivation (see []). Besides their contributions to harmonic analysis,

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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the fractional integrals also play an essential role in many fields. The Hardy-Littlewood-
Sobolev inequality about the fractional integral is still an indispensable tool to establish
time-space estimates for the heat semigroup of nonlinear evolution equations; see [].
For the fractional case, weighted Morrey spaces with two weights, which are also intro-
duced by Komori and Shirai in [], will be needed. Suppose that w(x) is a nonnegative
locally integrable function on R

n. We say that w ∈ A(p,q) ( < p,q < ∞) if there exists a
constant C >  such that

sup
B⊂Rn

(


|B|
∫
B
w(x)q dx

)/q( 
|B|

∫
B
w(x)–p

′
dx

)/p′

≤ C

and w ∈ A(,q) ( < q < ∞) if there exists a constant C >  such that

sup
B⊂Rn

(


|B|
∫
B
w(x)q dx

)/q(
ess sup

B


w(x)

)
≤ C.

The boundedness of Iα on Mp,q(Rn) was first established by Adams in []. In [], the
authors obtained the corresponding boundedness onweighted Lebesgue spaces for Iα with
w ∈ A(p,q) ( ≤ p,q < ∞). Let  ≤ p < ∞,  < λ < . For two weights w and w, the weighted
Morrey spaces with two weights are defined by

Mp,λ(w,w) =
{
f : ‖f ‖Mp,k (w,w) = sup

B

(


w(B)λ

∫
B

∣∣f (x)∣∣pw(x)dx
) 

p
<∞

}
.

If w = w = w, then we define Mp,λ(w,w) =Mp,λ(w). For the corresponding boundedness
ofMα and Iα onMp,λ(w,w), see also [].
We can get similar results for fractional integrals following the line of Theorem .-

Theorem ..

Theorem . Let  < α < n and  < λ < . Suppose that a sublinear operator Tα satisfies
the size conditions

∣∣Tαf (x)
∣∣ ≤ C|x|–(n–α)‖f ‖L(Rn)

when supp f ⊆ Ak , |x| ≥ k+ with k ∈ Z and

∣∣Tαf (x)
∣∣ ≤ C–k(n–α)‖f ‖L(Rn)

when supp f ⊆ Ak , |x| ≤ k– with k ∈ Z. Then we have:
(a) If Tα maps Lp(wp) into Lq(wq) with w ∈ A(p,q), then Tα is bounded fromMp,λ(wp,wq)

toMq,qλ/p(wq), where  < p < n/α, /q = /p – α/n and  < p < q <∞.
(b) If Tα is bounded from L(w) to Lq,∞(wq) with w ∈ A(,q), then there exists a constant

C >  such that for all μ >  and any ball B ⊂R
n,

w
({
x ∈ B : Tαf (x) > μ

})/q ≤ Cμ–‖f ‖M,λ(w,wq)w(B)λ,

where  < q < ∞.

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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The fractional maximal operator Mα satisfies the hypotheses of Theorem . since the
pointwise inequality Mαf (x) ≤ Iα(|f |)(x) holds for  < α < n (see [, Remark .]). If we
take Tα =Mα and Tα = Iα , then Theorem . agrees with [, Theorem .] and [, Theo-
rem .], respectively.

Theorem . Let p, q, α, w, λ be as in Theorem ., and let a sublinear operator T α satisfy

∣∣T αf (x)
∣∣ ≤ C

∫
Rn

|f (y)|
|x – y|n–α

dy, x /∈ supp f (.)

for any integral function f with compact support. If T α,b maps Lp(wp) into Lq(wq) with
b ∈ BMO(Rn), then T α,b is bounded from Mp,λ(wp,wq) to Mq,qλ/p(wq).

We remark that both the fractional integral Iα and oscillatory fractional integral of Ricci
and Stein [] are examples of operators which satisfy (.). For the corresponding bound-
edness in unweighted cases of the sublinear operators satisfying (.) on Herz spaces, we
refer the reader to [] and []. Theorem . reduces to Theorem . in [] when T α = Iα .

