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Abstract
Under the assumption that μ is a nondoubling measure on R

d satisfying the growth
condition, the author proves that the commutatorMb generated by the
Marcinkiewicz integral operator and the Lipschitz function is bounded from the Hardy
space H1,∞,0

fin (μ) into Lq(μ) for 1/q = 1 – β/n with the kernel satisfying a certain
Hörmander-type condition. Moreover, the author shows that for p = n/β ,Mb is
bounded from the Morrey space M

p
q (μ) into RBMO(μ), from Ln/β (μ) into RBMO(μ)

and from M
p
q (μ) into Lip(β– n

p )
(μ), respectively.
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1 Introduction
In recent years, harmonic analysis on spaces with nondoubling measures has become a
very active research topic. There has been significant progress in the study of boundedness
for singular integrals on these spaces; see [–]. Among a long list of research papers, some
of them [–] are on theMarcinkiewicz integral operators. Themotivation for developing
the analysis with nondoubling measures and some important examples of nondoubling
measures can be found in [].
We recall that a nonnegative Radon measure μ on R

d is said to be a nondoubling mea-
sure if there is a positive constant C such that for all x ∈R

d and all r >  it satisfies:

μ
(
B(x, r)

) ≤ Crn, (.)

where n is a positive constant and  < n ≤ d, B(x, r) is the open ball centered at x and
having radius r.
Let K(x, y) be a locally integrable function onR

d ×R
d \ {(x, y) : x = y}. Assume that there

exists a constant C >  such that for any x, y ∈R
d with x �= y,

∣∣K(x, y)
∣∣ ≤ C|x – y|–(n–), (.)

and for any x, y, y′ ∈R
d ,

∫
|x–y|≥|y–y′|

[∣∣K(x, y) –K
(
x, y′)∣∣ + ∣∣K(y,x) –K

(
y′,x

)∣∣] 
|x – y| dμ(x) ≤ C. (.)
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The Marcinkiewicz integral M associated to the kernel K(x, y) and the measure μ as in
(.) is defined by

M(f )(x) =
(∫ ∞



∣∣∣∣
∫

|x–y|≤t
K(x, y)f (y)dμ(y)

∣∣∣∣
 dt
t

)/

, x ∈R
d. (.)

Let b ∈ Lloc(μ), the Marcinkiewicz commutatorMb is formally defined by

Mb(f )(x) =
(∫ ∞



∣∣∣∣
∫

|x–y|≤t

[
b(x) – b(y)

]
K(x, y)f (y)dμ(y)

∣∣∣∣
 dt
t

)/

, x ∈R
d. (.)

If μ is the d-dimensional Lebesgue measure in R
d , and

K(x, y) =
�(x – y)
|x – y|d–

with � homogeneous of degree zero and � ∈ Lipα(Sd–) for some α ∈ (, ], then it
is easy to verify that K(x, y) satisfies (.) and (.), and M in (.) is just the higher
dimensional Marcinkiewicz integral M� defined by Stein in [], which is important
in classical harmonic analysis and is a focus of active research; see [–]. Particu-
larly, we should mention the work of Torchinsky and Wang [], where they estab-
lished the Lp(Rd) boundedness for the commutator generated by the Marcinkiewicz in-
tegral M� and BMO(Rd) function with p ∈ (,∞). However, it is also worth to study
the different behavior of another type commutator generated by the Marcinkiewicz in-
tegral M� and Lipβ (Rd) function, which was recently studied by Mo and Lu in []
when � is homogeneous of degree zero and satisfies the cancellation condition. They
obtained its boundedness from Lp(Rd) into Lq(Rd) for  < p < n/β and /q = /p –
β/n.
When μ satisfies growth condition (.),M as in (.) was first introduced by Hu et al.

in [], where the boundedness of such an operator in Lp(μ) with  < p < ∞ and the Hardy
space H(μ) were established under the assumption that M is bounded on L(μ) with
the kernel K(x, y) satisfying (.) and (.). Moreover, they got the same estimates for the
commutatorMb defined as (.) with b ∈ RBMO(μ) when the kernel K(x, y) satisfies (.)
and (.), which is slightly stronger than (.) and is defined as follows:

sup
y,y′∈Rd ,l>,

|y–y′|≤l

∞∑
k=

k
∫
k l<|x–y|≤k+l

[∣∣K(x, y) –K
(
x, y′)∣∣

+
∣∣K(y,x) –K

(
y′,x

)∣∣] 
|x – y| dμ(x) ≤ C. (.)

However, in our problem, we discover that the kernels should satisfy some other kind of
smoothness to replace condition (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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Definition . Let  ≤ s < ∞,  < ε < . We say that the kernel K satisfies a Hörmander-
type condition if there exist cs >  and Cs >  such that for any x ∈R

d and l > cs|x|,

sup
l>,y,y′∈Rd

|y–y′|≤l

∞∑
k=

kε
(
kl

)n( 
(kl)n

∫
k l<|x–y|≤k+l

[(∣∣K(x, y) –K
(
x, y′)∣∣

+
∣∣K(y,x) –K

(
y′,x

)∣∣) 
|x – y|

]s

dμ(x)
)/s

≤ Cs. (.)

