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Abstract

In this paper, we propose the infinite propagation speed for the two component
b-family system. No matter what the profile of the compactly supported initial datum
(Uo(X), po(x)) is, for any t > Q in its lifespan, the solution u(x, t) is positive at infinity and
negative at negative infinity.
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1 Introduction
In this essay, we consider the following model, named two-component b-family system

my = umy + kymuy, + ko ppy, t>0,x €RR, (L.1)
pr = ks(pu)s, t>0,x€R, '

where m = u — u,,. As far as we known, it seems that system (1.1) appears initially by Guha
in [1]. There are two cases about this system (i) k1 = b, ky =2b and ks = 1; (ii) ks = b + 1,
k, =2 and k3 = b with b € R. In [2], they applied Kato’s theory [3] to establish the local
well-posedness for the Cauchy problem of (1.1). It is proved that there exists a unique
solution (, p) € C([0, T); H* x H*™) for any (1o, po) € H* x H*! with s > 2. The precise
blow-up scenarios and some blow-up criteria were also established in [2].

We only consider the case k3 =1,

my = umy + kimuy, + koppy, t>0,x €, 12)
o = (ptt)s, t>0,xcR. '

Obviously, under the constraint of p = 0, system (1.2) reduces to the b-family equations
My + um, + bmu,, = 0, (1.3)

which were derived physically by Holm and Staley in [4]. Detailed description of the cor-
responding strong solutions to (1.3) with u, being its initial data, was given by Zhou in
[5]. He established a sufficient condition in profile on the initial data for blow-up in finite
time. The necessary and sufficient condition for blow-up is still a challenging problem for
us at present. More precisely, Theorem 3.1 in [5] means that no matter what the profile of
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the compactly supported initial datum u((x) is (no matter whether it is positive or nega-
tive), for any ¢ > 0 in its lifespan, the solution u(x, t) is positive at infinity and negative at
negative infinity, it is really a very nice property for the b-family equations. For b = 2 and
b = 3, (1.3) is the famous Camassa-Holm equation [6] and Degasperis-Procesi equation
[7], respectively. Many papers [8—14] are devoted to their studies.

Another related system is the two component Camassa-Holm system. Recently, Con-
stantin and Ivanov in [15] gave a demonstration about its derivation in view of the fluid
shallow water theory from the hydrodynamic point of view. This generalization, similarly
to the Camassa-Holm equation, possessed the peakon, multi-kink solutions and the bi-
Hamiltonian structure [16] and is integrable. Well-posedness and wave breaking mech-
anism were discussed in [17], and the existence of global solutions was analyzed in [18].
The infinite propagation speed was studied by Henry in [19].

In the following section, we will show our main results and give the detailed proof.

2 Main results
Motivated by Mckean’s deep observation for the Camassa-Holm equation [11], we can do

the similar particle trajectory as

qr=-ulg,t), 0<t<T,xeR, 1)
q(x,0) = x, x €R, '

where T is the life span of the solution, then g is a diffeomorphism of the line. Differenti-

ating the first equation in (2.1) with respect to x, one has

d
B =@, € (0,T).
X

Hence

qx(xr t) = eXp{fot —Mx(fl» S) ds}’ qx(xro) =1

Our first result will show that m and p have compact support if their initial data have

this property. m and p are the solutions of system (1.2).

Theorem 2.1 Assume that mgy = uy — Ugy, has compact support, contained in the interval
[Cngs Bmo 1> and that pg is also compactly supported, with support contained in [ctpy, Byl
If T = T(ug, po) > 0 is the maximal existence time of the unique classical solutions (u, p) to
the system (1.2) with the given initial data uy(x) and po(x), then for any t € [0, T), m(x, t)
and p(x,t) have compact support.

Proof By the particle trajectory defined in (2.1), we find that

(q(x,1),£) g2 (x, 8) = Mg + maquql + kimgug™

Em

= (pr — umy — kymuy)q = ko ppaq
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and

d
ap(q(x, £),8)qx(%,8) = pe + Pxedx + PGxe = (e — (P)x)qx = 0.

Therefore,

(g, £), £)qx(x, 2) = po(xo).

Since g, > 0 and p, is compactly supported, it follows from this relation that p(-, )
is compactly supported for all times ¢ € [0, T'), with support contained in the interval
[q(otpys 1), g(Byys t)]. Setting

o =min{o,,, ay ), B =max{Bu,, By, }-
Due to

d
Em(q(x, L‘),t)qfﬁl (x,6)=0, onxeR-[ay,Bul

it follows that m(-, ) is compactly supported, with its support contained in the interval
[q(e, 1), q(B, 1)), for all £ € [0, T). =

In order to prove Theorem 2.3, we will use the following result.

