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Abstract
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1 Introduction and preliminaries
Mustafa and Sims [] introduced the notion ofG-metric spaces. The structure ofG-metric
spaces is a generalization of metric spaces. Mustafa et al. [] initiated the theory of fixed
points in G-metric spaces and established the Banach contraction principle in this gen-
eralized structure. Afterwards, different authors proved several fixed point results in this
space. References [–] are some examples of these works.

Definition . [] Let X be a nonempty set, and let G : X × X × X → R+ be a function
satisfying the following properties:
(G) G(x, y, z) =  if x = y = z,
(G)  <G(x,x, y) for all x, y ∈ X with x �= y,
(G) G(x,x, y)≤ G(x, y, z) for all x, y, z ∈ X with z �= y,
(G) G(x, y, z) =G(x, z, y) =G(y, z,x) = · · · (symmetry in all three variables),
(G) G(x, y, z) ≤ G(x,a,a) +G(a, y, z) for all x, y, z,a ∈ X (rectangle inequality).
Then the function G is called a G-metric on X, and the pair (X,G) is called a G-metric

space.

Definition . [] Let (X,G) be a G-metric space, and let {xn} be a sequence of points
of X. A point x ∈ X is said to be the limit of the sequence {xn} if limn,m→∞ G(x,xn,xm) = ,
and then we say that the sequence {xn} is G-convergent to x.
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Thus, if xn → x inG-metric space (X,G) then, for any ε > , there exists a positive integer
N such that G(x,xn,xm) < ε for all n,m ≥ N .

In [], the authors have shown that the G-metric induces a Hausdorff topology, and the
convergence described in the definition above is relative to this topology. This topology
being Hausdorff, a sequence can converge at most to a point.

Definition . [] Let (X,G) be a G-metric space. A sequence {xn} is called a G-Cauchy
sequence if for any ε > , there is a positive integer N such that G(xn,xm,xl) < ε for all
n,m, l ≥ N , that is, if G(xn,xm,xl) → , as n,m, l → ∞.

Lemma . [] If (X,G) is a G-metric space, then the following are equivalent:
() {xn} is G-convergent to x,
() G(xn,xn,x)→  as n → ∞,
() G(xn,x,x)→  as n→ ∞,
() G(xm,xn,x)→  as m,n→ ∞.

Lemma . [] If (X,G) is a G-metric space, then the following are equivalent:
() the sequence {xn} is G-Cauchy,
() for every ε > , there exists a positive integer N such that G(xn,xm,xm) < ε for all

n,m ≥ N .

Lemma . [] If (X,G) is a G-metric space, then G(x, y, y) ≤ G(y,x,x) for all x, y ∈ X.

Lemma . If (X,G) is a G-metric space, then G(x,x, y) ≤ G(x,x, z) + G(z, z, y) for all
x, y, z ∈ X.

Definition . [] Let (X,G), (X ′,G′) be two G-metric spaces. Then a function f : X → X ′

is G-continuous at a point x ∈ X if and only if it is G-sequentially continuous at x, that is,
whenever {xn} is G-convergent to x, {f (xn)} is G′-convergent to f (x).

Lemma . [] Let (X,G) be a G-metric space, then the function G(x, y, z) is jointly contin-
uous in all three of its variables.

Definition . [] A G-metric space (X,G) is said to be G-complete (or a complete
G-metric space) if every G-Cauchy sequence in (X,G) is convergent in X.

Definition . [] Let (X,G) be a G-metric space. A mapping F : X × X → X is said to
be continuous if for any two G-convergent sequences {xn} and {yn} converging to x and y,
respectively, {F(xn, yn)} is G-convergent to F(x, y).

Recently, fixed point theorems under different contractive conditions in metric spaces
endowed with a partial order have been established by various authors. One can see the
works noted in the references [, –, –]. Bhaskar and Lakshmikantham [] intro-
duced the notion of coupled fixed points and proved some coupled fixed point theorems
for amapping satisfyingmixedmonotone property. The work [] was illustrated by prov-
ing the existence and uniqueness of the solution for a periodic boundary value problem.
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Lakshmikantham and Ćirić [] extended the notion of mixed monotone property due
to Bhaskar and Lakshmikantham [] by introducing the notion of mixed g-monotone
property in partially ordered metric spaces.

Definition . [] Let (X,≤) be a partially ordered set and F : X×X → X. Themapping
F is said to have the mixed monotone property if F(x, y) is monotone non-decreasing in x
and monotone non-increasing in y, that is, for any x, y ∈ X,

x,x ∈ X, x ≤ x implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, y ≤ y implies F(x, y)≥ F(x, y).

Definition . [] Let (X,≤) be a partially ordered set and F : X×X → X and g : X → X.
We say that F has the mixed g-monotone property if F is monotone g-non-decreasing in
its first argument and is monotone g-non-increasing in its second argument, that is, for
any x, y ∈ X,

x,x ∈ X, gx ≤ gx implies F(x, y) ≤ F(x, y)

and

y, y ∈ X, gy ≤ gy implies F(x, y) ≥ F(x, y).

Definition . [] An element (x, y) ∈ X ×X is called a coupled fixed point of the map-
ping F : X ×X → X if F(x, y) = x and F(y,x) = y.

Definition . [] An element (x, y) ∈ X × X is called a coupled coincidence point of
the mappings F : X ×X → X and g : X → X if F(x, y) = gx and F(y,x) = gy.

Definition . [] An element (x, y) ∈ X ×X is called a coupled common fixed point of
the mappings F : X ×X → X and g : X → X if x = gx = F(x, y) and y = gy = F(y,x).

Definition . [] The mappings F : X ×X → X and g : X → X are called commutative
if

gF(x, y) = F(gx, gy)

for all x, y ∈ X.

