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Abstract
We considerM-orthogonal random fields. Using a lemma from summability theory,
we prove strong law of large numbers for blockwiseM-orthogonal random fields
under various moment conditions, thereby generalizing some results in the literature
from independent random fields.
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1 Introduction
Recently, Móricz et al. (cf. []) using the summability theory proved a strong law of large
numbers for blockwiseM-dependent random variables under moment conditions. Huan
and Quang (cf. []) established the Doob’s inequality for martingale difference arrays and
provided a sufficient condition, so that the strong law of large numbers would hold for an
arbitrary array of random elements without imposing any geometric condition on the Ba-
nach space.Quang et al. (cf. []) provided conditions to obtain the almost sure convergence
for a double array of blockwise M-dependent random elements {Vmn :m ≥ ,n ≥ }, tak-
ing values in a real separable Rademacher-type p ( < p ≤ ), and they also demonstrated
that some of the well-known theorems in the literature were special cases of their results.
Let Zd

+, where d is a positive integer, denote the positive integer d-dimensional lattice
points. Motivated by the results above, in this paper, we are going to study strong law of
large numbers for M-orthogonal random fields (Xn) with n ∈ Z

d
+. The notation m ≺ n,

where m = (m,m, . . . ,md) and n = (n,n, . . . ,nd), means that mi ≤ ni,  ≤ i ≤ d, n → ∞
means n ∧ n ∧ · · · ∧ nd → ∞.

Definition  The sequence {Xn,n ∈ Z
d
+} is called a sequence of M-orthogonal random

variables if

EXkXl = , (.)

for all k and l with max≤i≤d |ki – li| >m.

A somewhat weaker dependence condition is given by the following definition.

Definition  For given sequences of natural numbers (β i
k), (β

i
k) ↑ ∞ ( ≤ i ≤ d) (as

k → ∞), we say (Xn) is blockwise M-orthogonal with respect to blocks [β ()
k ,β

()
k+) ×
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[β ()
k ,β

()
k+) × · · · × [β (d)

kd ,β
(d)
kd+) if for all ki( ≤ i ≤ d) ∈ N, the random variables (Xn) are

M-orthogonal for indices n ∈ [β ()
k ,β

()
k+)× [β ()

k ,β
()
k+)× · · · × [β (d)

kd ,β
(d)
kd+).

The latter definition is a generalization of the corresponding definition for the one-
dimensional case. It allows the random variables in the different blocks be strongly de-
pendent. The particular case β

(i)
ki = kα , β (i)

ki+ = (k + )α , α > , k ∈N ( ≤ i≤ d) is especially
interesting.
In order to prove our main results, we shall state the following two lemmas, and it will

be shown that they play a key role in the proof.

Lemma  (cf. []) Let {Xn,n ∈ Z
d
+} be a random field withM-orthogonal, centered random

variables, if EX
n <∞ for all n ∈ Z

d
+, then we have

E
(
max
k≺n

|Sk|
) ≤ (m + )d ·

( d∏
i=

(log ni)
)

·
∑
k≺n

EX
k . (.)

Next, we consider sequences (Sn) = (Sn)∞n=(,,...,) of real or complex numbers.We say that
(Sn) is boundedly convergent to S if supn
(,,...,) |Sn| < ∞ and if for any ε >  there exists
some n(ε) such that |Sn – S| < ε for all ni ≥ n(ε) ( ≤ i ≤ d) (Pringsheim convergence).
We write shortly Sn → S (bd).

Lemma (cf. []) Let�(·),�(·), . . . ,�d(·) be positive, strictly increasing unbounded func-
tions on [,∞), and let (k(i)n )∞ ,  ≤ i ≤ d be strictly increasing sequences of integers with
k(i) = ,  ≤ i≤ d. Consider the following relations for array sequences (Sn) as n → ∞:

tn :=


(�(k()n+) –�(k()n )) · · · (�d(k(d)nd+) –�d(k(d)nd ))

· max
k()n <j<k

()
n+

···k(d)nd <jd<k
(d)
nd+

∣∣∣∣∣
j∑

u=k
()
n +

· · ·
jd∑

ud=k
(d)
nd +

Su

∣∣∣∣∣ →  (bd) (.)

and


�(n) · · ·�d(nd)

∑
u≺n

Su →  (bd). (.)

