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Abstract

We consider M-orthogonal random fields. Using a lemma from summability theory,
we prove strong law of large numbers for blockwise M-orthogonal random fields
under various moment conditions, thereby generalizing some results in the literature
from independent random fields.
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1 Introduction
Recently, Méricz et al. (cf. [1]) using the summability theory proved a strong law of large
numbers for blockwise M-dependent random variables under moment conditions. Huan
and Quang (cf [2]) established the Doob’s inequality for martingale difference arrays and
provided a sufficient condition, so that the strong law of large numbers would hold for an
arbitrary array of random elements without imposing any geometric condition on the Ba-
nach space. Quang et al. (cf [3]) provided conditions to obtain the almost sure convergence
for a double array of blockwise M-dependent random elements {V,,,, : m > 1,n > 1}, tak-
ing values in a real separable Rademacher-type p (1 < p < 2), and they also demonstrated
that some of the well-known theorems in the literature were special cases of their results.
Let Z¢, where d is a positive integer, denote the positive integer d-dimensional lattice
points. Motivated by the results above, in this paper, we are going to study strong law of
large numbers for M-orthogonal random fields (X,) with n € Z‘f . The notation m < n,
where m = (my,m,,...,my) and n = (n,ny,...,n4), means that m; <n;, 1 <i<d,n— o0

means 1y Ay A -+ A Hg —> 0O.

Definition 1 The sequence {X,, n € Z%} is called a sequence of M-orthogonal random
variables if

EXi X1 =0, 1.1)
for all k and 1 with max;<;<4 |k; — ;| > m.
A somewhat weaker dependence condition is given by the following definition.

Definition 2 For given sequences of natural numbers (8}),(8) 1 0o (1 <i < d) (as
. . . O L0

k — 00), we say (X,) is blockwise M-orthogonal with respect to blocks [ﬁkl ,ﬁk1+1) X
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[ﬁg),ﬁgll) X oo X [ﬁ,ﬁj),ﬂ,((jll) if for all k;(1 < i < d) € N, the random variables (X,,) are
M-orthogonal for indices n € [:315?7512)“) X [,B,g),ﬁ,g)ﬂ) X eee X [ﬁg),ﬂgll)

The latter definition is a generalization of the corresponding definition for the one-
dimensional case. It allows the random variables in the different blocks be strongly de-
pendent. The particular case /3,((? =k, ,B,E?Jrl =(k+1)% a>1,keN(1<i<d)isespecially
interesting.

In order to prove our main results, we shall state the following two lemmas, and it will
be shown that they play a key role in the proof.

Lemmal (cf [4]) Let{X,,ne Zf} be a random field with M-orthogonal, centered random
variables, if EX? < 0o for all n € 7%, then we have

5 d
d 2 2
E(Tf,i‘ |sk|) <(m+1)7. (E[(logz 2n;) ) ~kZEXk. (1.2)

.....

some ng(e) such that |S,, — S| < ¢ for all n; > ny(e) (1 <i <d) (Pringsheim convergence).
We write shortly S, — S (bd).

Lemma 2 (¢f. [5]) Let Vi(-), ¥a(:), ..., Va(-) be positive, strictly increasing unbounded func-
tions on [0,00), and let (kﬁ,i))go, 1 <i < d be strictly increasing sequences of integers with
k(()i) =0,1<i<d. Consider the following relations for array sequences (Sy) as n — 0o:

1
tn =
(W1 (k) = Wi (ki) - (Wa (k) = Walki))
J1 Jd
: max Yoo > S| >0 (bd) (1.3)
"»(«11)<J'1<’<(nll)+1“"<ff?<fd<qud)+1 <1> @
d* =kn1 +1 Md=knd +1
and
! Y Sem 0 (bd) (14)
—_— W= . .
Wi(m) - Walna)
Then relation (1.3) implies relation (1.4), provided
W, (kY
lim sup ( ”Jfl) <00, 1<i<d, 1.5)
o Wilk!)
and relation (1.4) implies relation (1.3), provided
(k)
liminf ( ”(f)l) >1, 1<i<d. (1.6)
=00 Wy(ky')

Consequently, under condition (1.5) and (1.6) the two relations (1.3) and (1.4) are equiva-
lent.
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2 The main results and proofs
With the preliminaries accounted for, we can formulate and prove the main results of this

paper.

Theorem 1 Let { Xy, n € Z%} be a random field with centered and integrable random vari-
ables being blockwise M-orthogonal with respect to the blocks [2™,2"*1) x [2112,2m2+1) x
x [27d,2"d*V), Let W;(-) be as in Lemma 2 satisfying (1.5) and (1.6) with k,(f) =2", neN.

If, in addition,
d
Z(‘Vl(h “Walja))” |:1_[(1 +alogy ji) :|E|X |” < o0,
jezd k=1
then

1
im — Xi=0 a.s.
n—oc0 Wy(m) - - Wy(ng) ]Z;’ !

