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1 Introduction
Let C and Q be two closed convex subsets of two Hilbert spaces H and H, respectively,
and let A :H →H be a bounded linear operator. Finding a point x∗ satisfies

x∗ ∈ C and Ax∗ ∈ Q. (.)

This problem, referred to as the split problem, has been studied by some authors. See, e.g.,
[–] and []. Some algorithms for solving (.) have been presented. One is Byrne’s CQ
algorithm []

xn+ = PC
(
xn – τA∗(I – PQ)Axn

)
, n ∈N,

where τ ∈ (, L ) with L being the largest eigenvalue of the matrix A∗A, I is the unit matrix
or operator, and PC and PQ denote the orthogonal projections onto C and Q, respectively.
Motivated by Byrne’s CQ algorithm, Xu [] suggested a single step regularized method

xn+ = PC
(
( – αnγn)xn – γnA∗(I – PQ)Axn

)
, n ∈N. (.)

Very recently, Dang and Gao [] introduced the following damped projection algorithm

xn+ = ( – βn)xn + βnPC
(
( – αn)

(
xn – τA∗(I – PQ)Axn

))
, n ∈N.

If every closed convex subset of a Hilbert space is the fixed point set of its associating
projection, then the split feasibility problem becomes a special case of the split common
fixed point problem of finding a point x∗ with the property

x∗ ∈ Fix(U) and Ax∗ ∈ Fix(T).
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This problem was first introduced by Censor and Segal [], who invented an algorithm,
which generates a sequence {xn} according to the iterative procedure

xn+ =U
(
xn – γA∗(I – T)Axn

)
, n ∈N.

Recently, Cui, Su and Wang [] extended the damped projection algorithm to the split
common fixed point problems. For some related work, please refer to [] and [, ].
Motivated by these results, the purpose of this paper is to study the following split fea-

sibility problem and fixed point problem

Find x∗ ∈ C ∩ Fix(T) such that Ax∗ ∈ Q∩ Fix(S), (.)

where S : Q → Q and T : C → C are two nonexpansive mappings. We suggest a damped
algorithm for solving (.). Convergence theorem is proven.

2 Preliminaries
Let H be a real Hilbert space with the inner product 〈·, ·〉 and the norm ‖ · ‖, respectively.
Let C be a nonempty closed convex subset of H .

Definition . A mapping T : C → C is called nonexpansive if

‖Tx – Ty‖ ≤ ‖x – y‖

for all x, y ∈ C.

Wewill use Fix(T) to denote the set of fixed points of T , that is, Fix(T) = {x ∈ C : x = Tx}.

Definition . We call PC :H → C the metric projection if for each x ∈H

∥∥x – PC(x)
∥∥ = inf

{‖x – y‖ : y ∈ C
}
.

It is well known that the metric projection PC :H → C is characterized by

〈
x – PC(x), y – PC(x)

〉 ≤ 

for all x ∈H , y ∈ C. From this, we can deduce that PC is firmly-nonexpansive, that is,

∥∥PC(x) – PC(y)
∥∥ ≤ 〈

x – y,PC(x) – PC(y)
〉

(.)

for all x, y ∈ H . Hence PC is also nonexpansive.
It is well known that in a real Hilbert space H , the following two equalities hold

∥∥tx + ( – t)y
∥∥ = t‖x‖ + ( – t)‖y‖ – t( – t)‖x – y‖ (.)

for all x, y ∈ H and t ∈ [, ], and

‖x + y‖ = ‖x‖ + 〈x, y〉 + ‖y‖ (.)
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for all x, y ∈ H . It follows that

‖x + y‖ ≤ ‖x‖ + 〈y,x + y〉 (.)

for all x, y ∈ H .

Lemma. [] Let C be a closed convex subset of a real Hilbert space H , and let S : C → C
be a nonexpansive mapping. Then, the mapping I – S is demiclosed. That is, if {xn} is a
sequence in C such that xn → x∗ weakly and (I – S)xn → y strongly, then (I – S)x∗ = y.

