RESEARCH

Open Access

A damped algorithm for the split feasibility and fixed point problems

Cun-lin Li¹, Yeong-Cheng Liou² and Yonghong Yao^{3*}

*Correspondence: yaoyonghong@aliyun.com ³Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, China Full list of author information is available at the end of the article

Abstract

The purpose of this paper is to study the split feasibility problem and the fixed point problem. We suggest a damped algorithm. Convergence theorem is proven. **MSC:** 47J25; 47H09; 65J15; 90C25

Keywords: split feasibility problem; fixed point problem; nonexpansive mapping; damped algorithm

1 Introduction

Let *C* and *Q* be two closed convex subsets of two Hilbert spaces H_1 and H_2 , respectively, and let $A : H_1 \to H_2$ be a bounded linear operator. Finding a point x^* satisfies

$$x^* \in C \quad \text{and} \quad Ax^* \in Q. \tag{1.1}$$

This problem, referred to as the split problem, has been studied by some authors. See, *e.g.*, [1-8] and [9]. Some algorithms for solving (1.1) have been presented. One is Byrne's CQ algorithm [1]

$$x_{n+1} = P_C(x_n - \tau A^*(I - P_Q)Ax_n), \quad n \in \mathbb{N},$$

where $\tau \in (0, \frac{2}{L})$ with *L* being the largest eigenvalue of the matrix A^*A , *I* is the unit matrix or operator, and P_C and P_Q denote the orthogonal projections onto *C* and *Q*, respectively. Motivated by Byrne's CQ algorithm, Xu [6] suggested a single step regularized method

$$x_{n+1} = P_C((1 - \alpha_n \gamma_n) x_n - \gamma_n A^* (I - P_O) A x_n), \quad n \in \mathbb{N}.$$
(1.2)

Very recently, Dang and Gao [5] introduced the following damped projection algorithm

$$x_{n+1} = (1-\beta_n)x_n + \beta_n P_C \big((1-\alpha_n) \big(x_n - \tau A^* (I-P_Q) A x_n \big) \big), \quad n \in \mathbb{N}.$$

If every closed convex subset of a Hilbert space is the fixed point set of its associating projection, then the split feasibility problem becomes a special case of the split common fixed point problem of finding a point x^* with the property

$$x^* \in \operatorname{Fix}(U)$$
 and $Ax^* \in \operatorname{Fix}(T)$.

© 2013 Li et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This problem was first introduced by Censor and Segal [10], who invented an algorithm, which generates a sequence $\{x_n\}$ according to the iterative procedure

$$x_{n+1} = U(x_n - \gamma A^*(I - T)Ax_n), \quad n \in \mathbb{N}.$$

Recently, Cui, Su and Wang [11] extended the damped projection algorithm to the split common fixed point problems. For some related work, please refer to [12] and [13, 14].

Motivated by these results, the purpose of this paper is to study the following split feasibility problem and fixed point problem

Find
$$x^* \in C \cap \operatorname{Fix}(T)$$
 such that $Ax^* \in Q \cap \operatorname{Fix}(S)$, (1.3)

where $S: Q \rightarrow Q$ and $T: C \rightarrow C$ are two nonexpansive mappings. We suggest a damped algorithm for solving (1.3). Convergence theorem is proven.

2 Preliminaries

Let *H* be a real Hilbert space with the inner product $\langle \cdot, \cdot \rangle$ and the norm $\|\cdot\|$, respectively. Let *C* be a nonempty closed convex subset of *H*.

Definition 2.1 A mapping $T : C \to C$ is called *nonexpansive* if

 $\|Tx - Ty\| \le \|x - y\|$

for all $x, y \in C$.

We will use Fix(T) to denote the set of fixed points of *T*, that is, $Fix(T) = \{x \in C : x = Tx\}$.

Definition 2.2 We call $P_C : H \to C$ the metric projection if for each $x \in H$

$$||x - P_C(x)|| = \inf\{||x - y|| : y \in C\}.$$

It is well known that the metric projection $P_C: H \to C$ is characterized by

$$\langle x - P_C(x), y - P_C(x) \rangle \leq 0$$

for all $x \in H$, $y \in C$. From this, we can deduce that P_C is firmly-nonexpansive, that is,

$$||P_C(x) - P_C(y)||^2 \le \langle x - y, P_C(x) - P_C(y) \rangle$$
 (2.1)

for all $x, y \in H$. Hence P_C is also nonexpansive.