Then relation (.) implies relation (.), provided

lim sup
n→∞

�i(k(i)n+)
�i(k(i)n )

<∞,  ≤ i≤ d, (.)

and relation (.) implies relation (.), provided

lim inf
n→∞

�i(k(i)n+)
�i(k(i)n )

> ,  ≤ i≤ d. (.)

Consequently, under condition (.) and (.) the two relations (.) and (.) are equiva-
lent.

http://www.journalofinequalitiesandapplications.com/content/2013/1/380


Wu-ling and Zhong-zhi Journal of Inequalities and Applications 2013, 2013:380 Page 3 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/380

2 Themain results and proofs
With the preliminaries accounted for, we can formulate and prove the main results of this
paper.

Theorem  Let {Xn,n ∈ Z
d
+} be a random field with centered and integrable random vari-

ables being blockwise M-orthogonal with respect to the blocks [n , n+) × [n , n+) ×
· · · × [nd , nd+). Let �i(·) be as in Lemma  satisfying (.) and (.) with k(i)n = n, n ∈ N.
If, in addition,

∑
j∈Zd

+

(
�(j) · · ·�d(jd)

)– ·
[ d∏

k=

( + α log jk)
]
E|Xj| <∞,

then

lim
n→∞


�(n) · · ·�d(nd)

∑
j≺n

Xj =  a.s.

Proof By virtue of Lemma , it suffices to show that

lim
n→∞


(�((n + )α) –�(nα

 )) · · · (�d((nd + )α) –�d(nα
d))

· max
nα
 <j≤(n+)α ···nα

d<jd≤(nd+)α

j∑
l=nα

 +

· · ·
jd∑

ld=nα
d+

Xl =  a.s. (.)

and

sup
n


∣∣∣∣ 
(�((n + )α) –�(nα

 )) · · · (�d((nd + )α) –�d(nα
d ))

· max
nα
 <j≤(n+)α ···nα

d<jd≤(nd+)α

j∑
l=nα

 +

· · ·
jd∑

ld=nα
d+

Xl

∣∣∣∣ < ∞ a.s. (.)

At first, we prove (.). Applying the Chebyshev’s inequality gives

∑
n∈Zd

+

P
{maxnα

 <j≤(n+)α ,...,nα
d<jd≤(nd+)α

∑j
l=nα

 +
· · ·∑jd

ld=nα
d+

Xl

(�((n + )α) –�(nα
 )) · · · (�d((nd + )α) –�d(nα

d ))
> ε

}

≤ 
ε

∑
n∈Zd

+

E
{maxnα

 <j≤(n+)α ,...,nα
d<jd≤(nd+)α

∑j
l=nα

 +
· · ·∑jd

ld=nα
d+

Xl

(�((n + )α) –�(nα
 )) · · · (�d((nd + )α) –�d(nα

d ))

}

≤ (c · · · cd)–
ε

∑
n∈Zd

+

(
�

(
(n + )α

) · · ·�d
(
(nd + )α

))–

· E
{

max
nα
 <j≤(n+)α ,...,nα

d<jd≤(nd+)α

∣∣∣∣
j∑

l=nα
 +

· · ·
jd∑

ld=nα
d+

Xl

∣∣∣∣
}

,
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where we used (.) and (.) yielding �i((ni + )α) – �i(nα
i ) ≥ ci�i((ni + )α) with ci > ,