Directly, one can see that condition (.) can be rewritten as

sup
l>,y,y′∈Rd

|y–y′|≤l

∞∑
k=

kε
(
kl

)(n/s′–)(∫
k l<|x–y|≤k+l

[(∣∣K(x, y) –K
(
x, y′)∣∣

+
∣∣K(y,x) –K

(
y′,x

)∣∣)]s dμ(x)
)/s

≤ Cs. (.′)

We note that this kind of smoothness was not new. Condition (.′) is similar to the
Hörmander-type condition which allows that the integral operator can be controlled
by a maximal operator in doubling measure spaces, and also useful in the research of
Schrödinger operators; see [–] for details. We denote by H s the class of kernels sat-
isfying this condition. It is clear that these classes are nested,

H s ⊂ H s ⊂ H ,  < s < s < ∞.

We should point out that H  is not condition (.).
In [], by supposing that the kernel K satisfies (.) and (.), the authors studied the

commutatorMb in the case of b ∈ Lipβ (μ) and established that it is bounded from Lp(μ)
into Lq(μ) for  < p < n/β and /q = /p – β/n. Furthermore, when condition (.) is re-
placed by (.), Mb is bounded from Lp(μ) into Lipβ–n/p(μ) for some  < β < / and
n/β < p < ∞, from Ln/β (μ) into RBMO(μ) for some  < β <  and n/β < p < ∞, respec-
tively.
The purpose of this paper is to get some estimates for the commutator Mb with the

kernel K satisfying (.) and (.) on the Hardy-type space and RBMO(μ) spaces. To be
precise, we establish the boundedness of Mb in H,∞

fin (μ) for /q =  – β/n in Section .
In Section , we prove that Mb is bounded from RBMO(μ) to the Morrey space M

p
q(μ),

from RBMO(μ) to Ln/β (μ) for p = n/β .
Before stating our result, we need to recall some necessary notation and definitions. For

a cubeQ ⊂R
d , we mean a closed cube whose sides are parallel to the coordinate axes. We

denote its center and its side length by xQ and �(Q), respectively. Let α > , αQ denote the
cube with the same center as Q and �(αQ) = α�(Q). Given two cubes Q⊂ R in R

d , set

SQ,R =  +
NQ,R∑
k=

μ(kQ)
[�(kQ)]n

,

whereNQ,R is the smallest positive integer k such that �(kQ)≥ �(R). The concept SQ,R was
introduced in [], where some useful properties of SQ,R can be found.

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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The following characterization of the Lipschitz space Lipβ (μ) for  < β ≤  in [] plays
a key role in the proof of theorems.

Lemma . For a function b ∈ Lloc(μ), conditions I, II and III below are equivalent.
(I) There is a constant C ≥  such that

∣∣b(x) – b(y)
∣∣ ≤ C|x – y|β

for μ-almost every x and y in the support of μ.
(II) There exist some constant C ≥  and a collection of numbers bQ such that these

two properties hold: for any cube Q,


μ(Q)

∫
Q

∣∣b(x) – bQ
∣∣dμ(x)≤ C�(Q)β , (.)

and for any cube R such that Q⊂ R and �(R) ≤ �(Q),

∣∣mQ(b) –mR(b)
∣∣ ≤ C�(Q)β . (.)

(III) For any given p,  ≤ p≤ ∞, there is a constant C(p) ≥  such that for every cube Q,
we have

[


μ(Q)

∫
Q

∣∣b(x) –mQ(b)
∣∣p dμ(x)

]/p

≤ C(p)�(Q)β , (.)

where, and in the sequel,

mQ(b) =


μ(Q)

∫
Q
b(y)dμ(y),

and also for any cube R such that Q ⊂ R and �(R)≤ �(Q),

∣∣mQ(b) –mR(b)
∣∣ ≤ C(p)�(Q)β .

In addition, the quantities inf{C}, inf{C} and inf{C(p)} with a fixed p are equivalent
and denoted by ‖b‖Lipβ

.

Remark . Lemma . is a slight variant of Theorem . in []. To be precise, if we
replace all balls in Theorem . of [] by cubes, we then obtain Lemma ..

Remark . For  < β ≤ , (.) is equivalent to

|bQ – bR| ≤ C′
SQ,R�(R)

β (.)

for any two cubes Q ⊂ R with �(R) ≤ �(Q); see Remark . in []. Note that for β = 
(.) and (.) is just the space RBMO(μ) of Tolsa; see []. Therefore, the space Lipβ (μ)
for  ≤ β ≤  can be seen as a member of a family containing RBMO(μ).

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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We also need the following lemma for the Lp(μ)-boundedness ofMb, which was proved
in [].