It is well known that in a real Hilbert space *H*, the following two equalities hold

$$\left\| tx + (1-t)y \right\|^2 = t \|x\|^2 + (1-t)\|y\|^2 - t(1-t)\|x - y\|^2$$
(2.2)

for all $x, y \in H$ and $t \in [0, 1]$, and

$$\|x + y\|^{2} = \|x\|^{2} + 2\langle x, y \rangle + \|y\|^{2}$$
(2.3)

for all $x, y \in H$. It follows that

$$\|x+y\|^{2} \le \|x\|^{2} + 2\langle y, x+y\rangle$$
(2.4)

for all $x, y \in H$.

Lemma 2.3 [15] Let C be a closed convex subset of a real Hilbert space H, and let $S : C \to C$ be a nonexpansive mapping. Then, the mapping I - S is demiclosed. That is, if $\{x_n\}$ is a sequence in C such that $x_n \to x^*$ weakly and $(I - S)x_n \to y$ strongly, then $(I - S)x^* = y$.

Lemma 2.4 [16] Assume that $\{a_n\}$ is a sequence of nonnegative real numbers such that

 $a_{n+1} \leq (1-\gamma_n)a_n + \delta_n, \quad n \in \mathbb{N},$

where $\{\gamma_n\}$ is a sequence in (0,1), and $\{\delta_n\}$ is a sequence such that

(1) $\sum_{n=1}^{\infty} \gamma_n = \infty;$ (2) $\limsup_{n \to \infty} \frac{\delta_n}{\gamma_n} \le 0 \text{ or } \sum_{n=1}^{\infty} |\delta_n| < \infty.$ Then $\lim_{n \to \infty} a_n = 0.$

3 Main results

Let *C* and *Q* be two nonempty closed convex subsets of real Hilbert spaces H_1 and H_2 , respectively. Let $A : H_1 \to H_2$ be a bounded linear operator with its adjoint A^* . Let *S* : $Q \to Q$ and $T : C \to C$ be two nonexpansive mappings. We use Γ to denote the set of solutions of (1.3), that is, $\Gamma = \{x^* | x^* \in C \cap Fix(T), Ax^* \in Q \cap Fix(S)\}$. Now, we present our algorithm.

Algorithm 3.1 For $x_0 \in H_1$ arbitrarily, let $\{x_n\}$ be a sequence defined by

$$x_{n+1} = TP_C((1 - \alpha_n)(x_n - \delta A^*(I - SP_Q)Ax_n)) \quad \text{for all } n \in \mathbb{N},$$
(3.1)

where $\{\alpha_n\}_{n\in\mathbb{N}}$ and $\{\beta_n\}_{n\in\mathbb{N}}$ are two real number sequences in (0,1) and $\delta \in (0, \frac{1}{\|A\|^2})$.

Theorem 3.2 Suppose $\Gamma \neq \emptyset$. Assume the sequence $\{\alpha_n\}_{n \in \mathbb{N}}$ satisfies three conditions

- (C1) $\lim_{n\to\infty} \alpha_n = 0;$
- (C2) $\sum_{n=1}^{\infty} \alpha_n = \infty;$
- (C3) $\lim_{n\to\infty} \frac{\alpha_{n+1}}{\alpha_n} = 1.$

Then the sequence $\{x_n\}$ *, generated by algorithm* (3.1)*, converges strongly to* $x^* = P_{\Gamma}(0)$ *.*

Proof For the convenience, we write $z_n = P_Q A x_n$, $y_n = (1 - \alpha_n)(x_n - \delta A^*(I - SP_Q)A x_n)$ and $u_n = P_C((1 - \alpha_n)(x_n - \delta A^*(I - SP_Q)A x_n))$ for all $n \in \mathbb{N}$. Thus $u_n = P_C y_n$ for all $n \in \mathbb{N}$.