 ≤ i≤ d, respectively.
Applying Lemma  (note that the randomvariables arewithin the blocksM-orthogonal),

we obtain

(c · · · cd)–
ε

∑
n∈Zd

+

(
�

(
(n + )α

) · · ·�d
(
(nd + )α

))–

· E
{

max
nα
 <j≤(n+)α ,...,nα

d<jd≤(nd+)α

∣∣∣∣
j∑

l=nα
 +

· · ·
jd∑

ld=nα
d+

Xl

∣∣∣∣
}

≤ C
∑
n∈Zd

+

(
�

(
(n + )α

) · · ·�d
(
(nd + )α

))–(m + )d

·
( d∏

i=

(
log 

(
(ni + )α – nα

i
)))

·
(n+)α∑
l=nα

 +

· · ·
(nd+)α∑
ld=nα

d+

E|Xl|

≤ C
∑
j∈Zd

+

E
(|Xj|

) (j+)

α∑

n=j

α
 –

· · ·
(jd+)


α∑

nd=j

α
d –

(
�

(
(n + )α

) · · ·�d
(
(nd + )α

))–

·
d∏
k=

[
log 

(
(nk + )α – nα

k
)]

≤ C
∑
j∈Zd

+

(
�(j) · · ·�d(jd)

)–( d∏
k=

( + α log jk)
)
E
(|Xj|

)
< ∞,

where C is a constant, which may differ from line to line. From the Borel-Cantelli lemma
it follows that

lim
n→∞


(�((n + )α) –�(nα

 )) · · · (�d((nd + )α) –�d(nα
d))

· max
n <j≤n+,...,nd <jd≤nd+

j∑
l=n +

· · ·
jd∑

ld=nd+

Xl =  a.s.

In order to prove the bounded convergence it remains to show that

sup
n


∣∣∣∣ 
(�((n + )α) –�(nα

 )) · · · (�d((nd + )α) –�d(nα
d ))

· max
nα
 <j≤(n+)α ,...,nα

d<jd≤(nd+)α

j∑
l=nα

 +

· · ·
jd∑

ld=nα
d+

Xl

∣∣∣∣ < ∞ a.s.
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Using the same arguments as above with ε = , we obtain that for almost all ω, there exist
only finite many n,n, . . . ,nd such that

∣∣∣∣ 
(�((n + )α) –�(nα

 )) · · · (�d((nd + )α) –�d(nα
d ))

· max
nα
 <j≤(n+)α ,...,nα

d<jd≤(nd+)α

j∑
l=nα

 +

· · ·
jd∑

ld=nα
d+

Xl

∣∣∣∣ > .

These complete the proof. �

Corollary  Let {Xn,n ∈ Z
d
+} be a random field being blockwise M-orthogonal as in Theo-

rem  with centered and integrable random variables. If

∑
j∈Zd

+

(j · · · jd)– ·
[ d∏

k=

log(jk)
]
E|Xj| <∞,

then

lim
n→∞


n · · ·nd

∑
j≺n

Xj =  a.s.

This follows from Theorem  choosing for �i(·),  ≤ i ≤ d the identity function.
In particular, a strong law of large numbers holds for a blockwiseM-orthogonal random

field with bounded pthmoment for any p >  a condition, which is just a little bit stronger
than the necessary moment condition in the i.i.d. case. Next, choose

�i(t) = tαi , αi > /,  ≤ i≤ d

in Theorem , then we obtain the following corollaries, which are related to the Mar-
cienkiewicz laws in [].

Corollary  Let {Xn,n ∈ Z
d
+} be a random field as in Theorem . If

∑
j∈Zd

+

(
jα · · · jαdd

)– ·
[ d∏

k=

log(jk)
]
E|Xj| <∞,

then

lim
n→∞


nα
 · · ·nαd

d

∑
j≺n

Xj =  a.s.

Corollary  Let {Xn,n ∈ Z
d
+} be a random field with blockwise M-orthogonal, centered

random variables satisfying E|Xn| ≤ M < ∞ for all n ∈ Z
d
+, then for any δ > , we have

lim
n→∞



n


 (logn)


 +δ · · ·n 


d (lognd)


 +δ

∑
j≺n

Xj =  a.s.

This follows from our Theorem , using �i(t) = t(log t)  +δ ,  ≤ i≤ d.
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