Lemma . Let b ∈ Lipβ (μ),  < β ≤ . Suppose that K(x, y) satisfies (.) and (.) and
thatMb is as in (.). IfM is bounded on L(μ), then there exists a positive constant C > 
such that for all bounded functions f with compact support,

∥∥Mb(f )
∥∥
Lq(μ) ≤ C‖b‖Lipβ

‖f ‖Lp(μ), (.)

where  < p < n/β and /q = /p – β/n.

Throughout this paper, we use the constantC with subscripts to indicate its dependence
on the parameters. We denote simply by A� B if there exists a constant C >  such that
A ≤ CB; and A ∼ B means that A � B and B � A. For a μ-measurable set E, χE denotes
its characteristic function. For any p ∈ [,∞], we denote by p′ its conjugate index, namely,
/p + /p′ = .

2 Boundedness ofMb in Hardy spaces
This section is devoted to the behavior of the commutatorMb inHardy spaces. In order to
define the Hardy space H(μ), Tolsa introduced the ‘grand’ maximal operatorM� in [].

Definition . Given f ∈ Lloc(μ), we define

M�f (x) = sup
ϕ∼x

∣∣∣∣
∫
Rd

f ϕ dμ

∣∣∣∣,
where the notation ϕ ∼ xmeans that ϕ ∈ L(μ)∩C(Rd) and satisfies

(i) ‖ϕ‖L(μ) ≤ ,
(ii)  ≤ ϕ(y) ≤ 

|y–x|n for all y ∈R
d ,

(iii) |ϕ′(y)| ≤ 
|y–x|n+ for all y ∈R

d .

Based on Theorem . in [], we can define the Hardy space H(μ) as follows; see
also [].

Definition . The Hardy space H(μ) is the set of all functions f ∈ L(μ) satisfying that∫
Rd f dμ =  andM�f ∈ L(μ). Moreover, we define the norm of f ∈H(μ) by

‖f ‖H(μ) = ‖f ‖L(μ) + ‖M�f ‖L(μ).

We recall the atomic Hardy space H,∞,
atb (μ) as follows.

Definition . Let ρ > . A function h ∈ Lloc(μ) is called an atomic block if
() there exists some cube R such that supph ⊂ R,
()

∫
Rd h(x)dμ(x) = ,

() for i = , , there are functions ai supported on cubes Qi ⊂ R and numbers λi ∈ R

such that h = λa + λa, and

‖ai‖L∞(μ) ≤
[
μ(ρQi)SQi ,R

]–.

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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Then we define

|h|H,∞,
atb (μ) = |λ| + |λ|.

Define H,∞,
atb (μ) and H,∞,

fin (μ) as follows:

‖f ‖H,∞,
atb (μ) = inf

{ ∞∑
j

|hj|H,∞,
atb (μ) : f =

∞∑
j=

hj, {hj}j∈N are (,∞, )-atoms

}

and

‖f ‖H,∞,
fin (μ) = inf

{ k∑
j=

|hj|H,∞,
atb (μ) : f =

k∑
j=

hj, {hj}kj= are (,∞, )-atoms

}
,

where the infimum is taken over all possible decompositions of f in atomic blocks,
H,∞,

fin (μ) is the set of all finite linear combinations of (,∞, )-atoms.

Remark . It was proved in [] that for each ρ > , the atomic Hardy space H,∞,
atb (μ) is

independent of the choice of ρ .

To establish the boundedness of operators in Hardy-type spaces on R
n, one usually ap-

peals to the atomic decomposition characterization (see [, ]) of these spaces, which
means that a function or distribution in Hardy-type spaces can be represented as a linear
combination of atoms. Then the boundedness of linear operators inHardy-type spaces can
be deduced from their behavior on atoms in principle. However, Meyer [] (see also [])
gave an example of f ∈H(Rn) whose norm cannot be achieved by its finite atomic decom-
positions via (,∞, )-atoms. Based on this fact, Bownik [] (Theorem ) constructed a
surprising example of a linear functional defined on a dense subspace of H(Rn), which
maps all (,∞, )-atoms into bounded scalars, but yet cannot extend to a bounded linear
functional on the whole H(Rn).
Recently, in [], a boundedness criterion was established via Lusin function character-

izations of Hardy spaces on R
n as follows: a sublinear operator T extends to a bounded

sublinear operator from Hardy spaces Hp(Rn) with p ∈ (, ] to some quasi-Banach space
B if and only if T maps all (p, , s)-atoms into uniformly bounded elements of B for some
s ≥ [n(/p – )]. Here and in what follows [t] means the integer part of real t. This result
shows the structural difference between atomic characterization of Hp(Rn) via (p, , s)-
atoms and (p,∞, s)-atoms. On the other hand, Meda et al. [] independently obtained
some similar results by grand maximal function characterizations of Hardy spaces on R

n.
In fact, let p ∈ (, ], p < q ∈ [,∞] and integer s ≥ [n(/p– )], and let Hp,q,s

fin (Rn) be the set
of all finite linear combinations of (p,q, s)-atoms. Denote byC(Rn) the set of all continuous
functions. For any f ∈Hp,q,s

fin (Rn), when q <∞ or f ∈Hp,q,s
fin (Rn)∩C(Rn) when q = ∞, Meda

et al. in [] proved that f ∈Hp(Rn) can be achieved by a finite atomic decomposition via
(p,q, s)-atomwhen q <∞ or continuous (p,q, s)-atomwhen q = ∞; from this, they further
deduced that if T is a linear operator and maps all (,q, )-atoms with q ∈ (,∞) or all
continuous (,q, )-atoms with q = ∞ into uniformly bounded elements of some Banach
space B, then T uniquely extends to a bounded linear operator from H(Rn) to B which
coincides with T on these (,q, )-atoms.
According to the theory of Meda et al. [], we get the result as follows.

