
Machihara et al. Journal of Inequalities and Applications 2013, 2013:381
http://www.journalofinequalitiesandapplications.com/content/2013/1/381

RESEARCH Open Access

Generalizations of the logarithmic Hardy
inequality in critical Sobolev-Lorentz spaces
Shuji Machihara1, Tohru Ozawa2 and Hidemitsu Wadade3*

*Correspondence:
wadade@gifu-u.ac.jp
3Faculty of Education, Gifu
University, 1-1 Yanagido, Gifu,
501-1193, Japan
Full list of author information is
available at the end of the article

Abstract
In this paper, we establish the Hardy inequality of the logarithmic type in the critical
Sobolev-Lorentz spaces. More precisely, we generalize the Hardy type inequality
obtained in Edmunds and Triebel (Math. Nachr. 207:79-92, 1999). The generalized
inequality allows us to take the exponents appearing in the inequality more flexibly,
and its optimality is discussed in detail. O’Neil’s inequality and its reverse play an
essential role for the proof.
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1 Introduction and themain theorem
In this paper, we shall give a systematic treatment concerning the Hardy type inequal-
ities on the critical Sobolev-Lorentz spaces Hs

p,q(Rn) with n ∈ N, s ∈ R,  < p < ∞ and
 ≤ q ≤ ∞, where the space Hs

p,q(Rn) can be characterized in terms of the Bessel potential
such as Hs

p,q(Rn) := ( – �)– s
 Lp,q(Rn) with the Lorentz space Lp,q(Rn). We collect precise

definitions of those function spaces and related properties in Section .

We recall the Sobolev embedding theorem onH
n
p
p,p (Rn), which states that the continu-

ous inclusionsH
n
p
p,p (Rn) ↪→ Lq,q (Rn) hold for all q ∈ [p,∞) and q ∈ [p,∞]. However,

the limiting case q = ∞ in this embedding fails, provided that (p,q) �= (,∞). This im-

plies that functions in the spaceH
n
p
p,p (Rn) can have a local singularity at some point inR

n.

In fact, the critical Sobolev space H
n
p
p (Rn), which is identical with the critical Sobolev-

Lorentz space H
n
p
p,p (Rn) with p = p =: p, admits a singularity of the logarithmic order,

see Adams and Fournier [] and Maz’ya []. As a characterization of H
n
p
p (Rn), Edmunds

and Triebel [] proved the corresponding Hardy-type inequality with a logarithmic cor-
rection as follows.

Theorem A (Edmunds-Triebel [, Theorem .]) Let n ∈ N and  < p < ∞. Then there
exists a positive constant C such that the inequality

(∫
{|x|< 

 }

( |u(x)|
| log |x||

)p dx
|x|n

) 
p

≤ C‖u‖
H

n
p
p

(.)

holds for all u ∈H
n
p
p (Rn).
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The main purpose of this paper is to generalize (.) into two directions. First, we prove
the corresponding logarithmic Hardy-type inequality in the critical Sobolev-Lorentz

space H
n
p
p,p (Rn), which coincides with (.) when p = p =: p. Furthermore, we investi-

gate the possibility whether the exponents appearing in the inequalities can be takenmore
flexibly, including the consideration on its optimality. Indeed, our main result now reads
as follows.

Theorem . Let n ∈N,  < p < ∞,  < q ≤ ∞ and  < α,β <∞. Then the inequality

(∫
{|x|< 

 }
|u(x)|α

| log |x||β
dx
|x|n

) 
α

≤ C‖u‖
H

n
p
p,q

(.)

holds for all u ∈ H
n
p
p,q(Rn) if and only if one of the following conditions (i), (ii) and (iii) is

fulfilled

⎧⎪⎪⎨
⎪⎪⎩

(i)  + α – β < ;

(ii)  + α – β ≥  and q < α
+α–β

;

(iii)  + α – β > , q = α
+α–β

and α ≥ β .

(.)