Proof By virtue of Lemma 2, it suffices to show that

1
.
w0 (W + 1)) — W) - - (Wal(ng +1)%) = Walng))

max X1 = a.s. (2.1)
Z >3

n¥ <j1 <(m+1)%---n%<jg<(ng+1)«
T <h=(m+1)*-ng<jg=<(ng R P

and

1
ot | (W (1 + D) — Wy () - (W11 + 1)) — Wg(12))

max Z Z X1

. <00 as. (2.2)
nd< n+1)%---n <(ng+1)%
1 <=im+1) d<]d d h=n{+1 lg= nd+1

At first, we prove (2.1). Applying the Chebyshev’s inequality gives

maxy,¢ < <(nm+1),.., ng<ja<(ng+1)* le =n$ LS Zld nd+1 }

P
neXz:d { (W1((my +1)%) = W (n))) - - - (Wa((ng + 1)%) - ‘Ifd(nd))

T

Jd
{max,,l L= 4D, % < (g +1)% le il Zld:ngqu }2

(W1 ((m + 1)%) = Wi (n)) - - (Wa((na + 1)%) = Wa(ng))

S E

74

neZf

... -2
G S gy (g + 1)) - W (14 + 1))

g2
ner
}2
’

>y x

L= n +1 lg= nd+1

-E max
ny <1 <(m+1)%,..,n5 <jg <(ng+1)*
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where we used (1.5) and (1.6) yielding W;((n; + 1)%) — W;(n{) > ¢;W;((n; + 1)*) with ¢; > 0,
1 <i<d, respectively.
Applying Lemma 1 (note that the random variables are within the blocks M-orthogonal),

we obtain

.o _2
Gl S (g (g 1)) - W (g + 1))

g2
ner

>3

h=n{+1 lg=nfy+1

|

-E max
nf <1 =(m+1)%,...n5<jg <(ng+1)%

<C Z (W1 ((m +1)%) -+ W (g + 1)"‘))72(;41 +1)7

neZﬁf
d
) (H(log2 2((m; +1)* - nf‘))2)
i=1
(m+1)% (ng+1)¥

S Y EIXP

h=nf{+1 ly= nd+1

1+1 d+1

<C > E(I%P) Z Z Wy ((m + D)%) - Wa((ng + D))
iEZﬁl n 11 -1 nq ld -1

d
H log, 2((mk +1)* —nk)z]
k=1

d

<C Z (W101) - \Ifd(jd))_z (]_[(1 +ao 1og2jk)2)15(|x,~ *) < o0,

jezd k=1

where C is a constant, which may differ from line to line. From the Borel-Cantelli lemma
it follows that

1
I
w00 (Wy((ny + 1)) - Wi(n}) - (Wal(ng +1)%) — Walng))

J1 Jd
max Z Z X;=0 as.

ny i n+1 Ny i g+l
o=z PESa=TE g =2

.....

In order to prove the bounded convergence it remains to show that

1
| (U1 + 1)) — Wy () -~ (Vg + D)) — Wg(n2))

max Z Z Xi

n¥ <j1 <(m +1)%,..,n%<j 1 <(ng+1)*
1 91=lm aId= (na h= n+1 lg= nd+1

<00 a.s.

Page 4 of 6


http://www.journalofinequalitiesandapplications.com/content/2013/1/380

Wu-ling and Zhong-zhi Journal of Inequalities and Applications 2013, 2013:380 Page 5 of 6
http://www.journalofinequalitiesandapplications.com/content/2013/1/380

Using the same arguments as above with ¢ = 1, we obtain that for almost all w, there exist
only finite many n3, ny, ..., 1y such that

1
(W10 +1)%) = W (n])) - - - (Wa((ng + 1)%) = Wa(ng))

. max Z Z Xi| > 1.
X i< 1)“,..., <( 1)«
i =Om+1) nd Ja=(na+1) h "1 +1 ly= nd+1
These complete the proof. d

Corollary 1 Let {Xy,n € Z9} be a random field being blockwise M-orthogonal as in Theo-
rem 1 with centered and integrable random variables. If

d
> G ja)? |:1_[log2(2jk)2:|E|Xj|2 <00,

iEZf,l k=1

then
lim ZX 0 a.s.
n—0o g -

]<ll

This follows from Theorem 1 choosing for W;(-), 1 <i < d the identity function.

In particular, a strong law of large numbers holds for a blockwise M-orthogonal random
field with bounded pth moment for any p > 1 a condition, which is just a little bit stronger
than the necessary moment condition in the i.i.d. case. Next, choose

Wi(t)=t%, o;>1/2,1<i<d

in Theorem 1, then we obtain the following corollaries, which are related to the Mar-

cienkiewicz laws in [5].

Corollary 2 Let {X,,n € Z9} be a random field as in Theorem 1. If

d
Z(fl}q .. .]Zd)—Z . |:l—[ 10g2(2jk)2:|E|Xj|2 < 00,

jezd k=1

then

lim - adZX 0 as

n—00 j1; o

Corollary 3 Let {X,,n € fo } be a random field with blockwise M-orthogonal, centered
random variables satisfying E|Xy|> < M < 0o for all n € 74, then for any § > 0, we have
. 1
1Lm I ; T - X;j=0 as.
"% nE (logm)2* - n2 (logng)2* j<n

This follows from our Theorem 1, using W;(¢) = £(log t)%“"s, 1<i<d.
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