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Abstract
In this paper, a hybrid projection algorithm for a total quasi-asymptotically
pseudo-contractive mapping is introduced in a Hilbert space. A strong convergence
theorem of the proposed algorithm to a fixed point of a total quasi-asymptotically
pseudo-contractive mapping is proved. Our main result extends and improves many
corresponding results.
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1 Introduction
Throughout this paper, we always assume thatH is a real Hilbert space, whose inner prod-
uct and norm are denoted by 〈·, ·〉 and ‖ · ‖. The symbol → is denoted by a strong con-
vergence. Let C be a nonempty closed and convex subset of H , and let T : C → C be a
mapping. In this paper, we denote the fixed point set of T by F (T), that is, F (T) := {x ∈
C : Tx = x}.
Recall that T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂

[,∞) with kn →  as n→ ∞ such that

∥∥Tnx – Tny
∥∥ ≤ kn‖x – y‖, ∀n≥ ,∀x, y ∈ C. (.)

The class of asymptotically nonexpansive mappings was introduced by Goebel and Kirk
[] as a generalization of the class of nonexpansive mappings.
T is said to be asymptotically nonexpansive in the intermediate sense if it is continuous

and the following inequality holds:

lim sup
n→∞

sup
x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖) ≤ . (.)

Noticing that if we define

ρn =max
{
, sup

x,y∈C

(∥∥Tnx – Tny
∥∥ – ‖x – y‖)

}
, (.)
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then ρn →  as n → ∞. It follows that (.) is reduced to

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + ρn, ∀n≥ ,∀x, y ∈ C. (.)

The class of mappings, which are asymptotically nonexpansive in the intermediate sense,
was introduced by Bruck et al. [] (see also []). It is worth mentioning that the class of
mappingswhich are asymptotically nonexpansive in the intermediate sense contains prop-
erly the class of asymptotically nonexpansive mappings.
Recall that T is said to be asymptotically pseudocontractive if there exists a sequence

{kn} ⊂ [,∞) with kn →  as n→ ∞ such that

〈
Tnx – Tny,x – y

〉 ≤ kn‖x – y‖, ∀x, y ∈ C. (.)

It is not hard to see that (.) is equivalent to

∥∥Tnx – Tny
∥∥ ≤ (kn – )‖x – y‖ + ∥∥x – y –

(
Tnx – Tny

)∥∥, ∀n≥ ,x, y ∈ C. (.)

The class of an asymptotically pseudocontractive mapping was introduced by Schu []
(see also []). In [], Rhoades gave an example to show that the class of asymptotically
pseudocontractive mappings contains properly the class of asymptotically nonexpansive
mappings, see [] for more details. Zhou [] showed that every uniformly Lipschitz and
asymptotically pseudocontractive mapping, which is also uniformly asymptotically regu-
lar, has a fixed point.
T is said to be an asymptotically pseudocontractive mapping in the intermediate sense if

there exists a sequence {kn} ⊂ [,∞) with kn →  as n→ ∞ such that

lim sup
n→∞

sup
x,y∈C

(〈
Tnx – Tny,x – y

〉
– kn‖x – y‖) ≤ . (.)

Put

τn =max
{
, sup

x,y∈C

(〈
Tnx – Tny,x – y

〉
– kn‖x – y‖)

}
. (.)

It follows that τn →  as n→ ∞. Then, (.) is reduced to the following:

〈
Tnx – Tny,x – y

〉 ≤ kn‖x – y‖ + τn, ∀n≥ ,x, y ∈ C. (.)

The class of asymptotically pseudocontractive mappings in the intermediate sense was
introduced by Qin et al. [].
Recall that T is said to be total asymptotically pseudocontractive if there exist sequences

{kn}, {νn} ⊂ [,∞) with kn,νn →  as n→ ∞ such that

〈
Tnx – Tny,x – y

〉 ≤ ‖x – y‖ + knφ
(‖x – y‖) + νn, ∀n≥ ,x, y ∈ C, (.)

where φ : [,∞) → [,∞) is a continuous and strictly increasing function with φ() = .
The class of a total asymptotically pseudocontractive mapping was introduced by Qin [].
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It is easy to see that (.) is equivalent to the following: for all n≥ , x, y ∈ C,

∥∥Tnx – Tny
∥∥ ≤ ‖x – y‖ + knφ

(‖x – y‖) + ∥∥x – y –
(
Tnx – Tny

)∥∥ + νn. (.)