Lemma 2.2 [9] Letu € C2(R)NH%(R) be such that m = u— u,, has compact support. Then
u has compact support if and only if

/exmdx: / e*mdx=0. (2.2)
R R

Theorem 2.3 Let ki € [0,3], ko > 0, assume that the function uy has compact support. Let
T > 0 be the maximal existence time of the unique solution u(x,t) with initial data uo(x).
Ifateveryt €[0,T), u(x,t) has compact support, then u and p are identically zero.

Proof Using (1) and differentiating the left hand side of (2.2) with respect to ¢ we get

d
— exmdxz/e"mtdxz/e"umxdx+/exkluxmdx+/e"k2ppxdx
R R R R

dt Jr
:/e"umxdx+/e"kluxmdx+/exk2ppxdx
R R R

k:
=—/exumdx+/e"(kl—l)uxmdx—/ex—zpzdx
R R R 2

—k k-3 k
= R§u2+ 12 ui—%pzdx,

where all boundary terms after integration by parts vanish as both m(-, £) and, by assump-
tion, u(-, t) have compact support for all £ € [0, T').

The expression under the integral on the right hand side of this relation must be iden-
tically zero by (2.2). This implies that all of the terms in the bracket must be identically
zero, and in particular u = p = 0. This completes the proof. d
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The theorem above means that if # # 0 is a function with compact support, then the
classical solution u(x, t) of system (1.2) must instantly lose the compactness of its support.
The following theorem will give a detailed description about the profile of the solution

u(x, t).

Theorem 2.4 Let0 < ky < 3 and ky > 0, u is a nontrivial solution of (1.2). If up(x) = u(x,0)

has compact support [0y, Bu, |, and pg is also initially compactly supported, on the interval

[tpys Boo s then for t € (0, T, we have

f()e™, forx>q(B,t),
u(x, t) =
fit)e*,  forx<qla,t),

where f_(t) and f, (t) denote continuous nonvanishing functions with f_(t) < 0 and f,(t) > 0
for t € (0, T). Furthermore, f_(t) is a strictly decreasing function, while f,(t) is increasing

function.

Proof Since ug and py are compactly supported. By Theorem 2.1, m is compactly sup-
ported with its support contained in the interval [g(«, £), g(8, £)]. Hence the following func-

tions are well-defined:

E(t):/Re"m(x,t)dx and F(t):/Re_xm(x,t)dx,
with

E():fRe"mo(x)dxzo and Foz'/Re”‘mo(x)dxzo.

Then for x > g(8, t), we have

1 1 1
ulx, t) = —e ™ xm(x, t) = —e"‘/ e'm(t,t)dt = —e*E(t).
2 2", 2

Similarly, when x < g(«, £), we get

1 1 q(B:t) 1
ulx,t) = —e ™ wm(x, 1) = —ex/ e ‘m(t,t)dr = —€*F(¢).
2 2 qlet) 2

Hence, as consequences of (2.3) and (2.4), we have

ulx, t) = —uy(x, £) = Uy (2, t) = %e‘xE(t), asx > q(B,t)

and
1
u(x,£) = Uy (%, £) = Upy(x,2) = 5 “E(t), asx<gq(a,t).
On the other hand,
dE(t
% = /Re"mt(x, t)dx.

(2.3)

(2.4)

(2.6)
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It is easy to get

koo 3=

My = Uthy — (Ully) x + O ( 5 u Tuﬁ) + ko 0. (2.7)

Substituting the identity (2.7) into dE(¢)/dt, we obtain

dE(t) " k , 3-k , /x
o /Re (uux—(uux)xx+3x(2u + 5 u, | |dx+ Re (ko ppyx) dx

:[ex __klu2+k2__?’u2 kZde
R 2 ) ’

where we use (2.5) and (2.6).
Therefore, in the lifespan of the solution, we have

E(t)—// (kl 2 '“Tsuﬁ k; 2)(x,r)dxdr<0

By the same argument, one can check that the following identity for F(t) is true

t 3
F(t):/ /e_x(ﬁu2+—qu2 ks 2)(x,r)dxalr>0
0o JrR 2 2 2

In order to complete the proof, it is sufficient to let f (¢) = %E(t) and f,(¢) = %F (2). O

Remark 2.1 Theorem 2.3 means that no matter what the profile of the compactly sup-
ported initial datum u(x) is (no matter whether it is positive or negative), for any ¢ > 0 in

its lifespan, the solution u(x, ) is negative at infinity and positive at negative infinity.
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