Remark . The condition (ii) in (.) allows us to take  + α – β = , which implies
α

+α–β
= ∞. In the special case of p = q = α = β , the inequality (.) is precisely inequal-

ity (.) by Edmunds and Triebel []. Also note that the value q = α
+α–β

is the critical ex-
ponent in the sense that inequality (.) holds or not. Moreover, Theorem . states that
when q = α

+α–β
, inequality (.) holds if α ≥ β and fails if α < β . In particular, inequality

(.) fails for the marginal case q = ∞ and  + α – β = . Indeed, the function u defined
by u(x) := η(x)| log |x|| belongs to H

n
p
p,∞(Rn), where η is a cut-off function supported near

the origin, while

∫
{|x|< 

 }
|u(x)|α

| log |x||+α

dx
|x|n = +∞.

There is a number of both mathematical and physical applications of Hardy-type in-
equalities. Among others, we refer the reader to Adimurthi et al. [], Beckner [], Bradley
[], Brézis and Marcus [], Edmunds and Triebel [], García and Peral [], Gurka and
Opic [], Herbst [], Kalf andWalter [], Kerman and Pick [–], Ladyzhenskaya [],
Machihara et al. [], Matsumura and Yamagata [], Nagayasu and Wadade [], Ozawa
and Sasaki [], Pick [], Reed and Simon [], Triebel [] and Zhang []. Especially,
in Bradley [] and Edmunds and Triebel [], the similar type inequalities to (.) were
considered in terms of Besov-type spaces.
This paper is organized as follows. Section  is devoted to the definition of the Sobolev-

Lorentz space, as well as several lemmas needed for the proof of Theorem .. We shall
prove Theorem . in Section .

2 Preliminaries
In this section, we first recall the definition of the Lorentz spaces. To this end, we define the
rearrangement of measurable functions. For a measurable function f on R

n with n ∈ N,

http://www.journalofinequalitiesandapplications.com/content/2013/1/381
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f∗ : [,∞)→ [,∞] denotes the distribution function of f given by

f∗(λ) :=
∣∣{x ∈R

n;
∣∣f (x)∣∣ > λ

}∣∣ for λ ≥ ,

and then the rearrangement f ∗ : [,∞)→ [,∞] of f is defined by

f ∗(t) := inf
{
λ > ; f∗(λ) ≤ t

}
for t ≥ .

Moreover, f ∗∗ : (,∞)→ [,∞] denotes the average function of f ∗ defined by

f ∗∗(t) :=

t

∫ t


f ∗(τ )dτ for t > .

In what follows, we assume that f ∗(t) < +∞ for all t > . Then f ∗ is right-continuous and
non-increasing on (,∞), and hence, f ∗∗ is continuous and non-increasing on (,∞) with
f ∗(t) ≤ f ∗∗(t) for all t > .Wenow introduce the Lorentz space by using the rearrangement.
Let  ≤ p < ∞ and  ≤ q ≤ ∞. Then the Lorentz space Lp,q(Rn) is defined as a function
space, equipped with the following norm,

‖f ‖Lp,q :=
⎧⎨
⎩
(
∫ ∞
 (t


p f ∗(t))q dt

t )

q if  ≤ q < ∞;

supt>(t

p f ∗(t)) if q = ∞.

(.)

We can take f ∗ replaced by f ∗∗ in definition (.) as another equivalent norm on Lp,q(Rn)
if p �= . Indeed, the following Hardy inequality guarantees its equivalence

(∫ ∞



(
t

p

t

∫ t


f (τ )dτ

)q dt
t

) 
q

≤ p′
(∫ ∞



(
t

p f (t)

)q dt
t

) 
q

(.)

for non-negative measurable functions f , for which the integral on the right-hand side in
(.) is finite. Remark that inequality (.) is still valid for the case q = ∞ by replacing
the integral by the supremum. For the proof of (.), see O’Neil [, Lemma .] and
references therein. Furthermore, since f ∗ and f ∗∗ are both monotonically non-increasing
functions in (,∞), we easily get the following decay estimates. For any t > , we have

f ∗(t) ≤
(
q
p

) 
q
t–


p ‖f ‖Lp,q (.)

and if p > , together with inequality (.), we also have for any t > ,

f ∗∗(t) ≤ p′
(
q
p

) 
q
t–


p ‖f ‖Lp,q . (.)