Remark . As another extension of Hilbert transform, a variety of operators related to
the singular integrals for Calderón-Zygmund with homogeneous kernels, but lacking the
smoothness required in the classical theory, have been studied. In this case, the kernel of
the operator has no regularity, and so the operator is called rough integral operator. For
some classical survey works about operators with homogeneous kernels, see [] and []
for example. Lu, Yang and Zhou studied certain sublinear operatorsmentioned abovewith
rough kernels on the generalized Morrey space in []. In [], Shi and Fu obtained the
boundedness of these sublinear operators with rough kernels on weightedMorrey spaces.

We end this section with the outline of this paper. Section  contains the proofs of Theo-
rem ., Theorem ., Theorem . andTheorem .. In Section , bymeans of the theories
of sublinear operators and their commutators obtained in Section , we establish the reg-
ularity in weighted Morrey spaces of strong solutions to nondivergence elliptic equations
with VMO coefficients.

2 Proofs of themain results
As in [], our methods are adopted from [] in the case of the Lebesgue measure and
from [] dealing with the classical operators. Before the proof of Theorem ., we give
some properties of Ap weights, which were also stated in Chapter  of []. For λ > , let λB
denote the ball with the same center as B and radius λ times the radius of B.

Lemma . Let  ≤ p < ∞ and w ∈ Ap. Then the following statements are true.
(a) There exists a constant C such that

w(B)≤ Cw(B). (.)

(b) There exists a constant C >  such that

w(B)≥ Cw(B). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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(c) There exist two constants C and r >  such that the following reverse Hölder
inequality holds for every ball B ⊂R

n:

(


|B|
∫
B
w(x)r dx

)/r

≤ C
(


|B|

∫
B
w(x)dx

)
. (.)

(d) For all λ > , we have

w(λB)≤ Cλnpw(B).

(e) There exist two constants C and δ >  such that for any measurable set Q ⊂ B,

w(Q)
w(B)

≤ C
( |Q|

|B|
)δ

. (.)

Proof of Theorem . Let  < p < ∞, w ∈ Ap and  < λ < . We first give the proof of (a), for
which it suffices to show that


w(B)λ

∫
B

∣∣T f (x)
∣∣pw(x)dx ≤ C‖f ‖pMp,λ(w). (.)

Without loss of generality, we can assume r =  for a fixed ball B = B(x, r) and decompose
f = f χB + f χ(B)c =: f + f to get


w(B)λ

∫
B

∣∣T f (x)
∣∣pw(x)dx

≤ C
w(B)λ

∫
B

∣∣T f(x)
∣∣pw(x)dx + C

w(B)λ

∫
B

∣∣T f(x)
∣∣pw(x)dx

=: I + II.

Using the fact that T is bounded on Lp(w), we have

I ≤ C
w(B)λ

∫
Rn

∣∣T f(x)
∣∣pw(x)dx ≤ C

w(B)λ

∫
B

∣∣f (x)∣∣pw(x)dx≤ C‖f ‖pMp,λ(w). (.)

We are now in a position to estimate the term II . It follows from w ∈ Ap that

∫
(B)c

∣∣f (y)∣∣dy≤ C
∞∑
k=

∫
k+B\kB

∣∣f (y)∣∣dy

≤ C
∞∑
k=

(∫
k+B

∣∣f (y)∣∣pw(y)dy)/p(∫
k+B

w(y)–p
′/p dy

)/p′

≤ C‖f ‖Mp,λ(w)

∞∑
k=

|k+B|
w(k+B)(–λ)/p .

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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By assumption (.), we have

II ≤ C
w(B)λ

∞∑
k=

–knp
∫
B
‖f‖pL(Dk )

w(x)dx

≤ C
w(B)λ–

∞∑
k=

–knp
(∫

Dk

∣∣f (y)∣∣dy)p

≤ C‖f ‖pMp,λ(w)

( ∞∑
k=

w(B)(–λ)/p

w(k+B)(–λ)/p

)p

≤ C‖f ‖pMp,λ(w). (.)

Here we have used (.) in the last inequality. Combining (.) with (.), we get (.).
We can now proceed analogously to the proof of part (b). We will show the following

inequality:

sup
μ>

μ

w(B)λ
w

({
x ∈ B :

∣∣T f (x)
∣∣ > μ

}) ≤ C‖f ‖pM,λ(w).

Decompose f = f χB + f χ(B)c =: f + f with B as that of (a) to obtain

w
({
x ∈ B :

∣∣T f (x)
∣∣ > μ

})
≤ w

({
x ∈ B :

∣∣T f(x)
∣∣ > μ/

})
+w

({
x ∈ B :

∣∣T f(x)
∣∣ > μ/

})
=: J + JJ .