If φ(λ) = λ, then (.) is reduced to

〈
Tnx – Tny,x – y

〉 ≤ ( + kn)‖x – y‖ + νn, ∀n≥ ,x, y ∈ C. (.)

Put

νn =max
{
, sup

x,y∈C

(〈
Tnx – Tny,x – y

〉
– ( + kn)‖x – y‖)

}
. (.)

If φ(λ) = λ, then the class of total asymptotically pseudocontractive mappings is reduced
to the class of asymptotically pseudocontractive mappings in the intermediate sense.
In this paper, we introduce and study the following mapping.

Definition . A mapping T : C → C is said to be total quasi-asymptotically pseudo-
contractive if F (T) �= ∅, and there exist sequences {μn} ⊂ [,∞) and {ξn} ⊂ [,∞) with
μn →  and ξn →  as n→ ∞ such that

〈
Tnx – p,x – p

〉 ≤ ‖x – p‖ +μnφ
(‖x – p‖) + ξn, ∀n≥ ,x ∈ C,p ∈F (T), (.)

where φ : [,∞)→ [,∞) is a continuous and strictly increasing function with φ() = .

It is easy to see that (.) is equivalent to the following:

∥∥Tnx – p
∥∥ ≤ ‖x – p‖ + μnφ

(‖x – p‖)

+
∥∥x – Tnx

∥∥ + ξn, ∀n≥ ,x ∈ C,p ∈F (T). (.)

Remark  It is clear that every total asymptotically pseudo-contractive mapping with
F(T) �= ∅ is total quasi-asymptotically pseudo-contractive, but the converse maybe not
true.

Remark  If φ(λ) = λ, the (.) is reduced to

〈
Tnx – p,x – p

〉 ≤ ( +μn)‖x – p‖ + ξn, ∀n≥ ,x ∈ C,p ∈F (T). (.)

Remark  Put

ξn =max
{
, sup

x,y∈C

(〈
Tnx – p,x – p

〉
– ( +μn)‖x – p‖)

}
. (.)

If φ(λ) = λ, then the class of total quasi-asymptotically pseudo-contractive mappings is
reduced to the class of quasi-asymptotically pseudo-contractive mappings in the interme-
diate sense.
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Recently, the iterative approximation of fixed points for asymptotically pseudo-contrac-
tive mappings, total asymptotically pseudo-contractive mappings in Hilbert, or Banach
spaces has been studied extensively by many authors, see, for example, [, –]. In this
paper, we shall consider and study a total quasi-asymptotically pseudo-contractive map-
ping as a generalization of (total) asymptotically pseudo-contractive mappings. Further-
more, we shall introduce an iterative algorithm for finding a fixed point of a total quasi-
asymptotically pseudo-contractive mapping.

2 Preliminaries
A mapping T : C → C is said to be uniformly L-Lipschitzian if there exists some L > 
such that

∥∥Tnx – Tny
∥∥ ≤ L‖x – y‖, ∀x, y ∈ C,n ≥ . (.)

Let C be a nonempty closed convex subset of a real Hilbert spaceH . For every point x ∈
H , there exists a unique nearest point in C, denoted by PCx, such that ‖x–PCx‖ ≤ ‖x– y‖
holds for all y ∈ C, where PC is said to be the metric projection of H onto C.
In order to prove our main results, we also need the following lemmas.

Lemma . [] Let C be a nonempty closed convex subset of a real Hilbert space H and
let PC be the metric projection from H onto C (i.e., for x ∈H , PC is the only point in C such
that ‖x–PCx‖ = inf{‖x– z‖ : z ∈ C}).Given x ∈H and z ∈ C, then z = PCx if and only if the
relation

〈x – z, y – z〉 ≤ , ∀y ∈ C (.)

holds.