Note that inequalities (.) and (.) are also valid for the marginal case q = ∞, and we
will utilize them frequently for the proof of the main theorem in Section .
We also make use of the celebrated Hardy-Littlewood inequality

∫
Rn

∣∣f (x)g(x)∣∣dx ≤
∫ ∞


f ∗(t)g∗(t)dt (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/381
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for all measurable functions f and g . The proof of (.) can be found in Bennett and Sharp-
ley [, Theorem .].
Next, we recall the pointwise rearrangement inequality for the convolution of functions

proved by O’Neil [, Theorem .]. In fact, for measurable functions f and g on R
n, we

have

(f ∗ g)∗∗(t)≤ tf ∗∗(t)g∗∗(t) +
∫ ∞

t
f ∗(τ )g∗(τ )dτ for t > . (.)

Moreover, we make use of the reverse O’Neil inequality, established in Kozono et al. [,
Lemma .]. Indeed, there exists a positive constant C such that the inequality

(f ∗ g)∗∗(t)≥ C
(
tf ∗∗(t)g∗∗(t) +

∫ ∞

t
f ∗(τ )g∗(τ )dτ

)
(.)

holds for all t >  and for all measurable functions f and g on R
n, which are both non-

negative, radially symmetric and non-increasing in the radial direction.
In this paper, we frequently use the Bessel potentialGs∗ := (–�)– s

 and the Riesz poten-
tial Is∗ := (–�)– s

 for  < s < n. More precisely, the kernel functions Is and Gs are defined
respectively by

⎧⎪⎨
⎪⎩
Is(x) :=

	( n–s )

sπ
n
 	( s )

|x|–(n–s);
Gs(x) := 

(π )
s
 	( s )

∫ ∞
 e–π

|x|
t – t

π t– n–s
 dt

t

for x ∈ R
n \ {}, where 	 denotes the gamma function. Based on the Lorentz space, we de-

fine the Sobolev-Lorentz space Hs
p,q(Rn) by Hs

p,q(Rn) := (I – �)– s
 Lp,q(Rn) = Gs ∗ Lp,q(Rn),

equipped with the norm ‖u‖Hs
p,q := ‖(I – �) s u‖Lp,q . The space Hs

p,q(Rn) is a generaliza-
tion of the usual Sobolev space Hs

p(Rn), since we have Lp,p(Rn) = Lp(Rn) due to the norm-
invariance of ‖u‖Lp,p = ‖u‖Lp . We now collect the elementary properties of Is andGs in the
following lemma.

Lemma . Let n ∈N and  < s < n.
(i) Is and Gs are non-negative, radially symmetric and non-increasing in the radial

direction, so that I∗s (t) = Is(x) and G∗
s (t) =Gs(x) if |x| = ( t

ωn
) n > , where ωn := π

π


n	( n )
denotes the volume of the unit ball in R

n.
(ii) Gs(x)≤ Is(x) for all x ∈ R

n \ {}, which implies the G∗
s (t) ≤ I∗s (t), G∗∗

s (t) ≤ I∗∗
s (t) for

all t > , and lim|x|↓ Gs(x)
Is(x) = limt↓

G∗
s (t)

I∗s (t) = .
(iii) ‖Gs‖L =  and there exists a positive constant C such that the following inequalities

hold

Gs(x)≤
⎧⎨
⎩
C|x|–(n–s) for x ∈R

n \ {};
Ce–|x| for x ∈R

n with |x| ≥ .

Since the facts in Lemma . are well known, we omit the detailed proof here, see Stein
[], for instance. Furthermore, we refer to Almgren and Lieb [] and Bennett and Sharp-
ley [] for further information about the rearrangement theory.

http://www.journalofinequalitiesandapplications.com/content/2013/1/381


Machihara et al. Journal of Inequalities and Applications 2013, 2013:381 Page 5 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/381

In the end of this section, we shall show the following one-dimensional Hardy inequality
of logarithmic type.

