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Abstract
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1 Introduction
In [] Nelson defined the measure topology of τ -measurable operators affiliated with a
semi-finite vonNeumann algebra. Fack andKosaki [] investigated generalized s-numbers
of τ -measurable operators and proved dominated convergence theorems for a gage and
convexity (or concavity) inequality.
As for noncommutative maximal inequalities, a version of ergodic theory was given by

Junge [] and Junge, Xu []. In , Mei [] presented a version of noncommutative
Hardy-Littlewood maximal inequality for an operator-valued function. In this paper, we
study another version of Hardy-Littlewood maximal inequality introduced by Bekjan [].
In [], Bekjan defined the Hardy-Littlewood maximal function for τ -measurable opera-
tors and, among other things, obtained weak (, )-type and (p,p)-type inequalities for the
Hardy-Littlewood maximal function. In [], for an operator T affiliated with a semi-finite
von Neumann algebra, the Hardy-Littlewood maximal function of T is defined by

MT(x) = sup
r>


τ (E[x–r,x+r](|T |))τ

(|T |E[x–r,x+r]
(|T |)).

The classical Hardy-Littlewood maximal function of a Lebesgue measurable function f :
R→R denoted byMf (x) is defined as

Mf (x) = sup
r>


m([x – r,x + r])

∫
[x–r,x+r]

∣∣f (t)∣∣dt,
wherem is a Lebesgue measure on (–∞, +∞) (cf. []). Moreover, a natural generalization
of this is the case f :R→R and μ, a Borel measure on (–∞, +∞), where

Mμf (x) = sup
r>


μ([x – r,x + r])

∫
[x–r,x+r]

∣∣f (t)∣∣dμ(t).
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As discussed by Bekjan in [], letμ(A) = τ (EA(|T |)), whereA is a Borel subset of (–∞, +∞).
Then μ is a Borel measure and

MT(x) = sup
r>


μ([x – r,x + r])

∫
[x–r,x+r]

t dμ(t),

i.e.,MT(x) is the Hardy-Littlewood maximal functionMμf (x) of f :R→R defined by

f (t) =

⎧⎨
⎩t, t ∈ σ (|T |),
, t /∈ σ (|T |),

(.)

with respect to μ.
In view of spectral theory, |T | is represented as

|T | =
∫

σ (|T |)
t dEt , (.)

and MT(|T |) is represented as MT(x). Thus, for T , MT(|T |) is considered as the opera-
tor analogue of the Hardy-Littlewood maximal function in the classical case. Therefore,
roughly speaking,MT(|T |) stands in relation to T asMf (x) stands in relation to f in clas-
sical analysis.
In this paper, we study the Hardy-Littlewood maximal function on noncommutative

Lorentz spaces. By primarily adapting the techniques in [], we obtain the (p,q)-(p,q)-
type inequality for the Hardy-Littlewood maximal function on noncommutative Lorentz
spaces.
The remainder of this paper is organized as follows. Section  consists of some notations

and preliminaries, including the noncommutative Lorentz spaces and their properties. In
Section , we present the main result of this paper.

2 Preliminaries
Throughout the paper, letM be a finite von Neumann algebra acting on the Hilbert space
H with a normal faithful tracial state τ , and C will be a numerical constant not necessarily
the same in each instance. The identity inM is denoted by , and we denote byMproj the
lattice of (orthogonal) projections inM. A linear operator T : dom(T) →H, with domain
dom(T) ⊆ H, is said to be affiliated with M if uT = Tu for all unitary u in the commu-
tant M′ of M. The closed densely defined linear operator T affiliated with M is called
τ -measurable if for every ε >  there exists an orthogonal projection P ∈ Mproj such that
P(H) ⊆ dom(T) and τ ( – P) < ε. The collection of all τ -measurable operators is denoted
by M̃. With the sum and product defined as the respective closures of the algebraic sum
and product, M̃ is an ∗-algebra. For a positive self-adjoint operator T affiliated with M,
we set

τ (T) = sup
n

τ

(∫ n


λdEλ

)
=

∫ ∞


λdτ (Eλ),

where T =
∫ ∞
 λdEλ is the spectral decomposition of T .
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Let T be a τ -measurable operator and t > . The ‘tth singular number (or generalized
s-number) of T ’ is defined by

μt(T) = inf
{‖TE‖ : E ∈Mproj, τ ( – E)≤ t

}
.

By Proposition . of [], we have

μt(T) = inf
{
s ≥  : λs(T) ≤ t

}
(t > ),

where λs(T) = τ (E(s,∞)(|T |)) (s ≥ ) and E(s,∞)(|T |) is the spectral projection of |T | cor-
responding to the interval (s,∞). The reader is referred to [] for basic properties
and detailed information on generalized s-numbers and the distribution function of
τ -measurable operators.