Let $x^* = P_{\Gamma}(0)$. Hence, $x^* \in C \cap \text{Fix}(T)$ and $Ax^* \in Q \cap \text{Fix}(S)$. By the firmlynonexpansivity of P_C and P_O , we can deduce the following conclusions

$$||z_n - Ax^*|| = ||P_Q Ax_n - P_Q Ax^*|| \le ||Ax_n - Ax^*||,$$
(3.2)

$$\|u_n - x^*\| = \|P_C y_n - P_C x^*\| \le \|y_n - x^*\|,$$
(3.3)

$$\left\|Sz_{n}-Ax^{*}\right\|^{2} \leq \left\|z_{n}-Ax^{*}\right\|^{2} \leq \left\|Ax_{n}-Ax^{*}\right\|^{2} - \left\|z_{n}-Ax_{n}\right\|^{2},$$
(3.4)

$$\|u_{n+1} - u_n\| = \|P_C y_{n+1} - P_C y_n\| \le \|y_{n+1} - y_n\|$$
(3.5)

$$||z_{n+1} - z_n|| = ||P_Q A x_{n+1} - P_Q A x_n|| \le ||A x_{n+1} - A x_n||.$$
(3.6)

From (3.1) and (3.3), we have

$$\|x_{n+1} - x^*\| = \|Tu_n - x^*\| \le \|u_n - x^*\| \le \|y_n - x^*\|.$$
(3.7)

Using (2.3), we get

$$\|y_{n} - x^{*}\|^{2} = \|(1 - \alpha_{n})(x_{n} - x^{*} + \delta A^{*}(Sz_{n} - Ax_{n})) - \alpha_{n}x^{*}\|^{2}$$

$$\leq (1 - \alpha_{n})\|(x_{n} - x^{*} + \delta A^{*}(Sz_{n} - Ax_{n})\|^{2} + \alpha_{n}\|x^{*}\|^{2}$$

$$= (1 - \alpha_{n})[\|x_{n} - x^{*}\| + \delta^{2}\|A^{*}(Sz_{n} - Ax_{n})\|^{2} + 2\delta\langle x_{n} - x^{*}, A^{*}(Sz_{n} - Ax_{n})\rangle] + \alpha_{n}\|x^{*}\|^{2}.$$
(3.8)

Since A is a linear operator with its adjoint A^* , we have

$$\langle x_n - x^*, A^*(Sz_n - Ax_n) \rangle$$

$$= \langle A(x_n - x^*), Sz_n - Ax_n \rangle$$

$$= \langle Ax_n - Ax^* + Sz_n - Ax_n - (Sz_n - Ax_n), Sz_n - Ax_n \rangle$$

$$= \langle Sz_n - Ax^*, Sz_n - Ax_n \rangle - ||Sz_n - Ax_n||^2.$$

$$(3.9)$$

Again using (2.3), we obtain

$$\langle Sz_n - Ax^*, Sz_n - Ax_n \rangle = \frac{1}{2} \left(\left\| Sz_n - Ax^* \right\|^2 + \left\| Sz_n - Ax_n \right\|^2 - \left\| Ax_n - Ax^* \right\|^2 \right).$$
(3.10)

By (3.4), (3.9) and (3.10), we get

$$\langle x_n - x^*, A^*(Sz_n - Ax_n) \rangle = \frac{1}{2} \left(\| Sz_n - Ax^* \|^2 + \| Sz_n - Ax_n \|^2 - \| Ax_n - Ax^* \|^2 \right) - \| Sz_n - Ax_n \|^2 \leq \frac{1}{2} \left(\| Ax_n - Ax^* \|^2 - \| z_n - Ax_n \|^2 + \| Sz_n - Ax_n \|^2 - \| Ax_n - Ax^* \|^2 \right) - \| Sz_n - Ax_n \|^2 = -\frac{1}{2} \| z_n - Ax_n \|^2 - \frac{1}{2} \| Sz_n - Ax_n \|^2.$$
 (3.11)

Substituting (3.11) into (3.8), we deduce

$$\begin{split} \left\| y_n - x^* \right\|^2 &\leq (1 - \alpha_n) \bigg[\left\| x_n - x^* \right\|^2 + \delta^2 \|A\|^2 \|Sz_n - Ax_n\|^2 \\ &+ 2\delta \bigg(-\frac{1}{2} \|z_n - Ax_n\|^2 - \frac{1}{2} \|Sz_n - Ax_n\|^2 \bigg) \bigg] + \alpha_n \|x^*\|^2 \\ &= (1 - \alpha_n) \big[\left\| x_n - x^* \right\|^2 + \big(\delta^2 \|A\|^2 - \delta \big) \|Sz_n - Ax_n\|^2 \end{split}$$

$$-\delta \|z_n - Ax_n\|^2 + \alpha_n \|x^*\|^2$$

$$\leq (1 - \alpha_n) \|x_n - x^*\|^2 + \alpha_n \|x^*\|^2.$$
 (3.12)

It follows from (3.7) that

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \|y_n - x^*\|^2 \\ &\leq (1 - \alpha_n) \|x_n - x^*\|^2 + \alpha_n \|x^*\|^2 \\ &\leq \max\{\|x_n - x^*\|^2, \|x^*\|^2\}. \end{aligned}$$

The boundedness of the sequence $\{x_n\}$ yields.