Lemma. Let  < α,β < ∞.Then there exists a positive constant C such that the inequal-
ity

(∫ 




(∫ 


t

∣∣φ(s)∣∣ds
)α

| log t|–β dt
t

) 
α

≤ C
(∫ 





∣∣φ(t)∣∣α| log t|–β dt
t

) 
α

(.)

holds for all measurable functions φ such that the integral on the right-hand side of (.)
is finite.

Furthermore, we can show the following dual variant of inequality (.).

Lemma . Let  < β ≤ α < ∞ and q := α
+α–β

. Then there exists a positive constant C such
that the inequality

(∫ 




(∫ 


t

∣∣φ(s)∣∣ds
)α

| log t|–β dt
t

) 
α

≤ C
(∫ 





(
t
∣∣φ(t)∣∣)q dt

t

) 
q

(.)

holds for all measurable functions φ such that the integral on the right-hand side of (.)
is finite.

We shall apply Lemma . for the proof of the sufficiency part of Theorem . in Sec-
tion , and Lemma . will be used for the proof of the necessity part of Theorem .
in Section . Lemma . and Lemma . can be obtained as corollaries of the following
weighted inequalities obtained in Bradley [] and Muckenhoupt [].

TheoremB (Bradley [], Muckenhoupt []) Let  < ρ ≤ σ < ∞ and let U and V be mea-
surable weights.

(i) There exists a positive constant C such that the inequality

(∫ ∞



∣∣∣∣U(t)
∫ t



∣∣ψ(s)
∣∣ds

∣∣∣∣
σ

dt
) 

σ

≤ C
(∫ ∞



∣∣V (t)ψ(t)
∣∣ρ dt

) 
ρ

(.)

holds for all measurable functions ψ such that the integral on the right-hand side of
(.) is finite if and only if

sup
r>

(∫ ∞

r

∣∣U(t)
∣∣σ dt

) 
σ
(∫ r



∣∣V (t)
∣∣–ρ′

dt
) 

ρ′
< +∞.

(ii) There exists a positive constant C such that the inequality

(∫ ∞



∣∣∣∣U(t)
∫ ∞

t

∣∣ψ(s)
∣∣ds

∣∣∣∣
σ

dt
) 

σ

≤ C
(∫ ∞



∣∣V (t)ψ(t)
∣∣ρ dt

) 
ρ

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/381
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holds for all measurable functions ψ such that the integral on the right-hand side of
(.) is finite if and only if

sup
r>

(∫ r



∣∣U(t)
∣∣σ dt

) 
σ
(∫ ∞

r

∣∣V (t)
∣∣–ρ′

dt
) 

ρ′
< +∞.

Now we shall show Lemma . and Lemma . by applying Theorem B(i) and Theo-
rem B(ii), respectively.

Proof of Lemma . Define the weights U and V by

U(t) :=

⎧⎨
⎩

| log t|– β
α t– +α

α for  < t < 
 ;

 for t ≥ 


and

V(t) :=

⎧⎨
⎩

| log t|– β
α t– 

α for  < t < 
 ;

 for t ≥ 
 .

Then the direct calculation shows

sup
r>

(∫ ∞

r

∣∣U(t)
∣∣α dt

) 
α
(∫ r



∣∣V(t)
∣∣–α′

dt
) 

α′
< +∞.