Definition . (See, e.g., []) Let T be a τ -measurable operator affiliated with a finite von
Neumann algebraM, and let  < p,q ≤ ∞. Define

‖T‖Lp,q(M) =

⎧⎨
⎩(

∫ ∞
 (t


p μt(T))q dt

t )

q if q < ∞,

supt> t

p μt(T) if q = ∞.

(.)

The set of all T ∈ M̃ with ‖T‖Lp,q(M) < ∞ is called the noncommutative Lorentz space,
denoted by Lp,q(M) with indices p and q.

For convenience, we need the following Hardy inequalities in [].

Lemma . If q ≥ , r >  and f ≥ , then

(∫ ∞



[∫ t


f (y)dy

]q

t–r– dt
) 

q
≤ q

r

(∫ ∞



[
yf (y)

]qy–r–) 
q

and

(∫ ∞



[∫ ∞

t
f (y)dy

]q

tr– dt
) 

q
≤ q

r

(∫ ∞



[
yf (y)

]qyr–) 
q
.

Lemma . Let  < r < p < ∞ and  < q, s < ∞, then

Lp,q(M)⊂ Lr,s(M).

Let Lloc(M; τ ) be the set of all τ -measurable operators such that

τ
(|T |EI

(|T |)) < +∞

for all bounded intervals I ⊂ [, +∞).
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Definition . (See, e.g., []) Let T ∈ Lloc(M; τ ), the maximal function of T is defined
by

MT(x) = sup
r>


τ (E[x–r,x+r](|T |))τ

(|T |E[x–r,x+r]
(|T |))

(let 
 = ).M is called the Hardy-Littlewood maximal operator.

Remark . By the introduction of [], we know that MT(|T |) is represented as MT(x).
Hence, for T ∈ Lloc(M; τ ), MT(|T |) is considered as the operator analogue of the Hardy-
Littlewood maximal function in the classical case. Therefore, roughly speaking, MT(|T |)
stands in relation to T as Mf (x) stands in relation to f in classical analysis. Also, in [],
it was proved that MT(|T |) defined in Definition . was weak (, )-type and (p,p)-type.
We refer the readers to [] for more details and basic properties ofMT(|T |).

3 Main result
Lemma . Let  < q < ∞,  ≤ p,p,p < ∞ and p �= p such that


p
=
 – θ

p
+

θ

p
for some  < θ < .

Assume thatM has no minimal projection, then there exists a constant C such that ∀T ∈
Lp,q(M) we have

‖MT‖p,q ≤ C‖T‖p,q. (.)

Proof We assume that p < p. Theorem  of [] and Lemma . imply that

‖MT‖p,∞ ≤ ‖MT‖p ≤ C‖T‖p ≤ C‖T‖p,m (.)

and

‖MT‖p,∞ ≤ ‖MT‖p ≤ C‖T‖p ≤ C‖T‖p,m, (.)

wherem = 
 min(,q).

By Lemma . of [], for all t ∈ (, ), we can take P ∈ Mproj such that P|T | = |T |P and
τ (P) = t. Set T = |T |P, T = |T | – T, it is easy to check that T ∈ Lp,m(M) and T ∈
Lp,m(M). Indeed, we see that μv(T) = μv(|T |P) = μv(T)χ[,t] and μv(T) = μv(|T |P⊥) =
μv+t(T). Thus we obtain

‖T‖mp,m =
∫ ∞


v

m
p

–
μv

(|T |P)m dv =
∫ t


v

m
p

–
μv(T)m dv

=
∫ t



(
v


p μv(T)

)mv m
p

–m
p – dv

≤ ‖T‖mp,∞
∫ t


v

m
p

–m
p – dv

≤
(
q
p

)m
q
‖T‖mp,q


m
p

– m
p
t
m
p

–m
p <∞
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and

‖T‖mp,m =
∫ ∞


v

m
p

–
μv

(|T |P⊥)m dv =
∫ ∞


v

m
p

–
μv+t(T)m dv

≤
∫ t


v

m
p

–
μt(T)m dv +

∫ ∞

t
v

m
p

–
μv(T)m dv

≤ p
m
t
m
p μt(T)m + sup

v>t

(
v


p μv(T)

)m ∫ ∞

t
v

m
p

–m
p – dv

=
p
m
t
m
p μt(T)m + ‖T‖mp,∞


m
p – m

p

t
m
p

–m
p

≤ p
m
t
m
p

–m
p
(
sup
t>

t

p μt(T)

)m
+

(
q
p

)m
q 

m
p – m

p

t
m
p

–m
p ‖T‖mp,q

=
[(

q
p

)m
q
t
m
p

–m
p

(
p
m

+


m
p – m

p

)]
‖T‖mp,q <∞.