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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Theorem . Let  < β ≤ , b ∈ Lipβ (μ) and /q =  – β/n. Suppose that K satisfies (.)
and Hq condition. If f ∈ H,∞,

fin (μ), then Mb is bounded from the Hardy space into the
Lebesgue space, namely, there exists a positive constant C such that

∥∥Mb(f )
∥∥
Lq(μ) ≤ C‖b‖Lipβ

‖f ‖H,∞,
fin (μ).

Proof of Theorem . Via Remark ., without loss of generality, wemay assume that ρ = 
and f =

∑
h as a finite sum of atomic blocks defined in Definition .. It is easy to see

that we only need to prove the theorem for one atomic block h. Let R be a cube such that
supph⊂ R,

∫
Rd h(x)dμ(x) = , and

h(x) = λa(x) + λa(x), (.)

where λi for i = , , is a real number, |h|H,∞
atb (μ) = |λ| + |λ|, ai for i = , , is a bounded

function supported on some cube Qi ⊂ R and it satisfies

‖ai‖L∞(μ) ≤
[
μ(Qi)SQi ,R

]–. (.)

Write

∥∥Mb(h)
∥∥
Lq(μ)

�
(∫

R

∣∣Mb(h)(x)
∣∣q dμ(x)

)/q

+
(∫

Rd\(R)

∣∣Mb(h)(x)
∣∣q dμ(x)

)/q

�
(∫

R

∣∣Mb(h)(x)
∣∣q dμ(x)

)/q

+
{∫

Rd\(R)

(∫ |x–xR|+�(R)



∣∣∣∣
∫

|x–y|≤t
K(x, y)

× [
b(x) – b(y)

]
h(y)dμ(y)

∣∣∣∣
 dt
t

)q/

dμ(x)
}/q

+
{∫

Rd\(R)

(∫ ∞

|x–xR|+�(R)

∣∣∣∣
∫

|x–y|≤t
K(x, y)

[
b(x) – b(y)

]
h(y)dμ(y)

∣∣∣∣
 dt
t

)q/

dμ(x)
}/q

= I + II + III.

By (.), we have

I ≤ |λ|
(∫

R

∣∣Mb(a)(x)
∣∣q dμ(x)

)/q

+ |λ|
(∫

R

∣∣Mb(a)(x)
∣∣q dμ(x)

)/q

= I + I.

To estimate I, we write

I ≤ |λ|
(∫

Q

∣∣Mb(a)(x)
∣∣q dμ(x)

)/q

+ |λ|
(∫

R\Q

∣∣Mb(a)(x)
∣∣q dμ(x)

)/q

= I + I.

http://www.journalofinequalitiesandapplications.com/content/2013/1/388


Li Journal of Inequalities and Applications 2013, 2013:388 Page 8 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/388

Choose p and q such that  < p < n/β ,  < q < q and /q = /p –β/n. By theHölder in-
equality, the fact that SQ,R ≥  and the (Lp (μ),Lq (μ))-boundedness ofMb (Lemma .),
we have that

I ≤ |λ|
[∫

Q

∣∣Mb(a)(x)
∣∣q dμ(x)

]/q
μ(Q)/q–/q

� ‖b‖Lipβ
|λ|‖a‖Lp (μ)μ(Q)/q–/q

� ‖b‖Lipβ
|λ|‖a‖L∞(μ)μ(Q)/p+/q–/q

� ‖b‖Lipβ
|λ|.

Denote NQ,R simply by N. Invoking the fact that ‖a‖L∞(μ) ≤ [μ(Q)SQ,R]–, we thus
get

I � |λ|
{N+∑

k=

∫
k+Q\kQ

[∫ ∞



∣∣∣∣
∫

|x–y|≤t

[b(x) – b(y)]
|x – y|n– a(y)dμ(y)

∣∣∣∣
 dt
t

]q/

dμ(x)

}/q

� |λ|
{N+∑

k=

∫
k+Q\kQ

[∫
Q

|b(x) – b(y)|
|x – y|n–

∣∣a(y)∣∣
(∫ ∞

|x–y|
dt
t

)/

dμ(y)
]q

dμ(x)

}/q

� |λ|
{N+∑

k=

∫
k+Q\kQ

[∫
Q

|b(x) – b(y)|
|x – y|n

∣∣a(y)∣∣dμ(y)
]q

dμ(x)