Thus, Theorem B(i) implies that

(∫ ∞



∣∣∣∣U(t)
∫ t



∣∣ψ(s)
∣∣ds

∣∣∣∣
α

dt
) 

α

≤ C
(∫ ∞



∣∣V(t)ψ(t)
∣∣α dt

) 
α

,

namely,

(∫ 




(

t

∫ t



∣∣ψ(s)
∣∣ds

)α

| log t|–β dt
t

) 
α

≤ C
(∫ 





∣∣ψ(t)
∣∣α| log t|–β dt

t
+

∫ ∞




∣∣ψ(t)
∣∣α dt

) 
α

for all measurable functions ψ . Taking φ = χ(,  )
ψ yields the desired inequality (.). �

Proof of Lemma . Define the weights U and V by

U(t) :=

⎧⎨
⎩

| log t|– β
α t– 

α for  < t < 
 ;

 for t ≥ 


and

V(t) :=

⎧⎨
⎩
t
q–
q for  < t < 

 ;

t
q–
q for t ≥ 

 .

http://www.journalofinequalitiesandapplications.com/content/2013/1/381


Machihara et al. Journal of Inequalities and Applications 2013, 2013:381 Page 7 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/381

Then the direct calculation shows

sup
r>

(∫ r



∣∣U(t)
∣∣α dt

) 
α
(∫ ∞

r

∣∣V(t)
∣∣–q′

dt
) 

q′
< +∞.

Since α ≥ β implies α ≥ q, by applying Theorem B(ii), we obtain

(∫ 




(∫ ∞

t

∣∣ψ(s)
∣∣ds

)α

| log t|–β dt
t

) 
α

≤ C
(∫ 





(
t
∣∣ψ(t)

∣∣)q dt
t
+

∫ ∞




tq–
∣∣ψ(t)

∣∣q dt
) 

q

for all measurable functions ψ . Taking φ = χ(,  )
ψ yields the desired inequality (.). �

3 Proof of the sufficiency part of Theorem 1.1
In this section, we consider the sufficiency part of Theorem .. To this end, it suffices to
show the following key lemmas.

Lemma . Let n ∈ N,  < p < ∞,  < q ≤ ∞, and let  < α,β < ∞. Assume one of the
conditions (i), (ii) and (iii) in (.). Then there exists a positive constant C such that the
inequality

(∫ 




u∗(t)α

| log t|β
dt
t

) 
α

≤ C‖u‖
H

n
p
p,q

(.)

holds for all u ∈H
n
p
p,q(Rn).

Lemma . Let n ∈ N,  < p < ∞,  < q ≤ ∞, and let  < α,β < ∞. Assume one of the
conditions (i), (ii) and (iii) in (.). Then there exists a positive constant C such that the
inequality

(∫
Rn

∣∣w(x)u(x)∣∣α dx
) 

α

≤ C
(
sup
<t< 



t

α | log t| β

α w∗(t)
)
‖u‖

H
n
p
p,q

(.)

holds for all u ∈H
n
p
p,q(Rn) and for all measurable function w satisfying

| suppw| < 


and sup
<t< 



t

α | log t| β

α w∗(t) < ∞.

Remark . By takingw(x) := | log |x||– β
α |x|– n

α χ{|x|<ε}(x) with small ε >  in Lemma ., we
can prove the sufficiency part of Theorem ., where χ{|x|<ε} is a characteristic function on
{|x| < ε}.

First, we shall prove Lemma . by applying Lemma ..

http://www.journalofinequalitiesandapplications.com/content/2013/1/381
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Proof of Lemma . By using inequality (.) with | suppw| < 
 and applying Lemma .,

we see

∫
Rn

∣∣w(x)u(x)∣∣α dx =
∫ 




(wu)∗(t)α dt ≤

∫ 



w∗(t)αu∗(t)α dt

=
∫ 





(
t

α | log t| β

α w∗(t)
)α u∗(t)α

| log t|β
dt
t

≤
(
sup
<t< 



t| log t|βw∗(t)α
)∫ 





u∗(t)α

| log t|β
dt
t

≤ C
(
sup
<t< 



t| log t|βw∗(t)α
)
‖u‖α

H
n
p
p,q

,

which is exactly the inequality (.). �

We are now in a position to prove Lemma ..