An application of (.) and the weighted weak (, ) type estimates for T yield that

J ≤ w
({
x ∈R

n :
∣∣T f(x)

∣∣ > μ/
}) ≤ Cμ–‖f ‖M,λ (w)w(B)

λ.

For the term JJ , an elementary estimate shows

JJ ≤ C
μ

∫
{x∈B:|T f(x)|>μ/}

∣∣T f(x)
∣∣w(x)dx.

On the other hand, a further use of (.) yields

∣∣T f(x)
∣∣ ≤ C

∞∑
k=

–kn
∫
Dk

∣∣f (y)∣∣dy ≤ C
∞∑
k=

–kn
∫
k+B

∣∣f (y)∣∣dy,
from which it follows that

JJ ≤ C
μ

∞∑
k=

–kn
∫
k+B

∣∣f (y)∣∣w(y)dy ≤ C
μ

‖f ‖M,λ (w)
∞∑
k=

kn(λ–)w(B)λ

≤ C
μ

‖f ‖M,λ (w)w(B)
λ.

We have thus completed the proof of (b). �

The proof of Theorem . depends heavily on the following remarks about BMO func-
tions.

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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Lemma . [, Theorem .] (see also [, Proposition ..]) Let  ≤ p < ∞, b ∈
BMO(Rn). Then, for any ball B ⊂R

n, the following statements are true:
(a) There exist constants C, C such that for all α > ,

∣∣{x ∈ B :
∣∣b(x) – bB

∣∣ > α
}∣∣ ≤ C|B|e–Cα/‖b‖BMO(Rn) . (.)

Inequality (.) is called John-Nirenberg inequality.
(b)

|bλB – bB| ≤ nλ‖b‖BMO(Rn). (.)

Lemma . [, Proposition ..] (see also [, Theorem ]) Let w ∈ A∞ and  < p < ∞.
Then the following statements are equivalent:
(a) ‖b‖BMO(Rn) ∼ supB( 

|B|
∫
B |b(x) – bB|p dx)


p ;

(b) ‖b‖BMO(Rn) ∼ supB infa∈R


|B|
∫
B |b(x) – a|dx;

(c) ‖b‖BMO(w) = supB


w(B)
∫
B |b(x) – bB,w|w(x)dx, where BMO(w) = {b : ‖b‖BMO(w) < ∞}

and bB,w = 
w(B)

∫
B b(y)w(y)dy.

Lemma . Let b ∈ BMO(Rn), w ∈ Ap, B = B(x, r) be a fixed ball,  < λ <  and  < p < ∞.
Then the inequality

(∫
|x–y|>r

|f (y)|
|x – y|n

∣∣bB,w – b(y)
∣∣dy)p

w(B)–λ ≤ C‖f ‖pMp,λ(w)‖b‖
p
BMO(Rn) (.)

holds for every y ∈ (B)c and f ∈Mp,λ(w), where (B)c =R
n \ B.

Proof The proof of Lemma . has a root in [], whichwe adopted here for the complete-
ness of this paper. Applying Hölder’s inequality to the left-hand side of (.), we obtain

(∫
|x–y|>r

|f (y)|
|x – y|n

∣∣bB,w – b(y)
∣∣dy)p

w(B)–λ

≤
( ∞∑

j=

∫
jr<|x–y|<j+r

|f (y)|
|x – y|n

∣∣bB,w – b(y)
∣∣dy

)p

w(B)–λ

≤
( ∞∑

j=


|jB|

∫
j+B

∣∣f (y)∣∣∣∣bB,w – b(y)
∣∣dy

)p

w(B)–λ

≤ C

[ ∞∑
j=


|jB|

(∫
j+B

∣∣f (y)∣∣pw(y)dy)/p(∫
j+B

∣∣bB,w – b(y)
∣∣p′
w(y)–p′

dy
)/p′]p

×w(B)–λ

≤ C‖f ‖pMp,λ(w)

[ ∞∑
j=

w(j+B)
λ
p

|jB|
(∫

j+B

∣∣bB,w – b(y)
∣∣p′
w(y)–p

′
dy

)/p′]p

w(B)–λ.