Let (X,≤) be a partially ordered set and G be a G-metric on X such that (X,G) is a
completeG-metric space. Choudhury andMaity [] established some coupled fixed point
theorems for the mixed monotone mapping F : X ×X → X under a contractive condition
of the form

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(x,u,w) +G(y, v, z)

]
(.)

for x, y, z,u, v,w ∈ X with x ≥ u ≥ w and y ≤ v≤ z, where k ∈ [, ).
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Different authors extended and generalized the results of Choudhury and Maity []
under different contractive conditions inG-metric spaces. One can refer to the references
[–, , ].
Presented work extends and generalizes the work of Choudhury and Maity [] for a

pair commuting mappings. We first prove the existence of coupled coincidence points
and then, prove the existence and uniqueness of coupled common fixed points for our
main results.

2 Main results
Before we prove our main results, we need the following.
Denote by� the class of all functions φ : [,∞)→ [,∞) with the following properties:

(φi) φ is continuous and non-decreasing;
(φii) φ(t) =  if t = ;
(φiii) φ(t + s) ≤ φ(t) + φ(s) for all t, s ∈ [,∞).

Denote by� the class of all functionsψ : [,∞)→ [,∞) with the following properties:

(ψi) limt→r ψ(t) >  for all r > ;
(ψii) limt→+ ψ(t) = .

Some examples of φ(t) are kt (where k > ), t
t+ ,

t
t+ and examples of ψ(t) are kt (where

k > ), ln(t+)
 .

Now, we give our results.

Theorem. Let (X,≤) be a partially ordered set, and suppose that there exists a G-metric
G on X such that (X,G) is a complete G-metric space. Let F : X ×X → X, g : X → X be two
mappings. Assume that there exist φ ∈ � and ψ ∈ � such that

φ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ 

φ
(
G(gx, gu, gw) +G(gy, gv, gz)

)

–ψ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
(.)

for all x, y,u, v,w, z ∈ X with gx ≥ gu≥ gw and gy≤ gv≤ gz.
Assume that F and g satisfy the following conditions:
() F(X ×X)⊆ g(X),
() F has the mixed g-monotone property,
() F is continuous,
() g is continuous and commutes with F .
Suppose that there exist x, y ∈ X with gx ≤ F(x, y) and gy ≥ F(y,x), then F and g

have a coupled coincidence point in X, that is, there exist x, y ∈ X such that gx = F(x, y) and
gy = F(y,x).

Proof Suppose that x, y ∈ X are such that gx ≤ F(x, y), gy ≥ F(y,x). Since F(X ×
X) ⊆ g(X), we can choose x, y ∈ X such that gx = F(x, y), gy = F(y,x). Again we can
choose x, y ∈ X such that gx = F(x, y), gy = F(y,x).
Continuing this process, we can construct sequences {xn} and {yn} in X such that

gxn+ = F(xn, yn), gyn+ = F(yn,xn) for all n≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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We shall prove for all n≥ , that

gxn ≤ gxn+, (.)

gyn ≥ gyn+. (.)

Since gx ≤ F(x, y), gy ≥ F(y,x) and gx = F(x, y), gy = F(y,x), we have gx ≤ gx,
gy ≥ gy, that is, (.) and (.) hold for n = .
Suppose that (.) and (.) hold for some n > , that is, gxn ≤ gxn+, gyn ≥ gyn+. As F

has the mixed g-monotone property, from (.), we have

gxn+ = F(xn, yn) ≤ F(xn+, yn) ≤ F(xn+, yn+) = gxn+,

and

gyn+ = F(yn,xn) ≥ F(yn+,xn) ≥ F(yn+,xn+) = gyn+.

Then by mathematical induction, it follows that (.) and (.) hold for all n ≥ .
If for some n, we have (gxn+, gyn+) = (gxn, gyn), then gxn+ = F(xn, yn) = gxn and gyn+ =

F(yn,xn) = gyn, that is, F and g have a coincidence point. So now onwards, we suppose that
(gxn+, gyn+) �= (gxn, gyn) for all n≥ ; that is, we suppose that either gxn+ = F(xn, yn) �= gxn
or gyn+ = F(yn,xn) �= gyn.
Since gxn ≥ gxn– and gyn ≤ gyn–, from (.) and (.), we have

φ
(
G(gxn+, gxn+, gxn)

)
= φ

(
G

(
F(xn, yn),F(xn, yn),F(xn–, yn–)

))

≤ 

φ
(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

)

–ψ

(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)



)
. (.)

Similarly, we have

φ
(
G(gyn+, gyn+, gyn)

)

≤ 

φ
(
G(gyn, gyn, gyn–) +G(gxn, gxn, gxn–)

)

–ψ

(
G(gyn, gyn, gyn–) +G(gxn, gxn, gxn–)



)
. (.)

Adding (.) and (.), we have

φ
(
G(gxn+, gxn+, gxn)

)
+ φ

(
G(gyn+, gyn+, gyn)

)
≤ φ

(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

)

– ψ
(
G(gyn, gyn, gyn–) +G(gxn, gxn, gxn–)



)
. (.)
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By (φiii), we have

φ
(
G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

)
≤ φ

(
G(gxn+, gxn+, gxn)

)
+ φ

(
G(gyn+, gyn+, gyn)

)
. (.)

From (.) and (.), we have

φ
(
G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

)
≤ φ

(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

)

– ψ
(
G(gyn, gyn, gyn–) +G(gxn, gxn, gxn–)



)
(.)

≤ φ
(
G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–)

)
. (.)

Using (.) and the fact that φ is non-decreasing, we get

G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

≤ G(gxn, gxn, gxn–) +G(gyn, gyn, gyn–).

Let Rn = G(gxn+, gxn+, gxn) + G(gyn+, gyn+, gyn), then the sequence {Rn} is decreasing.
Therefore, there exists some R ≥  such that

lim
n→∞Rn = lim

n→∞
[
G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

]
= R. (.)

We claim that R = .
On the contrary, suppose that R > .
Taking limit as n → ∞ on both sides of (.) and using the properties of φ and ψ , we

have

φ(R) = lim
n→∞φ(Rn)

≤ lim
n→∞

[
φ(Rn–) – ψ

(
Rn–



)]

= φ(R) –  lim
Rn–→R

ψ

(
Rn–



)
< φ(R), a contradiction.