Lemma . Let C be a nonempty bounded and closed convex subset of a real Hilbert
space H . Let T : C → C be a uniformly L-Lipschitzian and total quasi-asymptotically
pseudo-contractive mapping with F (T) �= ∅. Suppose there exist positive constants M and
M∗ such that φ(ζ ) ≤ M∗ζ  for all ζ >M. Then F (T) is a closed convex subset of C.

Proof Since φ is an increasing function, it follows that φ(ζ ) ≤ φ(M) if ζ ≤ M and φ(ζ ) ≤
M∗ζ  if ζ ≥ M. In either case, we can always obtain that

φ(ζ ) ≤ φ(M) +M∗ζ . (.)

Since T is uniformly L-Lipschitzian continuous, F (T) is closed. We need to show that
F (T) is convex. To this end, let pi ∈F (T) (i = , ), and write p = tp + (– t)p for t ∈ (, ).
We take α ∈ (, 

+L ), and define yα,n = (–α)p+αTnp for each n ∈N. Then, for all z ∈F (T),
we have from (.) that

∥∥p – Tnp
∥∥ =

〈
p – Tnp,p – Tnp

〉

=

α

〈
p – yα,n,p – Tnp

〉

=

α

〈
p – yα,n,p – Tnp –

(
yα,n – Tnyα,n

)〉
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+

α

〈
p – yα,n, yα,n – Tnyα,n

〉

≤  + L
α

‖p – yα,n‖ + 
α

〈
p – z, yα,n – Tnyα,n

〉

+

α

〈
z – yα,n, yα,n – Tnyα,n

〉

=
 + L

α
‖p – yα,n‖ + 

α

〈
p – z, yα,n – Tnyα,n

〉

+

α

〈
z – yα,n, yα,n – z + z – Tnyα,n

〉

≤  + L
α

‖p – yα,n‖ + 
α

〈
p – z, yα,n – Tnyα,n

〉

+

α

{
μn

[
φ(M) +M∗(diamC)

]
+ ξn

}

= α( + L)
∥∥p – Tnp

∥∥ +

α

〈
p – z, yα,n – Tnyα,n

〉

+

α

{
μn

[
φ(M) +M∗(diamC)

]
+ ξn

}
.

This implies that

α
[
 – α( + L)

]∥∥p – Tnp
∥∥ ≤ 〈

p – z, yα,n – Tnyα,n
〉

+μn
[
φ(M) +M∗(diamC)

]
+ ξn. (.)

Now, we take z = pi (i = , ) in (.), multiplying t and (– t) on the both sides of the above
inequality (.), respectively, and adding up, and we can get

α
[
 – α( + L)

]∥∥p – Tnp
∥∥ ≤ μn

[
φ(M) +M∗(diamC)

]
+ ξn. (.)

Letting n → ∞ in (.), we obtain Tnp → p. Since T is continuous, we have Tn+p → Tp
as n→ ∞, therefore, p = Tp. This proves that F (T) is a closed convex subset of C. �

3 Main results
In this section, we shall give our main results of this paper.

Theorem . Let C be a nonempty bounded and closed convex subset of a real Hilbert
space H . Let T : C → C be a uniformly L-Lipschitzian and total quasi-asymptotically
pseudo-contractive mapping with F (T) �= ∅. Suppose that there exist positive constants M
and M∗ such that φ(ζ ) ≤ M∗ζ  for all ζ >M. Let {xn} be a sequence generated by the fol-
lowing iterative scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C, Q = C,

yn = ( – αn)xn + αnTnxn,

Cn+ = {z ∈ Cn : αn[ – αn( + L)]‖xn – Tnxn‖ ≤ 〈xn – z, yn – Tnyn〉 + θn},
Qn+ = {z ∈Qn : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn+∩Qn+x, ∀n≥ ,

(.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/375
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where θn = μn[φ(M) +M∗(diamC)] + ξn, {αn} is a sequence in [a,b] with a,b ∈ (, 
+L ).

Then the sequence {xn} converges strongly to a point PF (T)x, where PF (T) is the projection
from C onto F (T).