Since


τ (E[x–r,x+r](|T |))τ

(|T |E[x–r,x+r]
(|T |))

≤ 
τ (E[x–r,x+r](|T |))τ

(|T |PE[x–r,x+r]
(|T |))

+


τ (E[x–r,x+r](|T |))τ
(|T |P⊥E[x–r,x+r]

(|T |))
=


τ (E[x–r,x+r](|T |))τ

(|T|E[x–r,x+r]
(|T|

))
+


τ (E[x–r,x+r](|T |))τ

(|T|E[x–r,x+r]
(|T|

))
≤ 

τ (E[x–r,x+r](|T|))τ
(|T|E[x–r,x+r]

(|T|
))

+


τ (E[x–r,x+r](|T|))τ
(|T|E[x–r,x+r]

(|T|
))
,

taking supremum, we get

MT(x)≤ MT (x) +MT(x),

which implies that

‖MT‖p,q ≤ C
(‖MT ‖p,q + ‖MT‖p,q

)
.

We estimate each term separately. For the first term, using (.) we get

‖MT ‖p,q =
{∫ ∞


t
q
p
(
μt(MT )

)q dt
t

} 
q

=
{∫ ∞


t
q
p–

q
p

(
t


p μt(MT )

)q dt
t

} 
q
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≤ C
{∫ ∞


tq(


p–


p

)‖T‖qp,m
dt
t

} 
q

= C
{[∫ ∞


t–q(


p

– 
p )–

(∫ t


v

m
p

–
μv(T)m dv

) q
m
dt

]m
q
} 

m
.

After replacing r and q respectively with q( 
p

– 
p ) and q

m in the first inequality in
Lemma ., we see that the last expression is estimated as follows:

≤ C
( mp –

m
p
) 
m

{∫ ∞



[
v · v m

p
– · μv(T)m

] q
m · v–q( 

p
– 
p )– dv

} 
q

= C
(∫ ∞


v
q
p–μv(T)q dv

) 
q

= C‖T‖p,q,

i.e., ‖MT ‖p,q ≤ C‖T‖p,q. To estimate the second term, by applying (.) we obtain

‖MT‖p,q =
{∫ ∞


t
q
p
(
μt(MT)

)q dt
t

} 
q

=
{∫ ∞


t
q
p–

q
p

(
t


p μt(MT)

)q dt
t

} 
q

≤ C
{∫ ∞


tq(


p–


p

)‖T‖qp,m
dt
t

} 
q

= C
{[∫ ∞


tq(


p–


p

)–
(∫ ∞


v

m
p

–
μv(T)m dv

) q
m
dt

]m
q
} 

m

≤ C
{∫ ∞


tq(


p–


p

)–
(∫ t


v

m
p

–
μt(T)m dv

) q
m
dt

} 
q

+C
{[∫ ∞


tq(


p–


p

)–
(∫ ∞

t
v

m
p

–
μv(T)m dv

) q
m
dt

]m
q
} 

m
.

For the second term {[∫ ∞
 tq(


p–


p

)–(
∫ ∞
t v

m
p

–
μv(T)m dv)

q
m dt]

m
q } 

m , replace r and q respec-
tively with q( p – 

p
) and q

m in the second inequality in Lemma ., and we estimate the
last expression as follows:

≤ C
{
p
m

μt(T)q
∫ ∞


t
q
p– dt

} 
q
+C

{∫ ∞



[
v · v m

p
– · μv(T)m

] q
m vq(


p–


p

)– dv
} 

q

= C
{
p
m

μt(T)q
∫ ∞


t
q
p– dt

} 
q
+C‖T‖p,q

≤ C‖T‖p,q,

i.e., ‖MT‖p,q ≤ C‖T‖p,q.
For the case of p > p, we may simply reverse the roles of p and p in the above proof.
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We have now shown that

‖MT‖p,q ≤ C‖T‖p,q. �

Theorem . Let  < q < ∞,  ≤ p,p,p < ∞ and p �= p be such that


p
=
 – θ

p
+

θ

p
for some  < θ < .

Assume that M has minimal projections, then there exists a constant C such that for all
T ∈ Lp,q(M) we have

‖MT‖p,q ≤ C‖T‖p,q.

Proof Since M has minimal projections, we consider the von Neumann algebra tensor
product M⊗L∞([, ];dm) denoted by M, equipped with the tensor product trace τ ⊗
dm, where dm is the Lebesgue measure on [, ], thenM has no minimal projection.
Let |T | = ∫

σ (|T |) λdEλ(|T |) be the spectral decomposition of T . Since

σ
(|T |) = σ

(|T | ⊗ 
)
,

we have

|T ⊗ | = |T | ⊗  =
∫

σ (|T |)
λd

(
Eλ

(|T |) ⊗ 
)
=

∫
σ (|T |⊗)

λd
(
Eλ

(|T |) ⊗ 
)
.