Thus, R = , that is,

lim
n→∞Rn = lim

n→∞
[
G(gxn+, gxn+, gxn) +G(gyn+, gyn+, gyn)

]
= . (.)

Next, we shall show that{gxn} and {gyn} are Cauchy sequences.
If possible, suppose that at least one of {gxn} and {gyn} is not a Cauchy sequence. Then

there exists an ε > , for which we can find subsequences {gxn(k)}, {gxm(k)} of {gxn} and
{gyn(k)}, {gym(k)} of {gyn} with n(k) >m(k)≥ k such that

rk =G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k)) ≥ ε. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest
integer with n(k) >m(k)≥ k and satisfies (.). Then

G(gxn(k)–, gxn(k)–, gxm(k)) +G(gyn(k)–, gyn(k)–, gym(k)) < ε. (.)

By (.), (.) and (G), we have

ε ≤ rk =G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

≤ G(gxn(k), gxn(k)gxn(k)–) +G(gxn(k)–, gxn(k)–, gxm(k))

+G(gyn(k), gyn(k), gyn(k)–) +G(gyn(k)–, gyn(k)–, gym(k))

<G(gxn(k), gxn(k), gxn(k)–) +G(gyn(k), gyn(k), gyn(k)–) + ε. (.)

Letting k → ∞ in (.) and using (.), we have

lim
n→∞ rk = lim

n→∞
[
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

]
= ε. (.)

Again by (G) and Lemma ., we have

G(gxn(k), gxn(k), gxm(k))

≤ G(gxn(k), gxn(k), gxn(k)+) +G(gxn(k)+, gxn(k)+, gxm(k))

≤ G(gxn(k)+, gxn(k)+, gxn(k))

+G(gxn(k)+, gxn(k)+, gxm(k)+) +G(gxm(k)+, gxm(k)+, gxm(k)). (.)

Similarly, we have

G(gyn(k), gyn(k), gym(k))

≤ G(gyn(k)+, gyn(k)+, gyn(k))

+G(gyn(k)+, gyn(k)+, gym(k)+) +G(gym(k)+, gym(k)+, gym(k)). (.)

Summing (.) and (.), we have

rk =G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

≤ Rn(k) + Rm(k) +G(gxn(k)+, gxn(k)+, gxm(k)+) +G(gyn(k)+, gyn(k)+, gym(k)+).

Since φ is non-decreasing and by (φiii), we have

φ(rk) ≤ φ
(
Rn(k) + Rm(k) +G(gxn(k)+, gxn(k)+, gxm(k)+)

+G(gyn(k)+, gyn(k)+, gym(k)+)
)

≤ φ(Rn(k)) + φ(Rm(k))

+ φ
(
G(gxn(k)+, gxn(k)+, gxm(k)+)

)
+ φ

(
G(gyn(k)+, gyn(k)+, gym(k)+)

)
. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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Since n(k) >m(k), gxn(k) ≥ gxm(k) and gyn(k) ≤ gym(k), then from (.) and (.), we have

φ
(
G(gxn(k)+, gxn(k)+, gxm(k)+)

)
= φ

(
G

(
F(xn(k), yn(k)),F(xn(k), yn(k)),F(xm(k), ym(k))

))

≤ 

φ
(
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))

)

–ψ

(
G(gxn(k), gxn(k), gxm(k)) +G(gyn(k), gyn(k), gym(k))



)

=


φ(rk) –ψ

(
rk


)
. (.)

Similarly, we have

φ
(
G(gyn(k)+, gyn(k)+, gym(k)+)

)

≤ 

φ
(
G(gyn(k), gyn(k), gym(k)) +G(gxn(k), gxn(k), gxm(k))

)

–ψ

(
G(gyn(k), gyn(k), gym(k)) +G(gxn(k), gxn(k), gxm(k))



)

=


φ(rk) –ψ

(
rk


)
. (.)

Using (.)-(.), we have

φ(rk) ≤ φ(Rn(k)) + φ(Rm(k)) + φ(rk) – ψ
(
rk


)
.

Letting k → ∞ in the last inequality, and using (.), (.) and the properties of φ andψ ,
we have

φ(ε) ≤ φ() + φ() + φ(ε) –  lim
k→∞

ψ

(
rk


)

= φ(ε) –  lim
rk→ε

ψ

(
rk


)
< φ(ε), a contradiction.

Therefore, both {gxn} and {gyn} are Cauchy sequences in X. Now, since the space (X,G)
is a complete G-metric space, there exist x, y in X such that the sequences {gxn} and {gyn}
are respectively G-convergent to x and y, then, using Lemma ., we have

lim
n→∞G(gxn, gxn,x) = lim

n→∞G(gxn,x,x) = , (.)

lim
n→∞G(gyn, gyn, y) = lim

n→∞G(gyn, y, y) = . (.)

Using the G-continuity of g , Definition . and Lemma ., we have

lim
n→∞G(ggxn, ggxn, gx) = lim

n→∞G(ggxn, gx, gx) = , (.)

lim
n→∞G(ggyn, ggyn, gy) = lim

n→∞G(ggyn, gy, gy) = . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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Since gxn+ = F(xn, yn) and gyn+ = F(yn,xn), hence the commutativity of F and g implies
that

ggxn+ = gF(xn, yn) = F(gxn, gyn), (.)

ggyn+ = gF(yn,xn) = F(gyn, gxn). (.)

Since the mapping F is G-continuous, and the sequences {gxn} and {gyn} are respec-
tively G-convergent to x and y, hence using Definition ., the sequence {F(gxn, gyn)} is
G-convergent to F(x, y). Then, by uniqueness of the limit, and using (.), (.), we fi-
nally get F(x, y) = gx. Similarly, we can show that F(y,x) = gy. Hence (x, y) is a coupled
coincidence point of F and g . �

Taking g to be an identity mapping in Theorem ., we have the following corollary.