}/q

� ‖b‖Lipβ
|λ|

{N+∑
k=

�
(
kQ

)q(β–n) ∫
k+Q\kQ

[∫
Q

∣∣a(y)∣∣dμ(y)
]q

dμ(x)

}/q

� ‖b‖Lipβ
|λ|

{N+∑
k=

�
(
kQ

)q(β–n)
μ

(
(k+)Q

)‖a‖qL∞(μ)μ(Q)q
}/q

� ‖b‖Lipβ
|λ|

{N+∑
k=

�
(
kQ

)q(β–n)
μ(Q)–qS

–q
Q,Rμ

(
(k+)Q

)
μ(Q)q

}/q

� ‖b‖Lipβ
|λ|

{
S–qQ,R

N+∑
k=

μ(kQ)
�(kQ)n

}/q

� ‖b‖Lipβ
|λ|,

here we have used the fact that

N+∑
k=

μ(kQ)
l(kQ)n

≤ CSQ,R;

see [, ] for details.
The estimates for I and I give the desired estimate for I. A similar argument tells us

that

I � ‖b‖Lipβ
|λ|.

Combining the estimates for I and I yields the desired estimate for I.

http://www.journalofinequalitiesandapplications.com/content/2013/1/388


Li Journal of Inequalities and Applications 2013, 2013:388 Page 9 of 16
http://www.journalofinequalitiesandapplications.com/content/2013/1/388

For i = , , y ∈Qi ⊂ R, x ∈ R
d \ (R), we have |x – y| ∼ |x – xR| ∼ |x – xR| + �(R). By the

Minkowski inequality, we get

II �
{∫

Rd\(R)

[∫
Rd

(∫ |x–xR|+�(R)

|x–y|
dt
t

)/ |h(y)|
|x – y|n–

∣∣b(x) – b(y)
∣∣dμ(y)

]q

dμ(x)
}/q

�
∫
R

{∫
Rd\(R)

[(


(|x – xR| + �(R))
–


|x – y|

)/

× |h(y)|
|x – y|n–

∣∣b(x) – b(y)
∣∣]q

dμ(x)
}/q

dμ(y)

�
∫
R

{∫
Rd\(R)

(
�(R)/

|x – y|/
|h(y)|

|x – y|n–
∣∣b(x) – b(y)

∣∣)q

dμ(x)
}/q

dμ(y)

�
∫
R

{ ∞∑
k=

∫
(k+)R\kR

(
�(R)/

|x – y|n–β+/ ‖b‖Lipβ

)q

dμ(x)

}/q∣∣h(y)∣∣dμ(y)

� ‖b‖Lipβ

( ∑
j=

|λj|‖aj‖L(μ)
){ ∞∑

k=

�(R)/�
(
kR

)–n+β–/
μ

(
k+R

)/q}

� ‖b‖Lipβ

( ∑
j=

|λj|
)
.

For any y ∈ R, we have t ≥ |x – xR| + �(R)≥ |x – xR| + |y – xR| ≥ |x – y|. It follows that

III ≤
{∫

Rd\(R)

∣∣∣∣
∫
R
K(x, y)

[
b(x) – b(y)

]
h(y)dμ(y)

(∫ ∞

|x–xR|+�(R)
dt
t

)/∣∣∣∣
q

dμ(x)
}/q

�
{∫

Rd\(R)

∣∣∣∣
∫
R
K(x, y)

[
b(x) – b(y)

]
h(y)dμ(y)


|x – xR| + �(R)

∣∣∣∣
q

dμ(x)
}/q

�
{∫

Rd\(R)

∣∣∣∣
∫
R

K(x, y)h(y)
|x – xR| + �(R)

[
b(x) –mR(b)

]
dμ(y)

∣∣∣∣
q

dμ(x)
}/q

+
{∫

Rd\(R)

∣∣∣∣
∫
R

K(x, y)h(y)
|x – xR| + �(R)

[
mR(b) – b(y)

]
dμ(y)

∣∣∣∣
q

dμ(x)
}/q

= III + III.

For III, by the Minkowski inequality, we have

III =
{∫

Rd\(R)

∣∣∣∣[b(x) –mR(b)
]∫

R

K(x, y) –K(x,xR)
|x – xR| + �(R)

h(y)dμ(y)
∣∣∣∣
q

dμ(x)
}/q

�
∫
R

m∑
k=

(∫
k+R\kR

[
‖b‖Lipβ

|x – xR|β |K(x, y) –K(x,xR)|
|x – y|

]q

dμ(x)
)/q∣∣h(y)∣∣dμ(y)

� ‖b‖Lipβ

∫
R

∣∣h(y)∣∣ m∑
k=

(∫
k+R\kR

[
�
(
kR

)β |K(x, y) –K(x,xR)|
|x – y|

]q

dμ(x)
)/q

dμ(y)

� ‖b‖Lipβ

∫
R

∣∣h(y)∣∣ m∑
k=

k(β–ε–n+n/q)�(R)β–n+n/qkε
[
k�(R)

]n
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×
(


[k�(R)]n

∫
k�(R)<|x–y|≤k+�(R)