Next, we estimate $||x_{n+1} - x_n||$. Set $v_n = x_n - \delta A^*(I - SP_Q)Ax_n$. According to (2.3) and (3.5), we have

$$\begin{aligned} \|v_{n+1} - v_n\|^2 &= \|x_{n+1} - x_n + \delta [A^*(SP_Q - I)Ax_{n+1} - A^*(SP_Q - I)Ax_n] \|^2 \\ &= \|x_{n+1} - x_n\|^2 + \delta^2 \|A^* [(SP_Q - I)Ax_{n+1} - (SP_Q - I)Ax_n] \|^2 \\ &+ 2\delta \langle x_{n+1} - x_n, A^* [(SP_Q - I)Ax_{n+1} - (SP_Q - I)Ax_n] \rangle \\ &\leq \|x_{n+1} - x_n\|^2 + \delta^2 \|A\|^2 \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ 2\delta \langle Ax_{n+1} - Ax_n, Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \rangle \\ &= \|x_{n+1} - x_n\|^2 + \delta^2 \|A\|^2 \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ 2\delta \langle Sz_{n+1} - Sz_n, Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ 2\delta \langle Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &= \|x_{n+1} - x_n\|^2 + \delta^2 \|A\|^2 \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ \delta (\|Sz_{n+1} - Sz_n\|^2 + \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &- \|Ax_{n+1} - Ax_n\|^2) - 2\delta \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &= \|x_{n+1} - x_n\|^2 + (\delta^2 \|A\|^2 - \delta) \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ \delta (\|Sz_{n+1} - Sz_n\|^2 - \|Ax_{n+1} - Ax_n\|^2) \\ &\leq \|x_{n+1} - x_n\|^2 + (\delta^2 \|A\|^2 - \delta) \|Sz_{n+1} - Sz_n - (Ax_{n+1} - Ax_n) \|^2 \\ &+ \delta (\|Sz_{n+1} - Sz_n\|^2 - \|Ax_{n+1} - Ax_n\|^2) . \end{aligned}$$

$$(3.13)$$

Since $\delta \in (0, \frac{1}{\|A\|^2})$, we derive by virtue of (3.6) and (3.13) that

$$\|\nu_{n+1} - \nu_n\| \le \|x_{n+1} - x_n\|. \tag{3.14}$$

From (3.5) and (3.14), we have

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq \|y_{n+1} - y_n\| \\ &= \|(1 - \alpha_{n+1})v_{n+1} - (1 - \alpha_n)v_n\| \\ &= \|(1 - \alpha_{n+1})(v_{n+1} - v_n) + (\alpha_n - \alpha_{n+1})v_n\| \end{aligned}$$

It follows that

$$||x_{n+1}-x_n|| \leq \frac{|\alpha_{n+1}-\alpha_n|}{\alpha_{n+1}}||\nu_n||.$$

This, together with condition (C3), implies that

$$\lim_{n \to \infty} \|x_{n+1} - x_n\| = 0. \tag{3.15}$$

That is,

$$\lim_{n \to \infty} \|x_n - Tu_n\| = 0. \tag{3.16}$$

Using the firmly-nonexpansiveness of P_C , we have

$$\|u_n - x^*\|^2 = \|P_C y_n - x^*\|^2$$

$$\leq \|y_n - x^*\|^2 - \|P_C y_n - y_n\|^2$$

$$= \|y_n - x^*\|^2 - \|u_n - y_n\|^2.$$
(3.17)

Thus,

$$\begin{aligned} \|x_{n+1} - x^*\|^2 &\leq \|u_n - x^*\|^2 \\ &\leq \|y_n - x^*\|^2 - \|u_n - y_n\|^2 \\ &\leq (1 - \alpha_n) \|x_n - x^*\|^2 + \alpha_n \|x^*\|^2 - \|u_n - y_n\|^2. \end{aligned}$$
(3.18)