Corollary . Let (X,≤) be a partially ordered set, and suppose that there exists a G-
metric G on X such that (X,G) is a complete G-metric space. Let F : X × X → X be a
mapping. Assume that there exist φ ∈ � and ψ ∈ � such that

φ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ 

φ
(
G(x,u,w) +G(y, v, z)

)

–ψ

(
G(x,u,w) +G(y, v, z)



)
(.)

for all x, y,u, v,w, z ∈ X with x ≥ u≥ w and y≤ v≤ z.
Assume that F satisfies the following conditions:
() F has the mixed monotone property,
() F is continuous.

Suppose that there exist x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x), then there exist
x, y ∈ X such that x = F(x, y) and y = F(y,x).

Taking φ and g to be identity mappings in Theorem ., we have the following corollary.

Corollary . Let (X,≤) be a partially ordered set, and suppose that there exists a G-
metric G on X such that (X,G) is a complete G-metric space. Let F : X × X → X be a
mapping. Assume there exists ψ ∈ � such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ 

(
G(x,u,w) +G(y, v, z)

)

–ψ

(
G(x,u,w) +G(y, v, z)



)
(.)

for all x, y,u, v,w, z ∈ X with x ≥ u≥ w and y≤ v≤ z.
Assume that F satisfies the following conditions:
() F has the mixed monotone property,
() F is continuous.

Suppose there exist x, y ∈ X with x ≤ F(x, y) and y ≥ F(y,x), then there exist x, y ∈ X
such that x = F(x, y) and y = F(y,x).

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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Taking φ to be an identity mapping and ψ(t) = ( – k)t,  ≤ k <  in Theorem ., we
have the following result.

Corollary . Let (X,≤) be a partially ordered set and suppose there exists a G-metric G
on X such that (X,G) is a complete G-metric space. Let F : X × X → X, g : X → X be two
mappings. Assume there exists a real number k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
(.)

for all x, y, u, v, w, z in X with gx ≥ gu≥ gw, gy≤ gv≤ gz.
Assume that F and g satisfy the following conditions:
() F(X ×X)⊆ g(X),
() F has the mixed g-monotone property,
() F is continuous,
() g is continuous and commutes with F .

Suppose that there exist x, y ∈ X with gx ≤ F(x, y) and gy ≥ F(y,x), then F and g
have a coupled coincidence point in X, that is, there exist x, y ∈ X such that gx = F(x, y) and
gy = F(y,x).

Remark . Corollary . is an extension of Theorem . of Choudhury and Maity []
for a pair of commuting mappings. Further, taking g to be the identity mapping in Corol-
lary ., we obtain Theorem . of Choudhury and Maity [].

In the next theorem, we omit the continuity hypotheses of F . We need the following
definition.

Definition . Let (X,≤) be a partially ordered set and suppose there exists a G-metric
G on X. We say that (X,G,≤) is regular if the following conditions hold:

(i) if a non-decreasing sequence {xn} is such that xn → x, then xn ≤ x for all n,
(ii) if a non-increasing sequence {yn} is such that yn → y, then y≤ yn for all n.

Theorem . Let (X,≤) be a partially ordered set, and suppose there exists a G-metric G
on X. Let F : X×X → X, g : X → X be twomappings.Assume there exist φ ∈ � and ψ ∈ �

such that

φ
(
G

(
F(x, y),F(u, v),F(w, z)

)) ≤ 

φ
(
G(gx, gu, gw) +G(gy, gv, gz)

)

–ψ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
(.)

for all x, y,u, v,w, z ∈ X with gx ≥ gu≥ gw and gy≤ gv≤ gz.
Assume that (X,G,≤) is regular. Suppose that (g(X),G) is G-complete, F has the mixed

g-monotone property and F(X × X) ⊆ g(X). Suppose that there exist x, y ∈ X with gx ≤
F(x, y) and gy ≥ F(y,x), then F and g have a coupled coincidence point in X, that is,
there exist x, y ∈ X such that gx = F(x, y) and gy = F(y,x).

Proof Proceeding exactly as in Theorem ., we have that {gxn} and {gyn} are G-Cauchy
sequences in theG-completeG-metric space (g(X),G). Then there exist x, y ∈ X such that

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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gxn → gx and gyn → gy, that is,

lim
n→∞G(gxn, gx, gx) = lim

n→∞G(gxn, gxn, gx) = ,

lim
n→∞G(gyn, gy, gy) = lim

n→∞G(gyn, gyn, gy) = .
(.)

Since {gxn} is non-decreasing and {gyn} is non-increasing, using the regularity of (X,G,≤),
we have gxn ≤ gx and gy≤ gyn for all n≥ . Using (.), we get

φ
(
G

(
F(x, y), gxn+, gxn+

))
= φ

(
G

(
F(x, y),F(xn, yn),F(xn, yn)

))

≤ 

φ
(
G(gx, gxn, gxn) +G(gy, gyn, gyn)

)

–ψ

(
G(gx, gxn, gxn) +G(gy, gyn, gyn)



)
. (.)

Letting n → ∞ in (.), then using (.) and the properties of φ and ψ , we obtain that

φ
(
lim
n→∞G

(
F(x, y), gxn+, gxn+

)) ≤ 

φ
(
lim
n→∞

(
G(gx, gxn, gxn) +G(gy, gyn, gyn)

))

– lim
n→∞ψ

(
G(gx, gxn, gxn) +G(gy, gyn, gyn)



)

= ,

which gives us

lim
n→∞G

(
F(x, y), gxn+, gxn+

)
= . (.)

On the other hand, by condition (G) we have

G
(
F(x, y), gx, gx

) ≤ G
(
F(x, y), gxn+, gxn+

)
+G(gxn, gx, gx).

Letting n→ ∞, using (.) and (.), we have G(F(x, y), gx, gx) = . So F(x, y) = gx.
Similarly, we can obtain that gy = F(y,x). Thus, we proved that (x, y) is a coupled coinci-

dence point of F and g . �

Taking φ to be the identity mapping and ψ(t) = ( – k)t,  ≤ k <  in Theorem ., we
have the following result.