It is easy to check that Eλ(|T |) ⊗  is a spectral series for each λ ≥ . Hence, for any
interval

I ⊂ σ
(|T |) = σ

(|T ⊗ |) = σ
(|T | ⊗ 

)
,

by the uniqueness of the spectral decomposition, we see that

EI
(|T ⊗ |) = EI

(|T |) ⊗ .

For ∀r > , since

τ
(
E[x–r,x+r]

(|T |)) = ∫ 


τ
(
E[x–r,x+r]

(|T |))dm = τ ⊗ dm
(
E[x–r,x+r]

(|T |) ⊗ 
)

and

τ ⊗ dm
(|T ⊗ |E[x–r,x+r]

(|T |) ⊗ 
)

= τ ⊗ dm
{(|T ⊗ |E[x–r,x+r]

(|T |) ⊗ 
)∗(|T ⊗ |E[x–r,x+r]

(|T |) ⊗ 
)} 



= τ ⊗ dm
{(
E[x–r,x+r]

(|T |) ⊗ 
)∗|T ⊗ |(|T ⊗ |E[x–r,x+r]

(|T |) ⊗ 
)} 



= τ ⊗ dm
{(
E[x–r,x+r]

(|T |) ⊗ 
)|T ⊗ |E[x–r,x+r]

(|T |) ⊗ 
} 
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= τ ⊗ dm
{
E[x–r,x+r]

(|T |) ⊗ 
(|T | ⊗ 

)
E[x–r,x+r]

(|T |) ⊗ 
} 


= τ ⊗ dm
{(
E[x–r,x+r]

(|T |) ⊗ 
)(|T | ⊗ 

)(|T | ⊗ 
)(
E[x–r,x+r]

(|T |) ⊗ 
)} 



= τ ⊗ dm
(|T |E[x–r,x+r]

(|T |) ⊗ 
)

= τ
(|T |E[x–r,x+r]

(|T |)),
which implies that

M(T ⊗ )(x) =MT(x).

By an adaptation of the proof of Lemma ., we deduce that

∥∥M(T ⊗ )(T ⊗ )
∥∥
p,q ≤ C‖T ⊗ ‖p,q.

With the trivial fact μt(T) = μt(T ⊗ ), we know

‖T ⊗ ‖p,q = ‖T‖p,q.

Combing this result withM(T ⊗ )(|T ⊗ |) =MT(|T |), we infer that

‖MT‖p,q ≤ C‖T‖p,q. �

Competing interests
The author declares that she has no competing interests.

Acknowledgements
The author would like to thank the editor and anonymous referees for their helpful comments and suggestions on the
quality improvement of the manuscript. This research is supported by the National Natural Science Foundation of China
(No. 11071204) and XJUBSCX-2012002.

Received: 16 March 2013 Accepted: 2 August 2013 Published: 19 August 2013

References
1. Nelson, E: Notes on non-commutative integration. J. Funct. Anal. 15, 103-116 (1974)
2. Fack, T, Kosaki, H: Generalized s-numbers of τ -measurable operators. Pac. J. Math. 123, 269-300 (1986)
3. Junge, M: Doob’s inequality for non-commutative martingales. J. Reine Angew. Math. 549, 149-190 (2002)
4. Junge, M, Xu, Q: Noncommutative maximal ergodic theorems. J. Am. Math. Soc. 20(2), 385-439 (2007)
5. Mei, T: Operator valued Hardy spaces. Mem. Am. Math. Soc. 188, 881 (2007) (English summary)
6. Bekjan, TN: Hardy-Littlewood maximal function of τ -measurable operators. J. Math. Anal. Appl. 322, 87-96 (2006)
7. Stein, E, Weiss, G: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)
8. Grafakos, L: Classical Fourier Analysis, 2nd edn. Springer, Berlin (2008)
9. Xu, Q: Noncommutative Lp-spaces and martingale inequalities. Book manuscript (2007)
10. Hunt, RA: On L(p,q) spaces. Enseign. Math. 12, 249-276 (1966)
11. Guido, D, Isola, T: Singular traces on semifinite von Neumann algebras. J. Funct. Anal. 134, 451-485 (1995)

doi:10.1186/1029-242X-2013-384
Cite this article as: Shao: Hardy-Littlewood maximal function on noncommutative Lorentz spaces. Journal of
Inequalities and Applications 2013 2013:384.

http://www.journalofinequalitiesandapplications.com/content/2013/1/384

	Hardy-Littlewood maximal function on noncommutative Lorentz spaces
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main result
	Competing interests
	Acknowledgements
	References