It follows that

$$\|u_n - y_n\|^2 \le \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2 + \alpha_n \|x^*\|^2$$

$$\le (\|x_n - x^*\| + \|x_{n+1} - x^*\|) \|x_{n+1} - x_n\| + \alpha_n \|x^*\|^2.$$

This, together with (3.15) and (C1), implies that

$$\lim_{n \to \infty} \|u_n - y_n\| = 0.$$
(3.19)

Returning to (3.18) and using (3.12), we have

$$\|x_{n+1} - x^*\|^2 \le \|y_n - x^*\|^2$$

$$\le (1 - \alpha_n) \|x_n - x^*\|^2 + (1 - \alpha_n) (\delta^2 \|A\|^2 - \delta) \|Sz_n - Ax_n\|^2$$

$$- (1 - \alpha_n) \delta \|z_n - Ax_n\|^2 + \alpha_n \|x^*\|^2.$$

Hence,

$$(1 - \alpha_n) \left(\delta - \delta^2 \|A\|^2 \right) \|Sz_n - Ax_n\|^2 + (1 - \alpha_n) \delta \|z_n - Ax_n\|^2$$

$$\leq \|x_n - x^*\|^2 - \|x_{n+1} - x^*\|^2 + \alpha_n \|x^*\|^2$$

$$\leq \left(\|x_n - x^*\| + \|x_{n+1} - x^*\| \right) \|x_{n+1} - x_n\| + \alpha_n \|x^*\|^2,$$

which implies that

$$\lim_{n \to \infty} \|Sz_n - Ax_n\| = \lim_{n \to \infty} \|z_n - Ax_n\| = 0.$$
(3.20)

So,

$$\lim_{n \to \infty} \|Sz_n - z_n\| = 0.$$
(3.21)

Note that

$$\|y_n - x_n\| = \|\delta A^* (SP_Q - I)Ax_n + \alpha_n \nu_n\|$$

$$\leq \delta \|A\| \|Sz_n - Ax_n\| + \alpha_n \|\nu_n\|.$$

It follows from (3.20) that

$$\lim_{n \to \infty} \|x_n - y_n\| = 0.$$
(3.22)

From (3.16), (3.19) and (3.22), we get

$$\lim_{n \to \infty} \|x_n - Tx_n\| = 0.$$
(3.23)

Now, we show that

$$\limsup_{n\to\infty}\langle x^*, y_n-x^*\rangle\geq 0.$$

Choose a subsequence $\{y_{n_i}\}$ of $\{y_n\}$ such that

$$\limsup_{n \to \infty} \langle x^*, y_n - x^* \rangle = \lim_{i \to \infty} \langle x^*, y_{n_i} - x^* \rangle.$$
(3.24)

Since the sequence $\{y_{n_i}\}$ is bounded, we can choose a subsequence $\{y_{n_i}\}$ of $\{y_{n_i}\}$ such that $y_{n_{i_j}} \rightarrow z$. For the sake of convenience, we assume (without loss of generality) that $y_{n_i} \rightarrow z$. Consequently, we derive from the above conclusions that

$$x_{n_i} \rightharpoonup z, \qquad u_{n_i} \rightharpoonup z, \qquad A x_{n_i} \rightharpoonup A z \quad \text{and} \quad z_{n_i} \rightharpoonup A z.$$
 (3.25)

By the demiclosed principle of the nonexpansive mappings *S* and *T* (see Lemma 2.3), we deduce that $z \in Fix(T)$ and $Az \in Fix(S)$ (according to (3.23) and (3.21), respectively). Note that $u_{n_i} = P_C y_{n_i} \in C$ and $z_{n_i} = P_Q A x_{n_i} \in Q$. From (3.25), we deduce $z \in C$ and $Az \in Q$.