Corollary . Let (X,≤) be a partially ordered set, and suppose that there exists a G-
metric G on X. Let F : X ×X → X, g : X → X be two mappings. Assume that there exists a
real number k ∈ [, ) such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ k

[
G(gx, gu, gw) +G(gy, gv, gz)

]
(.)

for all x, y, u, v, w, z in X with gx ≥ gu≥ gw, gy≤ gv≤ gz.
Assume that (X,G,≤) is regular. Suppose that (g(X),G) is G-complete, F has the mixed

g-monotone property and F(X × X) ⊆ g(X). Also, assume that there exist x, y ∈ X with

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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gx ≤ F(x, y) and gy ≥ F(y,x), then F and g have a coupled coincidence point in X,
that is, there exist x, y ∈ X such that gx = F(x, y) and gy = F(y,x).

Remark . Corollary . is an extension of the Theorem . of Choudhury and Maity
[] for a pair of commuting mappings. Further, taking g to be the identity mapping in
Corollary ., we can obtain Theorem . of Choudhury and Maity [].

Taking φ and g to be identity mappings in Theorem ., we have the following result.

Corollary . Let (X,≤) be a partially ordered set, and suppose that there is a G-metric G
on X such that (X,G) is a complete metric space. Let F : X × X → X be a mapping having
mixed a monotone property. Assume that there exists ψ ∈ � such that

G
(
F(x, y),F(u, v),F(w, z)

) ≤ 

(
G(x,u,w) +G(y, v, z)

)

–ψ

(
G(x,u,w) +G(y, v, z)



)
(.)

for all x, y,u, v,w, z ∈ X with x ≥ u≥ w and y≤ v≤ z.
Assume that (X,G,≤) is regular. Suppose that there exist x, y ∈ X with x ≤ F(x, y)

and y ≥ F(y,x), then there exist x, y ∈ X such that x = F(x, y) and y = F(y,x).

Next, we give an example in support of Theorem ..

Example . Let X = [, ]. Then (X,≤) is a partially ordered set with the natural ordering
of real numbers. Let G : X ×X ×X → R+ be defined by

G(x, y, z) = |x – y| + |y – z| + |z – x| for x, y, z ∈ X.

Then (X,G) is a regular G-metric space.
Let g : X → X be defined as

g(x) =
x


for all x ∈ X.

Let F : X ×X → X be defined as

F(x, y) =

⎧⎨
⎩

x–y
 , if x, y ∈ [, ],x≥ y,

, if x < y.

Clearly, F obeys the mixed g-monotone property. Also, F(X × X) ⊆ g(X) and (g(X),G) is
complete.
Let φ,ψ : [,∞)→ [,∞) be defined by φ(t) = t

 , ψ(t) = t
 for t ∈ [,∞).

Also, x =  and y = c (> ) are two points in X such that g(x) = g() =  = F(, c) =
F(x, y) and g(y) = g(c) = c

 ≥ c
 = F(c, ) = F(y,x).

Next, we verify inequality (.) of Theorem ..
We take x, y,u, v,w, z ∈ X such that gx≥ gu≥ gw and gy ≤ gv≤ gz; that is, x≥ u≥ w and

y≤ v ≤ z. We discuss the following cases.

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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Case : x≥ y, u≥ v, w≥ z.
Then

φ
(
G

(
F(x, y),F(u, v),F(w, z)

))

= φ

(
G

(
x – y


,
u – v


,
w – z


))

=



{ |(x – y) – (u – v)|


+
|(u – v) – (w – z)|


+

|(w – z) – (x – y)|


}

=



{∣∣(x – u) – (y – v)
∣∣ + ∣∣(u –w) – (v – z)

∣∣ + ∣∣(w – x) – (z – y)
∣∣}

≤ 


{
(x – u) + (v – y) + (u –w) + (z – v) + (x –w) + (z – y)

}

=



{(
(x – u)


+
(u –w)


+
(x –w)



)
+

(
(v – y)


+
(z – v)


+
(z – y)



)}

=



{
G(gx, gu, gw) +G(gy, gv, gz)

}

≤ 

{
G(gx, gu, gw) +G(gy, gv, gz)

}

=


φ
(
G(gx, gu, gw) +G(gy, gv, gz)

)
–ψ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
.

Case : x ≥ y, u≥ v, w < z.
Then

φ
(
G

(
F(x, y),F(u, v),F(w, z)

))

= φ

(
G

(
x – y


,
u – v


,
))

=



{ |(x – y) – (u – v)|


+
|(u – v)|


+

|(x – y)|


}

=



{∣∣(x – u) – (y – v)
∣∣ + ∣∣(u – v)

∣∣ + ∣∣(x – y)
∣∣}

≤ 


{
(x – u) + (v – y) + (u – v) + (x – y)

}

=



{
(x – u) + (v – y) + (u –w +w – v) + (x –w +w – y)

}

=



{
(x – u) + (v – y) + (u –w) + (w – v) + (x –w) + (w – y)

}

≤ 


{
(x – u) + (v – y) + (u –w) + (z – v) + (x –w) + (z – y)

}

=



{(
(x – u)


+
(u –w)


+
(x –w)



)
+

(
(v – y)


+
(z – v)


+
(z – y)



)}

=



{
G(gx, gu, gw) +G(gy, gv, gz)

}

≤ 

{
G(gx, gu, gw) +G(gy, gv, gz)

}
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=


φ
(
G(gx, gu, gw) +G(gy, gv, gz)

)

–ψ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
.