Lemma . [] Assume that {an} is a sequence of nonnegative real numbers such that

an+ ≤ ( – γn)an + δn, n ∈N,

where {γn} is a sequence in (, ), and {δn} is a sequence such that
()

∑∞
n= γn = ∞;

() lim supn→∞
δn
γn

≤  or
∑∞

n= |δn| < ∞.
Then limn→∞ an = .

3 Main results
Let C and Q be two nonempty closed convex subsets of real Hilbert spaces H and H,
respectively. Let A : H → H be a bounded linear operator with its adjoint A∗. Let S :
Q → Q and T : C → C be two nonexpansive mappings. We use � to denote the set of
solutions of (.), that is, � = {x∗|x∗ ∈ C ∩ Fix(T),Ax∗ ∈Q∩ Fix(S)}. Now, we present our
algorithm.

Algorithm . For x ∈H arbitrarily, let {xn} be a sequence defined by

xn+ = TPC
(
( – αn)

(
xn – δA∗(I – SPQ)Axn

))
for all n ∈ N, (.)

where {αn}n∈N and {βn}n∈N are two real number sequences in (, ) and δ ∈ (, 
‖A‖ ).

Theorem . Suppose � �= ∅. Assume the sequence {αn}n∈N satisfies three conditions
(C) limn→∞ αn = ;
(C)

∑∞
n= αn = ∞;

(C) limn→∞ αn+
αn

= .
Then the sequence {xn}, generated by algorithm (.), converges strongly to x∗ = P�().

Proof For the convenience, we write zn = PQAxn, yn = ( – αn)(xn – δA∗(I – SPQ)Axn) and
un = PC(( – αn)(xn – δA∗(I – SPQ)Axn)) for all n ∈N. Thus un = PCyn for all n ∈ N.
Let x∗ = P�(). Hence, x∗ ∈ C ∩ Fix(T) and Ax∗ ∈ Q ∩ Fix(S). By the firmly-

nonexpansivity of PC and PQ, we can deduce the following conclusions

∥∥zn –Ax∗∥∥ =
∥∥PQAxn – PQAx∗∥∥ ≤ ∥∥Axn –Ax∗∥∥, (.)

∥∥un – x∗∥∥ =
∥∥PCyn – PCx∗∥∥ ≤ ∥∥yn – x∗∥∥, (.)

∥∥Szn –Ax∗∥∥ ≤ ∥∥zn –Ax∗∥∥ ≤ ∥∥Axn –Ax∗∥∥ – ‖zn –Axn‖, (.)

‖un+ – un‖ = ‖PCyn+ – PCyn‖ ≤ ‖yn+ – yn‖ (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/379
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and

‖zn+ – zn‖ = ‖PQAxn+ – PQAxn‖ ≤ ‖Axn+ –Axn‖. (.)

From (.) and (.), we have

∥∥xn+ – x∗∥∥ =
∥∥Tun – x∗∥∥ ≤ ∥∥un – x∗∥∥ ≤ ∥∥yn – x∗∥∥. (.)

Using (.), we get

∥∥yn – x∗∥∥ =
∥∥( – αn)

(
xn – x∗ + δA∗(Szn –Axn)

)
– αnx∗∥∥

≤ ( – αn)
∥∥(xn – x∗ + δA∗(Szn –Axn)

∥∥ + αn
∥∥x∗∥∥

= ( – αn)
[∥∥xn – x∗∥∥ + δ

∥∥A∗(Szn –Axn)
∥∥

+ δ
〈
xn – x∗,A∗(Szn –Axn)

〉]
+ αn

∥∥x∗∥∥. (.)

Since A is a linear operator with its adjoint A∗, we have

〈
xn – x∗,A∗(Szn –Axn)

〉
=

〈
A

(
xn – x∗),Szn –Axn

〉
=

〈
Axn –Ax∗ + Szn –Axn – (Szn –Axn),Szn –Axn

〉
=

〈
Szn –Ax∗,Szn –Axn

〉
– ‖Szn –Axn‖. (.)