Proof of Lemma . First, by letting ( –�)
n
p u = f ∈ Lp,q(Rn), Lemma . can be rewritten

as the following equivalent form

(∫ 




(Gn
p

∗ f )∗(t)α

| log t|β
dt
t

) 
α

≤ C‖f ‖Lp,q (.)

for f ∈ Lp,q(Rn). Hence, we concentrate our attention on the proof of (.) below. By the
O’Neil inequality (.) and decay estimates (.) and (.), we have for  < t < 

 ,

(Gn
p

∗ f )∗(t)

≤ (Gn
p

∗ f )∗∗(t)

≤ tG∗∗
n
p
(t)f ∗∗(t) +

∫ ∞

t
G∗

n
p
(s)f ∗(s)ds

= tG∗∗
n
p
(t)f ∗∗(t) +

∫ ∞




G∗
n
p
(s)f ∗(s)ds +

∫ 


t
G∗

n
p
(s)f ∗(s)ds

≤ C
(

‖Gn
p
‖Lp′ ,∞‖f ‖Lp,q + ‖Gn

p
‖L‖f ‖Lp,q

∫ ∞




s–(+

p ) ds

)
+

∫ 


t
G∗

n
p
(s)f ∗(s)ds

= C‖f ‖Lp,q +
∫ 



t
G∗

n
p
(s)f ∗(s)ds. (.)

Thus, from (.), we obtain

(∫ 




(Gn
p

∗ f )∗(t)α

| log t|β
dt
t

) 
α

≤ C
(∫ 




| log t|–β dt

t

) 
α

‖f ‖Lp,q

+
(∫ 





(∫ 


t
G∗

n
p
(s)f ∗(s)ds

)α

| log t|–β dt
t

) 
α

, (.)

where the integral of the first term on the right-hand side of (.) is finite since β > . We
further estimate the integral of the second term below.

http://www.journalofinequalitiesandapplications.com/content/2013/1/381
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Note that the conditions (i), (ii) and (iii) in (.) can be rewritten equivalently as follows

(i) β >  +
α

q′ or (ii)  +
α

q′ = β and α ≥ β . (.)

Case . Assume (i) in (.). For  < t < 
 , by Lemma .(ii) and Hölder’s inequality, we

see

∫ 


t
G∗

n
p
(s)f ∗(s)ds≤ C

∫ 


t
s

p f ∗(s)

ds
s

≤ C
(∫ 



t

ds
s

) 
q′

(∫ 


t

(
s

p f ∗(s)

)q ds
s

) 
q

≤ C| log t| 
q′ ‖f ‖Lp,q .

Note that the calculation above is also valid for the case q = ∞. Thus, we have

(∫ 




(∫ 


t
G∗

n
p
(s)f ∗(s)ds

)α

| log t|–β dt
t

) 
α

≤ C
(∫ 




| log t| α

q′ –β dt
t

) 
α

‖f ‖Lp,q ≤ C‖f ‖Lp,q , (.)

where we have used the condition β > + α
q′ , which ensures that the integral on themiddle-

hand side of (.) is finite. Thus, combining (.) with (.), we obtain the desired estimate.
Case . Assume (ii) in (.). By Lemma .(ii) and Lemma ., we have

(∫ 




(∫ 


t
G∗

n
p
(s)f ∗(s)ds

)α

| log t|–β dt
t

) 
α

≤ C
(∫ 





(
tG∗

n
p
(t)f ∗(t)

)q dt
t

) 
q

≤ C
(∫ 





(
t

p f ∗(t)

)q dt
t

) 
q

≤ C‖f ‖Lp,q . (.)

Thus, combining (.) with (.), we obtain the desired estimate. �

4 Proof of the necessity part of Theorem 1.1
In this final section, we shall prove the necessity part of Theorem .. To this end, we shall
construct a concrete function in the critical Sobolev-Lorentz space H

n
p
p,q(Rn).