To this end, we deduce that $z \in C \cap Fix(T)$ and $Az \in Q \cap Fix(S)$. That is to say, $z \in \Gamma$. Therefore,

$$\limsup_{n \to \infty} \langle x^*, y_n - x^* \rangle = \lim_{i \to \infty} \langle x^*, y_{n_i} - x^* \rangle$$
$$= \lim_{i \to \infty} \langle x^*, z - x^* \rangle$$
$$\ge 0. \tag{3.26}$$

Finally, we prove that $x_n \rightarrow x^*$. From (3.1), we have

$$\|x_{n+1} - x^*\|^2 \le \|y_n - x^*\|^2$$

= $\|(1 - \alpha_n)(v_n - x^*) - \alpha_n x^*\|^2$
 $\le (1 - \alpha_n) \|v_n - x^*\|^2 - 2\alpha_n \langle x^*, y_n - x^* \rangle$
 $\le (1 - \alpha_n) \|x_n - x^*\|^2 - 2\alpha_n \langle x^*, y_n - x^* \rangle.$ (3.27)

Applying Lemma 2.4 and (3.26) to (3.27), we deduce that $x_n \to x^*$. The proof is completed.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors read and approved the final manuscript.

Author details

¹School of Management, Beifang University of Nationalities, Yinchuan, 750021, China. ²Department of Information Management, Cheng Shiu University, Kaohsiung, 833, Taiwan. ³Department of Mathematics, Tianjin Polytechnic University, Tianjin, 300387, China.

Acknowledgements

Cun-lin Li was supported in part by NSFC 71161001-G0105. Yeong-Cheng Liou was supported in part by NSC 101-2628-E-230-001-MY3 and NSC 101-2622-E-230-005-CC3. Yonghong Yao was supported in part by NSFC 11071279, NSFC 71161001-G0105 and LQ13A010007.

Received: 27 May 2013 Accepted: 29 July 2013 Published: 14 August 2013

References

- 1. Byrne, C: Iterative oblique projection onto convex subsets and the split feasibility problem. Inverse Probl. 18, 441-453 (2002)
- 2. Censor, Y, Elfving, T: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8, 221-239 (1994)
- 3. Ceng, LC, Ansari, QH, Yao, JC: An extragradient method for split feasibility and fixed point problems. Comput. Math. Appl. 64, 633-642 (2012)
- 4. Wang, F, Xu, HK: Approximating curve and strong convergence of the CQ algorithm for the split feasibility problem. J. Inequal. Appl. **2010**, Article ID 102085 (2010)
- 5. Dang, Y, Gao, Y: The strong convergence of a KM-CQ-like algorithm for a split feasibility problem. Inverse Probl. 27, 015007 (2011)
- Xu, HK: Iterative methods for the split feasibility problem in infinite-dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)
- 7. Yao, Y, Wu, J, Liou, YC: Regularized methods for the split feasibility problem. Abstr. Appl. Anal. 2012, Article ID 140679 (2012)
- 8. Yao, Y, Kim, TH, Chebbi, S, Xu, HK: A modified extragradient method for the split feasibility and fixed point problems. J. Nonlinear Convex Anal. 13, 383-396 (2012)
- 9. Yao, Y, Postolache, M, Liou, YC: Strong convergence of a self-adaptive method for the split feasibility problem. Fixed Point Theory Appl. **2013**, 201 (2013)
- 10. Censor, Y, Segal, A: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587-600 (2009)
- 11. Cui, H, Su, M, Wang, F: Damped projection method for split common fixed point problems. J. Inequal. Appl. 2013, 123 (2013). doi:10.1186/1029-242X-2013-123

- 12. Moudafi, A: A note on the split common fixed-point problem for quasi-nonexpansive operators. Nonlinear Anal. 74, 4083-4087 (2011)
- 13. He, ZH: The split equilibrium problems and its convergence algorithms. J. Inequal. Appl. 2012, 162 (2012)
- He, ZH, Du, WS: On hybrid split problem and its nonlinear algorithms. Fixed Point Theory Appl. 2013, 47 (2013)
 Geobel, K, Kirk, WA: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics, vol. 28.
- Cambridge University Press, Cambridge (1990)
- 16. Xu, HK: Iterative algorithms for nonlinear operators. J. Lond. Math. Soc. 66, 240-256 (2002)

doi:10.1186/1029-242X-2013-379

Cite this article as: Li et al.: A damped algorithm for the split feasibility and fixed point problems. *Journal of Inequalities and Applications* 2013 **2013**:379.

Submit your manuscript to a SpringerOpen[®] journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- ► Open access: articles freely available online
- ► High visibility within the field
- ► Retaining the copyright to your article

Submit your next manuscript at > springeropen.com