Again using (.), we obtain

〈
Szn –Ax∗,Szn –Axn

〉
=


(∥∥Szn –Ax∗∥∥ + ‖Szn –Axn‖ –

∥∥Axn –Ax∗∥∥). (.)

By (.), (.) and (.), we get

〈
xn – x∗,A∗(Szn –Axn)

〉
=



(∥∥Szn –Ax∗∥∥ + ‖Szn –Axn‖ –

∥∥Axn –Ax∗∥∥)

– ‖Szn –Axn‖

≤ 

(∥∥Axn –Ax∗∥∥ – ‖zn –Axn‖ + ‖Szn –Axn‖

–
∥∥Axn –Ax∗∥∥) – ‖Szn –Axn‖

= –


‖zn –Axn‖ – 


‖Szn –Axn‖. (.)

Substituting (.) into (.), we deduce

∥∥yn – x∗∥∥ ≤ ( – αn)
[∥∥xn – x∗∥∥ + δ‖A‖‖Szn –Axn‖

+ δ
(
–


‖zn –Axn‖ – 


‖Szn –Axn‖

)]
+ αn

∥∥x∗∥∥

= ( – αn)
[∥∥xn – x∗∥∥ +

(
δ‖A‖ – δ

)‖Szn –Axn‖

http://www.journalofinequalitiesandapplications.com/content/2013/1/379
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– δ‖zn –Axn‖
]
+ αn

∥∥x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥x∗∥∥. (.)

It follows from (.) that

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥x∗∥∥

≤ max
{∥∥xn – x∗∥∥,

∥∥x∗∥∥}.
The boundedness of the sequence {xn} yields.
Next, we estimate ‖xn+ –xn‖. Set vn = xn–δA∗(I–SPQ)Axn. According to (.) and (.),

we have

‖vn+ – vn‖ =
∥∥xn+ – xn + δ

[
A∗(SPQ – I)Axn+ –A∗(SPQ – I)Axn

]∥∥

= ‖xn+ – xn‖ + δ
∥∥A∗[(SPQ – I)Axn+ – (SPQ – I)Axn

]∥∥

+ δ
〈
xn+ – xn,A∗[(SPQ – I)Axn+ – (SPQ – I)Axn

]〉
≤ ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)

∥∥

+ δ
〈
Axn+ –Axn,Szn+ – Szn – (Axn+ –Axn)

〉
= ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)

∥∥

+ δ
〈
Szn+ – Szn,Szn+ – Szn – (Axn+ –Axn)

〉
– δ

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

= ‖xn+ – xn‖ + δ‖A‖∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖Szn+ – Szn‖ +

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

– ‖Axn+ –Axn‖
)
– δ

∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

= ‖xn+ – xn‖ +
(
δ‖A‖ – δ

)∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖Szn+ – Szn‖ – ‖Axn+ –Axn‖

)
≤ ‖xn+ – xn‖ +

(
δ‖A‖ – δ

)∥∥Szn+ – Szn – (Axn+ –Axn)
∥∥

+ δ
(‖zn+ – zn‖ – ‖Axn+ –Axn‖

)
. (.)

Since δ ∈ (, 
‖A‖ ), we derive by virtue of (.) and (.) that

‖vn+ – vn‖ ≤ ‖xn+ – xn‖. (.)

From (.) and (.), we have

‖xn+ – xn‖ ≤ ‖yn+ – yn‖
=

∥∥( – αn+)vn+ – ( – αn)vn
∥∥

=
∥∥( – αn+)(vn+ – vn) + (αn – αn+)vn

∥∥
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≤ ( – αn+)‖vn+ – vn‖ + |αn+ – αn|‖vn‖
≤ ( – αn+)‖xn+ – xn‖ + |αn+ – αn|‖vn‖.

It follows that

‖xn+ – xn‖ ≤ |αn+ – αn|
αn+

‖vn‖.

This, together with condition (C), implies that

lim
n→∞‖xn+ – xn‖ = . (.)

That is,

lim
n→∞‖xn – Tun‖ = . (.)