Proof of the necessity part of Theorem . First, by putting ( –�)
n
p u = f , inequality (.)

can be rewritten as

(∫
{|x|< 

 }

|Gn
p

∗ f (x)|α
| log |x||β

dx
|x|n

) 
α

≤ C‖f ‖Lp,q . (.)
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Therefore, it is enough to show the breakdown of the inequality (.) under the following
conditions, which are the negations of (.) or (.),

⎧⎪⎪⎨
⎪⎪⎩

(i) β <  + α
q′ and q < ∞;

(ii) β ≤  + α
q′ (=  + α) and q = ∞;

(iii) β =  + α
q′ , q < ∞ and α < β .

(.)

Case . Assume (i) in (.). In this case, we define the function fε by

fε(x) :=
∣∣log |x|∣∣– +ε

q |x|– n
p χ{|x|<ε}(x) (.)

for small ε > . Then we see that for sufficiently small ε > , fε becomes non-negative and
non-increasing with respect to the radial direction |x|. Thus, we have for small t > 

f ∗
ε (t) = f̃ε

((
t

ωn

) 
n
)

� | log t|– +ε
q t–


p =: gε(t), (.)

where f̃ε(|x|) := fε(x). More precisely, (.) implies that there exist positive constants δ

small enough, C and C̃ such that the inequalities

Cgε(t)≤ f ∗
ε (t)≤ C̃gε(t) (.)

hold for all  < t < δ. By using (.), it is easy to see fε ∈ Lp,q(Rn). Indeed, from (.), we
obtain

∫ δ



(
t

p f ∗

ε (t)
)q dt

t
≤ C̃

∫ δ



(
t

p gε(t)

)q dt
t
= C̃

∫ δ


| log t|–(+ε) dt

t
< ∞.

On the other hand, since fε is non-negative and non-increasing with respect to the radial
direction, so is Gn

p
∗ fε . Thus, noting Gn

p
∗ fε(x) = (Gn

p
∗ fε)∗(ωnrn) if |x| = r > , we see by

changing a variable ωnrn = t,

∫
{|x|< 

 }

|Gn
p

∗ fε(x)|α
| log |x||β

dx
|x|n

= nωn

∫ 




(Gn
p

∗ fε)∗(ωnrn)α

| log r|β
dr
r

≥ C
∫ δ



(Gn
p

∗ fε)∗(t)α

| log t|β
dt
t

(.)

for small δ > . Furthermore, by using Lemma . and the reverse O’Neil inequality (.),
we have

∫ δ



(Gn
p

∗ fε)∗(t)α

| log t|β
dt
t

≥ C
∫ δ



(Gn
p

∗ fε)∗∗(t)α

| log t|β
dt
t
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≥ C
∫ δ



(tG∗∗
n
p
(t)f ∗∗

ε (t) +
∫ ∞
t G∗

n
p
(τ )f ∗

ε (τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ



(
∫ δ

t G∗
n
p
(τ )f ∗

ε (τ )dτ )α

| log t|β
dt
t
. (.)

Thus, by Lemma . (ii) and (.), we have for small δ > ,

∫ δ



(
∫ δ

t G∗
n
p
(τ )f ∗

ε (τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ



(
∫ δ

t I∗n
p
(τ )f ∗

ε (τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ



(
∫ δ

t τ
– 
p′ gε(τ )dτ )α

| log t|β
dt
t
. (.)

Take ε >  small enough, so that  – +ε
q > , which is possible since q > . Thus, we have

for any  < t < δ
 with small δ > ,

∫ δ

t
τ
– 
p′ gε(τ )dτ =

q
q – ( + ε)

(| log t|– +ε
q – | log δ|– +ε

q
) ≥ C| log t|– +ε

q . (.)

Summing up all estimates (.), (.), (.), and (.), we obtain

∫
{|x|< 

 }

|Gn
p

∗ fε(x)|α
| log |x||β

dx
|x|n ≥ C

∫ δ



| log t|(– +ε

q )α–β dt
t
. (.)