For the simplicity, we define

I =
(∫

j+B

∣∣bB,w – b(y)
∣∣p′
w(y)–p

′
dy

)/p′

.
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By an elementary estimate, we have

I ≤
(∫

j+B

(∣∣bj+B,w–p′ – b(y)
∣∣ + |bj+B,w–p′ – bB,w|)p′

w(y)–p
′
dy

)/p′

≤
(∫

j+B

∣∣bj+B,w–p′ – b(y)
∣∣w(y)–p′

dy
) 

p′
+ |bj+B,w–p′ – bB,w|w–p′(

j+B
)/p′

=: I + I.

For the term I, we use the fact that if w ∈ Ap, then w–p′ ∈ Ap′ . By Lemma .,

I ≤ C‖b‖BMO(w–p′ )w
–p′(

j+B
)/p′ ≤ Cw–p′(

j+B
)/p′

. (.)

To deal with I, by (.), we have

|bj+B,w–p′ – bB,w|
≤ |bj+B,w–p′ – bj+B| + |bj+B – bB| + |bB – bB,w|

≤ 
w–p′ (j+B)

∫
j+B

∣∣b(y) – bj+B
∣∣w(y)–p′

dy + n(j + )‖b‖BMO(Rn)

+


w(B)

∫
B

∣∣b(y) – bB
∣∣w(y)dy

=: I + I + I.

Using (.) and (.), we obtain that

I =


w(B)

∫ ∞


w

({
x ∈ B :

∣∣b(y) – bB
∣∣ > α

})
dα

≤ C
∫ ∞


e–Cαδ/‖b‖BMO(Rn) dα ≤ C,

and analogously, I ≤ C.
Hence

I ≤ C
(
n(j + ) + 

)
w–p′(

j+B
)/p′

. (.)

As a by-product of (.) and (.), we have

I ≤ C(j + )w–p′(
j+B

)/p′
.

Then, the proof of (.) is concluded from (.) and the following observation:

[ ∞∑
j=

w(j+B)λ/p

|jB|
(∫

j+B

∣∣b(y) – bB,w
∣∣p′
w(y)–p′

dy
)/p′]p

w(B)–λ

≤ C

[ ∞∑
j=

(j + )w(B)(–λ)/p

w(j+B)(–λ)/p

]p

= C.
�
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Proof of Theorem . It is sufficient to show that for a fixed ball B = B(x, ),


w(B)λ

∫
B

∣∣T bf (x)
∣∣pw(x)dx ≤ C‖f ‖pMp,λ(w). (.)

Decompose f = f χB + f χ(B)c =: f + f. Then

∫
B

∣∣T bf (x)
∣∣pw(x)dx ≤ C

(∫
B

∣∣T bf(x)
∣∣pw(x)dx + ∫

B

∣∣T bf(x)
∣∣pw(x)dx)

=: K +KK .

The Lp(w) boundedness of T b allows us to get

K ≤ C
∫
B

∣∣f (x)∣∣pw(x)dx ≤ C‖f ‖pMp,λ(w)w(B)
λ. (.)

Making use of (.), we have

∣∣T bf(x)
∣∣p ≤ C

(∫
Rn

|f(y)||b(x) – b(y)|
|x – y|n dy

)p

≤ C
(∫

|x–y|>
|f (y)|

|x – y|n
{∣∣b(x) – bB,w

∣∣ + ∣∣bB,w – b(y)
∣∣}dy)p

.

Hence,

KK ≤ C
(∫

|x–y|>
|f (y)|

|x – y|n dy
)p ∫

B

∣∣b(x) – bB,w
∣∣pw(x)dx

+C
(∫

|x–y|>
|f (y)|

|x – y|n
∣∣b(y) – bB,w

∣∣dy)p

w(B)

=: KK +KK.

From Lemma ., we can obtain KK ≤ C‖f ‖pMp,λ(w)w(B)
λ.