[ |K(x, y) –K(x,xR)|
|x – y|

]q

dμ(x)
)/q

dμ(y)

� ‖b‖Lipβ

∑
j=

|λj|‖aj‖L(μ)

� ‖b‖Lipβ

∑
j=

|λj|,

here we used the fact that /q =  – β/n and  < ε ≤ .
We now turn to estimate III. Note that for any y ∈ R, x ∈ R

d \ R, we have |x – y| ∼
|x – xR| + �(R), so by the Minkowski inequality,

III ≤
∫
R

∞∑
k=

(∫
k+R\kR

[ |K(x, y)|
|x – y|

∣∣mR(b) – b(y)
∣∣]q

dμ(x)
)/q∣∣h(y)∣∣dμ(y)

�
∫
R

∞∑
k=

(∫
k+R\kR

[ |mR(b) – b(y)|
|x – y|n

]q

dμ(x)
)/q∣∣h(y)∣∣dμ(y)

�
∫
R

∞∑
k=

‖b‖Lipβ
�(R)β�

(
kR

)–n
μ

(
k+R

)/q ∑
j=

|λj|
∣∣aj(y)∣∣dμ(y)

� ‖b‖Lipβ

∑
j=

|λj|‖aj‖L(μ)

� ‖b‖Lipβ

∑
j=

|λj|.

Then

III� ‖b‖Lipβ

∑
j=

|λj|.

Combining the estimates for I, II and III yields that

∥∥Mb(h)
∥∥
Lq(μ) ≤ C|h|H,∞,

atb (μ),

and this is the result of Theorem .. �

3 Boundedness ofMb in RBMO(μ) space
In this section, we investigate the boundedness for the commutator Mb as in (.) in the
space RBMO(μ) for f ∈ M

p
q(μ) and f ∈ Ln/β (μ), respectively.

Firstly, we recall the definition of the Morrey space with nondoubling measure denoted
by M

p
q(μ), which was introduced by Sawano and Tanaka in [–].

Definition . Let k >  and  ≤ q ≤ p <∞. We define the Morrey space M
p
q(μ) as

Mp
q(μ) :=

{
f ∈ Lqloc(μ)|‖f ‖M

p
q (μ) < ∞}

,

http://www.journalofinequalitiesandapplications.com/content/2013/1/388
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where the norm ‖f ‖M
p
q (μ) is given by

‖f ‖M
p
q (μ) := sup

Q
μ(kQ)


p–


q

(∫
Q

|f |q dμ

) 
q
.

We should note that the parameter k >  appearing in the definition does not affect the
definition of the space M

p
q(μ), and the space M

p
q(μ) is a Banach space with its norm; see

[]. By using the Hölder inequality to (.), it is easy to see that for all ≤ q ≤ q ≤ p, we
have

Lp(μ) = Mp
p(μ)⊂ Mp

q (μ) ⊂ Mp
q (μ).

Theorem . Let b ∈ Lipβ (μ),  < β ≤ ,  ≤ q < p = n
β
. Suppose that K satisfies (.) and

Hp′ condition, M is bounded on L(μ) and Mb is defined as in (.). Then there exists a
positive constant C such that for all f ∈ M

p
q(μ),

∥∥Mb(f )
∥∥
RBMO(μ) ≤ C‖b‖Lipβ

‖f ‖M
p
q (μ).

Theorem . Let b ∈ Lipβ (μ),  < β ≤  and p = n/β . Suppose that K satisfies (.) and
Hn/(n–β) condition. IfM is bounded on L(μ) andMb is defined as in (.), then there is a
constant C >  such that for all bounded functions f with compact support,

∥∥Mb(f )
∥∥
RBMO(μ) ≤ C‖b‖Lipβ

‖f ‖Ln/β (μ).

Theorem . Let b ∈ Lipβ (μ),  < β ≤ ,  ≤ q < p and p > n/β . Suppose that K satisfies
(.) and Hp′ condition,M is bounded on L(μ) andMb is defined as in (.). Then there
exists a positive constant C such that for all f ∈ M

p
q(μ),

∥∥Mb(f )
∥∥
Lip(β– n

p )
≤ C‖b‖Lipβ

‖f ‖M
p
q (μ).

Remark . By the Minkowski inequality and the kernel condition, we get that

Mb(f )(x) =
(∫ ∞



∣∣∣∣
∫

|x–y|≤t

[
b(x) – b(y)

]
K(x, y)f (y)dμ(y)

∣∣∣∣
 dt
t

)/

=
(∫ ∞



∣∣∣∣t
∫

|x–y|≤t

[
b(x) – b(y)

]
K(x, y)f (y)dμ(y)

∣∣∣∣
 dt
t

)/

=
∫
Rd

∣∣K(x, y)
[
b(x) – b(y)

]
f (y)

∣∣(∫ ∞

|x–y|≤t

dt
t

)/

dμ(y)

�
∫
Rd

|[b(x) – b(y)]f (y)|
|x – y|n– |x – y|– dμ(y)

� ‖b‖Lipβ

∫
Rd

|f (y)|
|x – y|n–β

dμ(y)

� ‖b‖Lipβ
Iβ

(|f |)(x),
where Iβ is the fractional integral operator. ThenMb(f ) ∈ Lloc(μ).
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Remark . Theorem . can be deduced as a conclusion of Theorem . in the case of
p = q = n

β
.