Proof We split the proof into seven steps.
Step . Show that PF (T)x is well defined for every x ∈ C.
By Lemma ., we know thatF (T) is a closed and convex subset ofC. Therefore, in view

of the assumption of F (T) �= ∅, PF (T)x is well defined for every x ∈ C.
Step . Show that Cn and Qn are closed and convex for all n ≥ .
From the definitions of Cn and Qn, it is obvious that Cn and Qn are closed and convex

for all n ≥ . We omit the details.
Step . Show that F (T) ⊂ Cn ∩Qn for all n≥ .
To this end, we first prove that F (T) ⊂ Cn for all n≥ . This can be proved by induction

on n. It is obvious that F (T) ⊂ C = C. Assume that F (T) ⊂ Cn for some n ∈ N. Then,
using the uniform L-Lipschitzian continuity of T , the total quasi-asymptotic pseudo-
contractiveness of T and (.), we have for any w ∈F (T) that

∥∥xn – Tnxn
∥∥ =

〈
xn – Tnxn,xn – Tnxn

〉

=

αn

〈
xn – yn,xn – Tnxn

〉

=

αn

〈
xn – yn,xn – Tnxn –

(
yn – Tnyn

)〉
+


αn

〈
xn – yn, yn – Tnyn

〉

=

αn

〈
xn – yn,xn – Tnxn –

(
yn – Tnyn

)〉

+

αn

〈
xn –w +w – yn, yn – Tnyn

〉

≤  + L
αn

‖xn – yn‖ + 
αn

〈
xn –w, yn – Tnyn

〉

+

αn

〈
w – yn, yn – Tnyn

〉

=
 + L
αn

‖xn – yn‖ + 
αn

〈
xn –w, yn – Tnyn

〉

+

αn

〈
w – yn, yn –w +w – Tnyn

〉

=
 + L
αn

‖xn – yn‖ + 
αn

〈
xn –w, yn – Tnyn

〉

–

αn

‖w – yn‖ + 
αn

〈
w – yn,w – Tnyn

〉

≤  + L
αn

‖xn – yn‖ + 
αn

〈
xn –w, yn – Tnyn

〉

+

αn

{
μn

[
φ(M) +M∗(diamC)

]
+ ξn

}

= ( + L)αn
∥∥xn – Tnxn

∥∥ +

αn

〈
xn –w, yn – Tnyn

〉

+

αn

{
μn

[
φ(M) +M∗(diamC)

]
+ ξn

}
,
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which implies that

αn
[
 – αn( + L)

]∥∥xn – Tnxn
∥∥ ≤ 〈

xn –w, yn – Tnyn
〉
+μn

[
φ(M) +M∗(diamC)

]
+ ξn,

which shows that w ∈ Cn+. By the mathematical induction principle, F (T) ⊂ Cn for all
n≥ .
Next, we proveF (T) ⊂Qn for all n ≥ . By induction, for n = , we have F (T) ⊂ C =Q.

Assume that F (T) ⊂ Qn for some n ∈ N. Since xn is the projection of x onto Cn ∩Qn, by
Lemma ., we have

〈xn – z,x – xn〉 ≥ , ∀z ∈ Cn ∩Qn. (.)

Since F (T)⊂ Cn ∩Qn, we easily see that

〈xn –w,x – xn〉 ≥ , ∀w ∈F (T), (.)

which implies that F (T) ⊂Qn+. This proves that F (T)⊂ Cn ∩Qn for all n≥ .
Step . Show that limn→∞ ‖xn – x‖ exists.
In view of (.) and Lemma ., we have xn = PQnx and xn+ ∈Qn, which implies

‖xn – x‖ ≤ ‖xn+ – x‖, ∀n≥ .

On the other hand, since F (T)⊂Qn, we also have

‖xn – x‖ ≤ ‖w – x‖, ∀w ∈F (T),∀n≥ .

Therefore, limn→∞ ‖xn – x‖ exists and {xn} is bounded.
Step . Show that {xn} is a Cauchy sequence.
Noticing the construction of Cn, one has Cm ⊂ Cn and xm = PCmx ∈ Cn for any positive

integer m > n. From (.), we have

〈xn – xn+m,x – xn〉 ≥ .