Case : x≥ y, u < v, w < z.
Then

φ
(
G

(
F(x, y),F(u, v),F(w, z)

))

= φ

(
G

(
x – y


,, 
))

=



{ |(x – y)|


+
|(x – y)|



}
=



{
(x – y)


+
(x – y)


}

=



{
(x – u + u – y) + (x –w +w – y)

}

=



{
(x – u) + (u – y) + (x –w) + (w – y)

}

≤ 


{
(x – u) + (v – y) + (x –w) + (w – u + u – y)

}

=



{
(x – u) + (v – y) + (x –w) + (w – u) + (u – y)

}

=



{
(x – u) + (v – y) + (x –w) + (w – u) + (u – z + z – y)

}

≤ 


{
(x – u) + (v – y) + (x –w) + (u –w) + (v – z) + (z – y)

}

=



{(
(x – u)


+
(u –w)


+
(x –w)



)
+

(
(v – y)


+
(z – v)


+
(z – y)



)}

=



{
G(gx, gu, gw) +G(gy, gv, gz)

}

≤ 

{
G(gx, gu, gw) +G(gy, gv, gz)

}

=


φ
(
G(gx, gu, gw) +G(gy, gv, gz)

)
–ψ

(
G(gx, gu, gw) +G(gy, gv, gz)



)
.

Case : x < y, u < v, w < z.
Then φ(G(F(x, y),F(u, v),F(w, z))) = φ() = , and hence inequality (.) of Theorem .

is obvious.
Similarly, the cases like x < y, u≥ v, w≥ z; x < y, u < v, w≥ z and others follow immedi-

ately.
Thus, it is verified that the functions F , g , φ, ψ satisfy all the conditions of Theorem ..

Indeed, (, ) is the coupled coincidence point of F and g in X.

Next, we prove the existence and uniqueness of the coupled common fixed point for our
main result.

Theorem . In addition to the hypotheses of Theorem ., suppose that for every
(x, y), (x∗, y∗) ∈ X ×X there exists a (u, v) ∈ X ×X such that (F(u, v),F(v,u)) is comparable

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Then F and g have a unique coupled common
fixed point, that is, there exists a unique (a,b) ∈ X × X such that a = g(a) = F(a,b) and
b = g(b) = F(b,a).

Proof From Theorem ., the set of coupled coincidences is non-empty. In order to prove
the theorem, we shall first show that if (x, y) and (x∗, y∗) are coupled coincidence points,
that is, if g(x) = F(x, y), gy = F(y,x) and gx∗ = F(x∗, y∗), gy∗ = F(y∗,x∗), then

g(x) = gx∗ and gy = gy∗. (.)

By assumption, there is (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable with
(F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). Put u = u, v = v and choose u, v ∈ X so that
gu = F(u, v), gv = F(v,u).
Then, similarly as in the proof of Theorem., we can inductively define sequences {gun}

and {gvn} such that gun+ = F(un, vn) and gvn+ = F(vn,un).
Further, set x = x, y = y, x∗

 = x∗, y∗
 = y∗ and, on the same way, define the sequences

{gxn}, {gyn} and {gx∗
n}, {gy∗

n}. Then it is easy to show that

gxn+ = F(xn, yn), gyn+ = F(yn,xn) and

gx∗
n+ = F

(
x∗
n, y

∗
n
)
, gy∗

n+ = F
(
y∗
n,x

∗
n
)

for all n ≥ .

Since (F(x, y),F(y,x)) = (gx, gy) = (gx, gy) and (F(u, v),F(v,u)) = (gu, gv) are compara-
ble, then gu ≥ gx and gv ≤ gy. It is easy to show that (gx, gy) and (gun, gvn) are comparable,
that is, gun ≥ gx and gvn ≤ gy for all n≥ . Thus, from (.)

φ
(
G(gun+, gun+, gx)

)
= φ(G

(
F(un, vn),F(un, vn),F(x, y)

)

≤ 

φ
(
G(gun, gun, gx) +G(gvn, gvn, gy)

)

–ψ

(
G(gun, gun, gx) +G(gvn, gvn, gy)



)
, (.)

and

φ
(
G(gvn+, gvn+, gy)

) ≤ 

φ
(
G(gvn, gvn, gy) +G(gun, gun, gx)

)

–ψ

(
G(gvn, gvn, gy) +G(gun, gun, gx)



)
. (.)

Adding (.) and (.), we get

φ
(
G(gun+,gun+,gx)

)
+ φ

(
G(gvn+, gvn+, gy)

)
≤ φ

(
G(gun, gun, gx) +G(gvn, gvn, gy)

)

– ψ
(
G(gun, gun, gx) +G(gvn, gvn, gy)



)
. (.)
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Also, by (φiii) we have

φ
(
G(gun+, gun+, gx) +G(gvn+, gvn+, gy)

)
≤ φ

(
G(gun+, gun+, gx)

)
+ φ

(
G(gvn+, gvn+, gy)

)
. (.)

From (.) and (.),

φ
(
G(gun+, gun+, gx) +G(gvn+, gvn+, gy)

)
≤ φ

(
G(gun, gun, gx) +G(gvn, gvn, gy)

)

– ψ
(
G(gun, gun, gx) +G(gvn, gvn, gy)



)
(.)

≤ φ
(
G(gun, gun, gx) +G(gvn, gvn, gy)

)
. (.)

Since φ is non-decreasing, from (.), it follows that

G(gun+, gun+, gx) +G(gvn+, gvn+, gy) ≤ G(gun, gun, gx) +G(gvn, gvn, gy).

Let αn =G(gun, gun, gx) +G(gvn, gvn, gy), then {αn} is a monotonic decreasing sequence,
so there exists some α ≥  such that limn→∞ αn = α.
We shall show that α = . Suppose, on the contrary, that α > . Then taking limit as

n→ ∞, in (.) and using the continuity of φ and the property (ψi), we have

φ(α)≤ φ(α) –  lim
αn→α

ψ

(
αn



)
< φ(α).

A contradiction. Thus, α = , that is,

lim
n→∞αn = lim

n→∞
(
G(gun, gun, gx) +G(gvn, gvn, gy)

)
= .