Remark . Applying Lemma ., a slight change in the proof of Theorem . actually
shows Theorem . and we leave the details to the reader.

Proof of Theorem . For any cubes Q and R in R
d such that Q⊂ R satisfies �(R)≤ �(Q),

let

aQ =mQ
[
Mb(f χRd\ 

Q
)
]

and

aR =mR
[
Mb(f χRd\ 

R
)
]
.

It is easy to see that aQ and aR are real numbers. By Lemma ., we need to show that for
some fixed r > q there exists a constant C >  such that

(


μ(Q)

∫
Q

∣∣Mb(f )(x) – aQ
∣∣r dμ(x)

)/r

� ‖b‖Lipβ
‖f ‖M

p
q (μ) (.)

and

|aQ – aR|� ‖b‖Lipβ
‖f ‖M

p
q (μ). (.)

Let us first prove estimate (.). For a fixed cube Q and x ∈ Q, decompose f = f + f,
where f = f χ 

Q
and f = f – f. Write that


μ(Q)

∫
Q

∣∣Mb(f )(x) – aQ
∣∣r dμ(x)

≤ 
μ(Q)

∫
Q

∣∣Mb(f)(x)
∣∣r dμ(x) +


μ(Q)

∫
Q

∣∣Mb(f)(x) – aQ
∣∣r dμ(x)

= I + I.

For /r = /q – β/n and p = n/β , it follows that

I �


μ(Q)

[∫
Q

∣∣Mb(f)(x)
∣∣r dμ(x)

]/r

� 
μ(Q)

‖b‖rLipβ

(∫

Q

∣∣f (x)q∣∣dμ(x)
)r/q

� 
μ(Q)

‖b‖rLipβ

{(
μ(Q)/p–/q

∫

Q

∣∣f (x)∣∣q dμ(x)
)/q}r

μ(Q)(/p–/q)r

� ‖b‖rLipβ
‖f ‖r

M
p
q (μ)

μ(Q)(/q–/p)r–

� ‖b‖rLipβ
‖f ‖r

M
p
q (μ)

μ(Q)(/r+β/n–/p)r–

� ‖b‖rLipβ
‖f ‖r

M
p
q (μ)

.
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In order to estimate the term I, set

D(x, y) =
(∫ ∞



[∫
|x–z|≤t<|y–z|

∣∣K(x, z)
∣∣∣∣b(z) –mQ(b)

∣∣∣∣f(z)∣∣dμ(z)
] dt

t

)/

,

D(x, y) =
(∫ ∞



[∫
|y–z|≤t<|x–z|

∣∣K(y, z)
∣∣∣∣b(z) –mQ(b)

∣∣∣∣f(z)∣∣dμ(z)
] dt

t

)/

and

D(x, y) =
(∫ ∞



[∫
|y–z|≤t
|x–z|≤t

∣∣K(x, z) –K(y, z)
∣∣∣∣b(z) –mQ(b)

∣∣∣∣f(z)∣∣dμ(z)
] dt

t

)/

.

It is easy to get that for any x, y ∈Q,

∣∣Mb(f)(x) –Mb(f)(y)
∣∣

=
∣∣∣∣
(∫ ∞



∣∣∣∣
∫

|x–z|≤t

[
b(x) – b(z)

]
K(x, z)f(z)dμ(z)

∣∣∣∣
 dt
t

)/

–
(∫ ∞



∣∣∣∣
∫

|y–z|≤t

[
b(y) – b(z)

]
K(y, z)f(z)dμ(z)

∣∣∣∣
 dt
t

)/∣∣∣∣
�

∑
j=

Dj(x, y).

For D(x, y), since x, y ∈Q, z ∈ 
Q, we thus get

D ≤
(∫ ∞



[∫
|x–z|≤t<|y–z|

|b(z) –mQ(b)|
|x – z|n–

∣∣f(z)∣∣dμ(z)
] dt

t

)/

�
∫

|x–z|<|y–z|
|b(z) –mQ(b)|

|x – z|n–
∣∣f(z)∣∣

[∫ |x–z|

|y–z|
dt
t

]/

dμ(z)

�
∫

|x–z|<|y–z|
|b(z) –mQ(b)|

|x – z|n–
∣∣f(z)∣∣ �(Q)/

|x – z|/ dμ(z)

� �(Q)/
∫
Rd\ 

Q

|b(z) –mQ(b)|
|x – z|n+/

∣∣f (z)∣∣dμ(z)

� �(Q)/
∞∑
k=

∫

 kQ\ 

 k–Q

|b(z) –mQ(b)|
|x – z|n+/

∣∣f (z)∣∣dμ(z)