To estimate KK, we take into account (.), (.) and Lemma .. Indeed,

KK = C

( ∞∑
j=

∫
j<|x–y|<j+

|f (y)|
|x – y|n dy

)p ∫
B

∣∣b(x) – bB,w
∣∣pw(x)dx

≤ C
∞∑
j=


|jB|

(


w(j+B)λ

∫
j+B

∣∣f (y)∣∣pw(y)dy)/p

×w
(
j+B

)λ/p
(∫

j+B
w(y)–/p– dy

)(p–)/p ∫
B

∣∣b(x) – bB,w
∣∣pw(x)dx

≤ C‖f ‖Mp,λ(w)

( ∞∑
j=

|j+B|– 
p

|jB|
(


|j+B|

∫
j+B

w(y)dy
)–/p

w
(
j+B

)λ/p
)p

×
∫
B

∣∣b(x) – bB,w
∣∣pw(x)dx

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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≤ C‖f ‖pMp,λ(w)‖b‖
p
BMO(Rn)

∞∑
j=

(
w(B)(–λ)/p

w(j+B)(–k)/p

)p

w(B)λ

≤ C‖f ‖pMp,λ(w)w(B)
λ.

Therefore,

KK ≤ C‖f ‖pMp,λ(w)w(B)
λ. (.)

Combining (.) with (.), we obtain (.). Therefore, we finish the proof of Theo-
rem .. �

Proof of Theorem . We can use similar arguments as in the proof of Theorem .. For
the proof of (a), it suffices to show that


wq(B)qλ/p

∫
B

∣∣Tα f (x)
∣∣qw(x)q dx ≤ C‖f ‖qMp,λ(wp ,wq).

For a fixed ball B = B(x, ), we decompose f = f χB+ f χ(B)c =: f + f. Since Tα is a sublinear
operator, we get


wq(B)qλ/p

∫
B

∣∣Tαf (x)
∣∣qw(x)q dx

≤ C
wq(B)qλ/p

∫
B

(∣∣Tαf(x)
∣∣q + ∣∣Tαf(x)

∣∣q)wq(x)dx

=: L + LL.

To estimate the term L, using the fact that Tα is bounded from Lp(wp) to Lq(wq) with
w ∈ A(p,q), we can get

∫
B

∣∣Tα f(x)
∣∣qwq(x)dx≤ C‖f ‖qMp,λ(wp ,wq)w

q(B)qλ/p,

which implies that L ≤ C‖f ‖Mp,λ(wp ,wq).
For the term LL, by similar arguments to those of Theorem ., we obtain

LL ≤ C
∑
k

(
–k(n–α)

∫
Ak

∣∣f (y)∣∣dy)q

wq(B)–qλ/p

≤ C
∑
k

(
–k(n–α)‖f ‖Mp,λ(wp ,wq)

∣∣k+B∣∣–α/n 
wq(k+B)/q–λ/p

)q

wq(B)–qλ/p

≤ C‖f ‖qMp,λ(wp ,wq)

( ∞∑
k=

wq(B)(/q–λ/p)

wq(k+B)(/q–λ/p)

)q

≤ C‖f ‖qMp,λ(wp ,wq).

We have completed the proof of (a).
Using an argument quite similar to the one in the proof of (a), we can prove (b).We omit

the proof here. �
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Proof of Theorem . The proof of Theorem . is similar to that of Theorem ., except
using w ∈ A(p,q). �

3 Applications to nondivergence elliptic equations
In this section,we shall give some applications of ourmain results to nondivergence elliptic
equations. The Dirichlet problem on the second-order elliptic equation in nondivergence
form is

{
Lu =

∑n
i,j aij(x)uxiuxj = f a.e. in �,

u =  on ∂�.
(.)

Here x = (x, . . . ,xn) ∈ R
n, � is a bounded domain of Rn. The coefficients (aij)ni,j= of L are

symmetric and uniformly elliptic, i.e., for some ν ≥  and every ξ ∈ R
n, aij(x) = aji(x) and

ν–|ξ | ≤ ∑n
i,j= aij(x)ξiξj ≤ ν|ξ | with a.e. x ∈ �. In [], Fan, Lu and Yang investigated the

regularity in Mp,λ(�) of the strong solution to (.) with aij ∈ VMO(�), the space of the
functions of vanishing mean oscillation introduced by Sarason in []. The main methods
of [] are based on integral representation formulas established in [] for the second
derivatives of the solution u to (.), a priori estimate of the solution to (.) and on the
theories of singular integrals and sublinear commutators in correspondingMorrey spaces.
By extending some theorems of [] to weighted versions, we can also establish the reg-

ularity in weighted Morrey spacesMp,λ of strong solutions to problem (.).