Hence, it follows that gun → gx, gvn → gy.
Similarly, one can show that gun → gx∗, gvn → gy∗.
By uniqueness of limit, it follows that gx = gx∗ and gy = gy∗. Thus, we have proved (.).
Since gx = F(x, y), gy = F(y,x) and the pair (F , g) is commuting, it follows that

ggx = gF(x, y) = F(gx, gy) and ggy = gF(y,x) = F(gy, gx). (.)

Denote gx = z, gy = w. Then from (.), we have

gz = F(z,w) and gw = F(w, z). (.)

Thus, (z,w) is a coupled coincidence point.
Then from (.) with x∗ = z and y∗ = w, it follows that gz = gx and gw = gy, that is,

gz = z, gw = w. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/372
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From (.) and (.), we have

z = gz = F(z,w) and w = gw = F(w, z).

Therefore, (z,w) is the coupled common fixed point of F and g .
To prove the uniqueness, assume that (p,q) is another coupled common fixed point.

Then by (.), we have p = gp = gz = z and q = gq = gw = w. �

Theorem . Under the hypotheses of Theorem ., suppose, in addition, that for every
(x, y) and (x∗, y∗) in X, there exists (u, v) ∈ X × X such that (F(u, v),F(v,u)) is comparable
to (F(x, y),F(y,x)) and (F(x∗, y∗),F(y∗,x∗)). If F and g are commuting, then F and g have a
unique coupled common fixed point, that is, there exists a unique (a,b) ∈ X ×X such that
a = g(a) = F(a,b) and b = g(b) = F(b,a).

Proof Following the steps of Theorem ., proof follows immediately. �

3 Application to integral equations
Motivated by thework of Aydi et al. [], in this section, we study the existence of solutions
to nonlinear integral equations using some of our main results.
Consider the integral equations in the following system:

x(t) = p(t) +
∫ T


S(t, s)

[
f
(
s,x(s)

)
+ k

(
s, y(s)

)]
ds,

y(t) = p(t) +
∫ T


S(t, s)

[
f
(
s, y(s)

)
+ k

(
s,x(s)

)]
ds.

(.)

As defined by Luong et al. [], let � denote the class of those functions θ : [,∞) →
[,∞), which satisfy the following conditions:

(I) θ is increasing;
(II) There exists ψ ∈ � such that θ (r) = r

 –ψ( r ), for all r ∈ [,∞).
For example, θ(x) = αx, where  ≤ α ≤ 

 , θ(x) =
x

(x+) are some members of �.
We shall analyze the system (.) under the following assumptions:
(i) f ,k : [,T]×R→R are continuous,
(ii) p : [,T]→R is continuous,
(iii) S : [,T]×R→ [,∞) is continuous,
(iv) there exists λ >  and θ ∈ � such that for all x, y ∈ R, y ≥ x,

 ≤ f (s, y) – f (s,x)≤ λθ (y – x),

 ≤ k(s,x) – k(s, y) ≤ λθ (y – x).

(v) We suppose that

λ sup
t∈[,T]

∫ T


S(t, s)ds≤ 


.
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(vi) There exist continuous functions α,β : [,T]→R such that

α(t)≤ p(t) +
∫ b

a
S(t, s)

(
f
(
s,α(s)

)
+ k

(
s,β(s)

))
ds,

β(t) ≥ p(t) +
∫ b

a
S(t, s)

(
f
(
s,β(s)

)
+ k

(
s,α(s)

))
ds.

Consider the space X = C([,T],R) of continuous functions defined on [,T] endowed
with the (G-complete) G-metric given by

G(u, v,w) = sup
t∈[,T]

∣∣u(t) – v(t)
∣∣ + sup

t∈[,T]

∣∣v(t) –w(t)
∣∣ + sup

t∈[,T]

∣∣w(t) – u(t)
∣∣

for all u, v,w ∈ X.

Endow X with the partial order ≤ given by: x, y ∈ X, x ≤ y ⇔ x(t)≤ y(t) for all t ∈ [,T].
Also, we may adjust as in [] to prove that (X,G,≤) is regular.

Theorem . Under assumptions (i)-(vi), the system (.) has a solution in X = (C([,T],
R)).

Proof Consider the operator F : X ×X → X defined by

F(x, y)(t) = p(t) +
∫ T


S(t, s)

[
f
(
s,x(s)

)
+ k

(
s, y(s)

)]
ds, t ∈ [,T], for all x, y ∈ X.

First, we shall prove that F has the mixed monotone property.
In fact, for x ≤ x and t ∈ [,T], we have

F(x, y)(t) – F(x, y)(t) =
∫ T


S(t, s)

[
f
(
s,x(s)

)
– f

(
s,x(s)

)]
ds.

Taking into account that x(t) ≤ x(t) for all t ∈ [,T], so by (iv), f (s,x(s)) ≥ f (s,x(s)).
Then F(x, y)(t) ≥ F(x, y)(t) for all t ∈ [,T], that is,

F(x, y) ≤ F(x, y).

Similarly, for y ≤ y and t ∈ [,T], we have

F(x, y)(t) – F(x, y)(t) =
∫ T


S(t, s)

[
k
(
s, y(s)

)
– k

(
s, y(s)

)]
ds.

Having y(t) ≤ y(t), so by (iv), k(s, y(s)) ≥ k(s, y(s)). Then F(x, y)(t)≥ F(x, y)(t) for all
t ∈ [,T], that is, F(x, y) ≥ F(x, y). Therefore, F has the mixed monotone property.
In what follows, we estimate the quantity G(F(x, y),F(u, v),F(w, z)) for all x, y,u, v,w, z ∈

X, with x ≥ u ≥ w, y ≤ v≤ z. Since F has the mixed monotone property, we have

F(w, z) ≤ F(u, v)≤ F(x, y).
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We obtain

G
(
F(x, y),F(u, v),F(w, z)

)
= sup

t∈[,T]

∣∣F(x, y)(t) – F(u, v)(t)
∣∣ + sup

t∈[,T]

∣∣F(u, v)(t) – F(w, z)(t)
∣∣

+ sup
t∈[,T]

∣∣F(w, z)(t) – F(x, y)(t)
∣∣

= sup
t∈[,T]

(
F(x, y)(t) – F(u, v)(t)

)
+ sup

t∈[,T]

(
F(u, v)(t) – F(w, z)(t)

)

+ sup
t∈[,T]

(
F(x, y)(t) – F(w, z)(t)

)
.