� �(Q)/
∞∑
k=


�( kQ)n+/

∫

 kQ

∣∣b(z) –mQ(b)
∣∣∣∣f (z)∣∣dμ(z)

�
∞∑
k=

–k/


�(kQ)n

(∫

 kQ

∣∣b(z) –mQ(b)
∣∣q′

dμ(z)
)/q′(∫


 kQ

∣∣f (z)∣∣q dμ(z)
)/q

� ‖b‖Lipβ
‖f ‖M

p
q (μ)

∞∑
k=

k–k/�
(
kQ

)β–n
μ

(


kQ

)–/q

μ
(
k+Q

)/q–/p
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� ‖b‖Lipβ
‖f ‖M

p
q (μ)

∞∑
k=

k–k/

� ‖b‖Lipβ
‖f ‖M

p
q (μ),

here we used the Minkowski inequality, β = n/p, (.) of Lemma . and the fact that

∣∣b(z) –mQ(b)
∣∣� �

(
kQ

)β‖b‖Lipβ
for z ∈ R

d \ 

Q.

By a similar argument, it follows that

D � ‖b‖Lipβ
‖f ‖M

p
q (μ).

Finally, by the condition Hp′ , which the kernel K satisfies, and the fact that β = n/p,
applying the Minkowski inequality, we have

D(x, y) =
(∫ ∞



[∫
|y–z|≤t
|x–z|≤t

∣∣K(x, z) –K(y, z)
∣∣∣∣b(z) –mQ(b)

∣∣∣∣f(z)∣∣dμ(z)
] dt

t

)/

�
∫
Rd

∣∣K(x, z) –K(y, z)
∣∣∣∣b(z) –mQ(b)

∣∣∣∣f(z)∣∣
[∫

|y–z|≤t
|x–z|≤t

dt
t

]/

dμ(z)

�
∞∑
k=

∫

 kQ\ 

 k–Q

∣∣K(x, z) –K(y, z)
∣∣∣∣b(z) –mQ(b)

∣∣ |f (z)|
|y – z| dμ(z)

� ‖b‖Lipβ

∞∑
k=

�
(
kQ

)β

∫

 kQ\ 

 k–Q

∣∣K(x, z) –K(y, z)
∣∣ |f (z)|
|y – z| dμ(z)

� ‖b‖Lipβ
‖f ‖M

p
q (μ)

∞∑
k=

�
(
kQ

)β–n/p
�
(
kQ

)n/q

×
(∫


 kQ\ 

 k–Q

[∣∣K(x, z) –K(y, z)
∣∣ 
|y – z|

]q′

dμ(z)
)/q′

� ‖b‖Lipβ
‖f ‖M

p
q (μ)

∞∑
k=

�
(
kQ

)n

×
(


�(kQ)n

∫

 kQ\ 

 k–Q

[∣∣K(x, z) –K(y, z)
∣∣ 
|y – z|

]q′

dμ(z)
)/q′

� ‖b‖Lipβ
‖f ‖M

p
q (μ).

Combining these estimates, we conclude that

I � ‖b‖rLipβ
‖f ‖r

M
p
q (μ)

,

and so estimate (.) is proved. �
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We proceed to show (.). For any cubes Q ⊂ R with x ∈ Q, where Q is arbitrary and R
is a doubling cube with �(R)≤ �(Q), denote NQ,R +  simply by N . Write

|aQ – aR| ≤
∣∣mR

[
Mb(f χRd\NQ)

]
–mQ

[
Mb(f χRd\NQ)

]∣∣
+

∣∣mQ
[
Mb(f χNQ\ 

Q
)
]∣∣ + ∣∣mR

[
Mb(f χNQ\ 

R
)
]∣∣

= E + E + E.

As in the estimate for the term I, we have

E � ‖b‖Lipβ
‖f ‖M

p
q (μ).

We conclude from y ∈ R, z ∈ NQ \ 
Q that

Mb(f χNQ\ 
R
)(y)�

∫
NQ\ 

R

∣∣K(y, z)
(
b(y) – b(z)

)
f (z)

∣∣(∫ ∞

|y–z|
dt
t

)/

dμ(z)

�
∫
NQ\ 

R

|b(y) – b(z)|
|y – z|n

∣∣f (z)∣∣dμ(z)

� ‖b‖Lipβ

∫
NQ\ 

R

|f (z)|
|y – z|n–β

dμ(z)

� ‖b‖Lipβ
�(R)β–n

(∫
NQ

∣∣f (z)∣∣q dμ(z)
)/q

μ
(
NQ

)/q′

� ‖b‖Lipβ
‖f ‖M

p
q (μ)�

(
NQ

)β–n+n–n/q+n/q–n/p

� ‖b‖Lipβ
‖f ‖M

p
q (μ).

Taking mean over y ∈ R, we obtain

E � ‖b‖Lipβ
‖f ‖M

p
q (μ).

Analysis similar to that in the estimate for E shows that

E � ‖b‖Lipβ
‖f ‖M

p
q (μ).

Finally, we get (.) and this is precisely the assertion of Theorem ..
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