It follows that

‖xn – xn+m‖ = ‖xn – x + x – xn+m‖

= ‖xn – x‖ + ‖x – xn+m‖ – 〈x – xn,x – xn+m〉
= ‖xn – x‖ + ‖x – xn+m‖ – 〈x – xn,x – xn + xn – xn+m〉
≤ ‖x – xn+m‖ – ‖xn – x‖ – 〈x – xn,xn – xn+m〉
≤ ‖x – xn+m‖ – ‖xn – x‖. (.)

Letting n → ∞ in (.), one has limn→∞ ‖xn – xn+m‖ = , ∀m ≥ n. Hence, {xn} is a Cauchy
sequence. Since H is a Hilbert space and C is closed and convex, one can assume that
xn → q ∈ C as n→ ∞.
Step . Show that limn→∞ ‖xn – Txn‖ = .

http://www.journalofinequalitiesandapplications.com/content/2013/1/375
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It follows from xn+ ∈ Cn and (.) that

αn
[
 – αn( + L)

]∥∥xn – Tnxn
∥∥ ≤ 〈

xn – xn+, yn – Tnyn
〉
+ θn

≤ ‖xn – xn+‖
∥∥yn – Tnyn

∥∥ + θn. (.)

Since {yn} is bounded, {Tnyn} is bounded, limn→∞ ‖xn+ – xn‖ =  and αn ∈ (a,b), we have
from (.) that

lim
n→∞

∥∥xn – Tnxn
∥∥ = .

On the other hand, we notice that

‖xn – Txn‖ ≤ ‖xn – xn+‖ +
∥∥xn+ – Tn+xn+

∥∥
+

∥∥Tn+xn+ – Tn+xn
∥∥ +

∥∥Tn+xn – Txn
∥∥

≤ ( + L)‖xn – xn+‖ +
∥∥xn+ – Tn+xn+

∥∥ + L
∥∥Tnxn – xn

∥∥.

From limn→∞ ‖xn+ – xn‖ =  and limn→∞ ‖xn – Tnxn‖ = , we have

lim
n→∞‖xn – Txn‖ = .

It follows that Txn → q as n → ∞. Since T is continuous, one has that q is a fixed point
of T ; that is, q ∈F (T).
Step . Finally, we prove q = PF (T)x.
By taking the limit in (.), we have

〈q –w,x – q〉 ≥ , ∀w ∈F (T),

which implies that q = PF (T)x by using Lemma .. This completes the proof. �

Since every total asymptotically pseudo-contractive mapping with F (T) �= ∅ is total
quasi-asymptotically pseudo-contractive, we immediately obtain the following corollary:

Corollary . Let C be a nonempty bounded and closed convex subset of a real Hilbert
space H . Let T : C → C be a uniformly L-Lipschitzian and total asymptotically pseudo-
contractive mapping with F (T) �= ∅. Suppose there exist positive constants M and M∗ such
that φ(ζ ) ≤ M∗ζ  for all ζ >M. Let {xn} be a sequence generated by the following iterative
scheme:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ∈ C chosen arbitrarily,

C = C, Q = C,

yn = ( – αn)xn + αnTnxn,

Cn+ = {z ∈ Cn : αn[ – αn( + L)]‖xn – Tnxn‖ ≤ 〈xn – z, yn – Tnyn〉 + θn},
Qn+ = {z ∈Qn : 〈xn – z,x – xn〉 ≥ },
xn+ = PCn+∩Qn+x, ∀n≥ ,

http://www.journalofinequalitiesandapplications.com/content/2013/1/375
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where θn = μn[φ(M) +M∗(diamC)] + ξn, {αn} is a sequence in [a,b] with a,b ∈ (, 
+L ).

Then the sequence {xn} converges strongly to a point PF (T)x, where PF (T) is the projection
from C onto F (T).

Remark . Since the class of the total quasi-asymptotically pseudo-contractive map-
pings includes the class of asymptotically pseudocontractivemappings, the class of asymp-
totically pseudocontractive mappings in the intermediate sense, the class of the total
asymptotically pseudo-contractive mappings, the class of quasi-asymptotically pseudo-
contractive mappings in the intermediate sense as special cases, Theorem . improves
the corresponding results in Zhou [], Qin et al. [], Chang [] and Qin et al. [].
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