Theorem . Let w ∈ Ap ( < p < ∞), f ∈ Mp,λ(w) with  < λ < . Then (.) has a unique
solution u ∈W Mp,λ(w) satisfying

‖u‖WMp,λ(w) ≤ C‖f ‖Mp,λ(w),

where W Mp,λ(w) is the Sobolev-Morrey space. u ∈ W Mp,λ(w) means u and its distribu-
tional derivatives, uxi , uxixj (i, j = , . . . ,n) are in Mp,λ(w).

The proof of Theorem . is very similar to that of [], we omit the details. Here, we
only take two main results to explain this similarity. All other proofs of the corresponding
theorems are straightforward. Firstly, Theorem . in Section  is just the weighted version
of important Theorem . in []. Next, we give the proof of another important result (the
weighted version of Theorem . of []).
Let Rn

+ = {x = (x′,xn) : x′ = (x, . . . ,xn–) ∈ R
n–,xn > }, Lp+(w) = Lp(w,Rn

+) and M+
p,λ =

Mp,λ(w,Rn
+). To establish the boundary estimates of the solutions to (.), we need the

following general theorem for sublinear operators.

Theorem . Let  < p <∞,  < λ < , w ∈ Ap, x̃ = (x′, –xn) for x = (x′,xn) ∈R
n
+. If a sublin-

ear operator T is bounded on Lp+(w) for any f ∈ L+(w) with compact support and satisfies

∣∣Tf (x)∣∣ ≤ C
∫
R
n
+

|f (y)|
|x̃ – y|n dy, (.)

then T is bounded on M+
p,λ(w).

http://www.journalofinequalitiesandapplications.com/content/2013/1/390
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Proof Let z ∈ R
n
+ and δ > . Set B+

δ (z) = Bδ(z) ∩R
n
+, where Bδ(z) = {y ∈ R

n : |z – y| < δ}. We
consider the following two cases.
Case .  ≤ zn < δ. In this case, we write

f (y) = f (y)χB+
δ

(z)(y) +
∞∑
i=

f (y)χB+
i+δ

(z)/B+
iδ

(z)(y) =:
∞∑
i=

fi(y).

Therefore, by the Lp+(w) boundedness of T and (.), we obtain


w(B+

δ )λ/p

(∫
B+δ

∣∣Tf (x)∣∣pw(x)dx)/p

≤ 
w(B+

δ )λ/p

∞∑
i=

(∫
B+δ

∣∣Tfi(x)∣∣pw(x)dx
)/p

≤ C
w(B+

δ )λ/p
‖f‖Lp+(w) +

C
w(B+

δ )λ/p

∞∑
i=

(∫
B+δ

(∫
B+
i+δ

(z)/B+
iδ

(z)

|f (y)|
|x̃ – y|n dy

)p

w(x)dx
)/p

≤ C‖f ‖M+
p,λ(w) +C

∞∑
i=


(iδ)n

(∫
B+
i+δ

∣∣f (y)∣∣dy)w(
B+

δ

)(–λ)/p

≤ C‖f ‖M+
p,λ(w)

(
 +

∞∑
i=

w(B+
δ )(–λ)/p

w(B+
i+δ)

(–λ)/p

)

≤ C‖f ‖M+
p,λ(w).

In the last inequality, we have used Lemma ..
Case . There exists i ∈N such that iδ ≤ zn < i+δ. In this case, we write

f (y) = f (y)χB+
i+δ

(z)(y) +
∞∑
j=

f (y)χB+
i+j+δ

(z)(y) =:
∞∑
j=

fj(y).

By (.) and Lemma ., we have


w(B+

δ )λ/p

(∫
B+δ

∣∣Tf (x)∣∣pw(x)dx)/p

≤ C
w(B+

δ )λ/p

(∫
B+δ

(∫
B+
i+δ

(z)

|f (y)|
|x̃ – y|n dy

)p

w(x)dx
)/p

+
C

w(B+
δ )λ/p

∞∑
j=

(∫
B+δ

(∫
B+
i+j+δ

(z)/B+
i+j+δ

(z)

|f (y)|
|x̃ – y|n dy

)p

w(x)dx
)/p

≤ C‖f ‖M+
p,λ(w)

(
w(B+

δ )(–λ)/p

w(B+
i+δ

)(–λ)/p +
∞∑
j=

w(B+
δ )(–λ)/p

w(B+
i+jδ)

(–λ)/p

)

≤ C‖f ‖M+
p,λ(w). �
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