However, the integral on the right-hand side of (.) diverges, provided that ε >  is taken
small enough, so that ( – +ε

q )α – β +  ≥ , which is possible since α
q′ – β +  >  by the

assumption. Thus, inequality (.) fails under the condition (i) in (.).
Case . Assume (ii) in (.). In this case, we utilize f(x) := |x|– n

p instead of fε(x) used
in Case . Then it is easily seen f ∈ Lp,∞(Rn). On the other hand, in a quite similar way
carried out in Case , we see

∫
{|x|< 

 }

|Gn
p

∗ f(x)|α
| log |x||β

dx
|x|n ≥ C

∫ δ



(Gn
p

∗ f)∗(t)α

| log t|β
dt
t

≥ C
∫ δ



(Gn
p

∗ f)∗∗(t)α

| log t|β
dt
t

≥ C
∫ δ



(
∫ δ

t G∗
n
p
(τ )f ∗

 (τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ



(
∫ δ

t I∗n
p
(τ )f ∗

 (τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ




| log t|α–β dt

t

for small δ, where the last integral diverges if α – β +  ≥ , that is, β ≤  + α. Thus, in-
equality (.) fails under the condition (ii) in (.).
Case . Assume (iii) in (.), which implies that α

q =  + α – β < , namely, q > α. In this
case, we make use of the function fε with small ε >  defined by

fε(x) :=
∣∣log |x|∣∣– 

q
∣∣log∣∣log |x|∣∣∣∣– +ε

q |x|– n
p χ{|x|<ε}(x).
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Since fε is non-negative and non-increasing in the radial direction |x| with small ε > , we
see

f ∗
ε (t) � | log t|– 

q
∣∣log | log t|∣∣– +ε

q t–

p =: gε(t)

for small t > , namely, there exist positive constants δ small enough, C and C̃ such that
the inequalities

Cgε(t)≤ f ∗
ε (t)≤ C̃gε(t) (.)

hold for all  < t < δ. By using (.), it is easy to see fε ∈ Lp,q(Rn). Indeed,

∫ δ



(
t

p f ∗

ε (t)
)q dt

t
≤ C̃

∫ δ



(
t

p gε(t)

)q dt
t

= C̃
∫ δ


| log t|–∣∣log | log t|∣∣–(+ε) dt

t
< ∞.

On the other hand, in the same estimates from below as in (.), (.) and (.) in Case ,
we obtain

∫
{|x|< 

 }

|Gn
p

∗ fε(x)|α
| log |x||β

dx
|x|n ≥ C

∫ δ



(
∫ δ

t τ
– 
p′ gε(τ )dτ )α

| log t|β
dt
t
. (.)

Furthermore, we can easily see

∫ δ

t
τ
– 
p′ gε(τ )dτ =

∫ δ

t
| log τ |– 

q
∣∣log | log τ |∣∣– +ε

q dτ

τ
� | log t|– 

q
∣∣log | log t|∣∣– +ε

q

for small t > . In particular, for any  < t < δ
 with small δ > , we have

∫ δ

t
τ
– 
p′ gε(τ )dτ ≥ C| log t|– 

q
∣∣log | log t|∣∣– +ε

q . (.)

Thus, combining (.) with (.), we see

∫
{|x|< 

 }

|Gn
p

∗ fε(x)|α
| log |x||β

dx
|x|n ≥ C

∫ δ




(
∫ δ

t τ
– 
p′ gε(τ )dτ )α

| log t|β
dt
t

≥ C
∫ δ




| log t| α

q′ –β ∣∣log | log t|∣∣– +ε
q α dt

t

= C
∫ δ




| log t|–∣∣log | log t|∣∣– +ε

q α dt
t
. (.)

However, the last integral in (.) diverges, provided that ε >  is taken small, so that
– +ε

q α +  ≥ , which is possible since q > α. Thus, the inequality (.) fails under the con-
dition (iii) in (.). �
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Remark . (.) in Lemma . is equivalent to (.) in Theorem .. Indeed, we have
already seen in Section  that Lemma . implies Theorem .. On the other hand, (.)
is equivalent to (.), and since the weighted norm in the left-hand side of (.) is non-
decreasing under the rearrangement, (.) can be reduced to (.), which is equivalent to
(.).
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