Also, for all t ∈ [,T], from (iv), we have

F(x, y) – F(u, v) =
∫ T


(t, s)

[
f
(
s,x(s)

)
– f

(
s,u(s)

)]
ds

+
∫ T


S(t, s)

[
k
(
s, y(s)

)
– k

(
s, v(s)

)]
ds

≤ λ

∫ T


S(t, s)

[
θ
(
x(s) – u(s)

)
+ θ

(
v(s) – y(s)

)]
ds. (.)

Since the function θ is increasing and x ≥ u≥ w, y ≤ v≤ z, we have

θ
(
x(s) – u(s)

) ≤ θ
(
sup
t∈I

∣∣x(t) – u(t)
∣∣),

θ
(
v(s) – y(s)

) ≤ θ
(
sup
t∈I

∣∣v(t) – y(t)
∣∣),

hence by (.), we obtain

∣∣F(x, y) – F(u, v)
∣∣

≤ λ

∫ T


S(t, s)

[
θ
(
sup
t∈I

∣∣x(t) – u(t)
∣∣) + θ

(
sup
t∈I

∣∣v(t) – y(t)
∣∣)]

ds, (.)

as all the quantities on the right hand side of (.) are non-negative, so (.) is justified.
Similarly, we can obtain that

∣∣F(x, y) – F(w, z)
∣∣ ≤ λ

∫ T


S(t, s)

[
θ
(
sup
t∈I

∣∣x(t) –w(t)
∣∣) + θ

(
sup
t∈I

∣∣z(t) – y(t)
∣∣)]

ds, (.)

∣∣F(w, z) – F(u, v)
∣∣ ≤ λ

∫ T


S(t, s)

[
θ
(
sup
t∈I

∣∣u(t) –w(t)
∣∣) + θ

(
sup
t∈I

∣∣z(t) – v(t)
∣∣)]

ds. (.)

Summing (.), (.) and (.), and then taking the supremum with respect to t we get,
by using (v), we obtain that

G
(
F(x, y),F(u, v),F(w, z)

)

≤ λ sup
t∈[,T]

∫ T


S(t, s)ds ·

[
θ
(
sup
t∈I

∣∣x(t) – u(t)
∣∣) + θ

(
sup
t∈I

∣∣x(t) –w(t)
∣∣)
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+ θ
(
sup
t∈I

∣∣u(t) –w(t)
∣∣)]

+ λ sup
t∈[,T]

∫ T


S(t, s)ds ·

[
θ
(
sup
t∈I

∣∣v(t) – y(t)
∣∣) + θ

(
sup
t∈I

∣∣z(t) – y(t)
∣∣)

+ θ
(
sup
t∈I

∣∣z(t) – v(t)
∣∣)]

. (.)

Further, since θ is increasing, so we have

θ
(
sup
t∈I

∣∣x(t) – u(t)
∣∣) ≤ θ

(
G(x,u,w)

)
, θ

(
sup
t∈I

∣∣x(t) –w(t)
∣∣) ≤ θ

(
G(x,u,w)

)
,

θ
(
sup
t∈I

∣∣u(t) –w(t)
∣∣) ≤ θ

(
G(x,u,w)

)
.

Similarly, we have

θ
(
sup
t∈I

∣∣v(t) – y(t)
∣∣) ≤ θ

(
G(y, v, z)

)
, θ

(
sup
t∈I

∣∣z(t) – y(t)
∣∣) ≤ θ

(
G(y, v, z)

)
,

θ
(
sup
t∈I

∣∣z(t) – v(t)
∣∣) ≤ θ

(
G(y, v, z)

)
.

Then by (.), we have

G
(
F(x, y),F(u, v),F(w, z)

)

≤ λ sup
t∈[,T]

∫ T


S(t, s)ds · θ(

G(x,u,w)
)
+ λ sup

t∈[,T]

∫ T


S(t, s)ds · θ(

G(y, v, z)
)

= λ sup
t∈[,T]

∫ T


S(t, s)ds · (θ(

G(x,u,w)
)
+ θ

(
G(y, v, z)

))

≤ (θ (G(x,u,w)) + θ (G(y, v, z)))


. (.)

Since θ is increasing, we have

θ
(
G(x,u,w)

) ≤ θ
(
G(x,u,w) +G(y, v, z)

)
, θ

(
G(y, v, z)

) ≤ θ
(
G(x,u,w) +G(y, v, z)

)

and so

(θ (G(x,u,w)) + θ (G(y, v, z)))


≤ θ
(
G(x,u,w) +G(y, v, z)

)

=
G(x,u,w) +G(y, v, z)



–ψ

(
G(x,u,w) +G(y, v, z)



)
, (.)

by definition of θ . Thus, by (.) and (.), we finally get

G
(
F(x, y),F(u, v),F(w, z)

) ≤ G(x,u,w) +G(y, v, z)


–ψ

(
G(x,u,w) +G(y, v, z)



)

which is just the contractive condition (.) in Corollary ..
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Let α, β be the functions appearing in assumption (vi), then by (vi), we get

α ≤ F(α,β), β ≥ F(β ,α).

Applying Corollary ., we deduce the existence of x, y ∈ X such that

x = F(x, y), y = F(y,x),

that is, (x, y) is a solution of the system (.). �

4 Conclusion
In the frame-work of ordered generalized metric spaces, we established some coupled
coincidence and common coupled fixed point theorems for the mixed g-monotone map-
pings satisfying (φ,ψ)-contractive conditions. We accompanied our theoretical results by
an applied example and an application to integral equations. Our results are extensions
and generalizations of the very recent results of Choudhury et al. cited in [], as well as
of several results as in relevant items from the reference section of this paper and in the
literature in general.
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