Using the firmly-nonexpansiveness of PC , we have

∥∥un – x∗∥∥ =
∥∥PCyn – x∗∥∥

≤ ∥∥yn – x∗∥∥ – ‖PCyn – yn‖

=
∥∥yn – x∗∥∥ – ‖un – yn‖. (.)

Thus,

∥∥xn+ – x∗∥∥ ≤ ∥∥un – x∗∥∥

≤ ∥∥yn – x∗∥∥ – ‖un – yn‖

≤ ( – αn)
∥∥xn – x∗∥∥ + αn

∥∥x∗∥∥ – ‖un – yn‖. (.)

It follows that

‖un – yn‖ ≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖ + αn

∥∥x∗∥∥.

This, together with (.) and (C), implies that

lim
n→∞‖un – yn‖ = . (.)

Returning to (.) and using (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

≤ ( – αn)
∥∥xn – x∗∥∥ + ( – αn)

(
δ‖A‖ – δ

)‖Szn –Axn‖

– ( – αn)δ‖zn –Axn‖ + αn
∥∥x∗∥∥.

http://www.journalofinequalitiesandapplications.com/content/2013/1/379
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Hence,

( – αn)
(
δ – δ‖A‖)‖Szn –Axn‖ + ( – αn)δ‖zn –Axn‖

≤ ∥∥xn – x∗∥∥ –
∥∥xn+ – x∗∥∥ + αn

∥∥x∗∥∥

≤ (∥∥xn – x∗∥∥ +
∥∥xn+ – x∗∥∥)‖xn+ – xn‖ + αn

∥∥x∗∥∥,

which implies that

lim
n→∞‖Szn –Axn‖ = lim

n→∞‖zn –Axn‖ = . (.)

So,

lim
n→∞‖Szn – zn‖ = . (.)

Note that

‖yn – xn‖ =
∥∥δA∗(SPQ – I)Axn + αnvn

∥∥
≤ δ‖A‖‖Szn –Axn‖ + αn‖vn‖.

It follows from (.) that

lim
n→∞‖xn – yn‖ = . (.)

From (.), (.) and (.), we get

lim
n→∞‖xn – Txn‖ = . (.)

Now, we show that

lim sup
n→∞

〈
x∗, yn – x∗〉 ≥ .

Choose a subsequence {yni} of {yn} such that

lim sup
n→∞

〈
x∗, yn – x∗〉 = lim

i→∞
〈
x∗, yni – x∗〉. (.)

Since the sequence {yni} is bounded, we can choose a subsequence {ynij } of {yni} such that
ynij ⇀ z. For the sake of convenience, we assume (without loss of generality) that yni ⇀ z.
Consequently, we derive from the above conclusions that

xni ⇀ z, uni ⇀ z, Axni ⇀ Az and zni ⇀ Az. (.)

By the demiclosed principle of the nonexpansive mappings S and T (see Lemma .), we
deduce that z ∈ Fix(T) and Az ∈ Fix(S) (according to (.) and (.), respectively). Note
that uni = PCyni ∈ C and zni = PQAxni ∈ Q. From (.), we deduce z ∈ C and Az ∈ Q.

http://www.journalofinequalitiesandapplications.com/content/2013/1/379
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To this end, we deduce that z ∈ C ∩ Fix(T) and Az ∈ Q ∩ Fix(S). That is to say, z ∈ �.
Therefore,

lim sup
n→∞

〈
x∗, yn – x∗〉 = lim

i→∞
〈
x∗, yni – x∗〉

= lim
i→∞

〈
x∗, z – x∗〉

≥ . (.)

Finally, we prove that xn → x∗. From (.), we have

∥∥xn+ – x∗∥∥ ≤ ∥∥yn – x∗∥∥

=
∥∥( – αn)

(
vn – x∗) – αnx∗∥∥

≤ ( – αn)
∥∥vn – x∗∥∥ – αn

〈
x∗, yn – x∗〉

≤ ( – αn)
∥∥xn – x∗∥∥ – αn

〈
x∗, yn – x∗〉. (.)

Applying Lemma . and (.) to (.), we deduce that xn → x∗. The proof is com-
pleted. �
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