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Abstract
In this paper BMO-Lorentz martingale spaces are investigated. We give the
characterization of BMO-Lorentz martingale spaces. Moreover, we discuss the
relationship between the Carleson measure and BMO-Lorentz martingales. As a
consequence, we find a new way to characterize the geometrical properties of a
Banach space.

1 Introduction and preliminaries
Since  when they were first introduced by Lorentz in [], Lorentz spaces have attracted
more and more attention. A lot of results were obtained such as normability, duality, in-
terpolation, and so on [–].
We know thatmartingale theory is intimately related to harmonic analysis. Inmartingale

case, Weisz [] and Long [] considered the spaces Hp,q and the interpolations between
them, respectively. It is well known that the validity of a classical (scalar-valued) result in
the vector-valued setting, i.e., for functions or martingales with values in a Banach space
X, depends on the geometrical or topological properties of X.
It was exactly with this in mind that Xu [] developed the vector-valued Littlewood-

Paley theory, which was inspired by Pisier’s celebrated work [] onmartingale inequalities
in uniformly convex spaces. Very recently, Ouyang and Xu [] studied the endpoint case
of the main results of [] by means of the classical relationship between BMO functions
and Carleson measures. Jiao [] discussed the relationship between Carleson measures
and vector-valued martingales.
Let (�,μ) be a nonatomic σ -finite measure space. Suppose that f is a measurable func-

tion on a measure space (�,μ). We define its distribution function

λf (t) = μ
{
ω :

∥∥f (ω)∥∥ > t
}
, t ≥ ,

and its decreasing rearrangement function

f ∗(t) = inf
{
s >  : λf (s) ≤ t

}
.

Given a measurable function f on a measure space (�,μ) and  < p,q ≤ ∞, define

‖f ‖Lp,q =
⎧⎨
⎩(

∫ ∞
 (t


p f ∗(t))q dt

t )

q if q < ∞,

supt> t

p f ∗(t) if q = ∞.
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Remark . Observe that for all  < p, r < ∞ and  < q ≤ ∞ we have

∥∥|g|r∥∥Lp,q = ‖g‖rLpr,qr . (.)

Unfortunately, the functions ‖·‖Lp,q do not satisfy the triangle inequality. However, since
for all t > , (f + g)∗(t) ≤ f ∗(t/) + g∗(t/), we have

‖f + g‖Lp,q ≤ cp,q
(‖f ‖Lp,q + ‖g‖Lp,q

)
, (.)

where cp,q = /pmax{, (–q)/q}.
The set of all f with ‖f ‖Lp,q < ∞ is denoted by Lp,q(X,μ) and is called the Lorentz space

with indices p and q. Observe that the definition implies that L∞,∞ = L∞.
Let (�,�,P) be a complete probability space, and let (�n)n≥ be a nondecreasing se-

quence of sub-σ -algebras of � with � = σ (
⋃

n≥ �n). We denote by E and En the expecta-
tion and conditional expectation with respect to � and �n, respectively. For a martingale
f = (fn)n≥ with martingale difference dfn = fn – fn–, n ≥ , f– ≡ , we define its maximal
function, p-square function, respectively, as usual:

Mf = sup
n

‖fn‖, S(p)(f ) =

( ∞∑
n=

‖dfn‖p
)/p

.

We say that an X-valued martingale f = (fn)n≥ ∈ Lp,q(X) if supn ‖fn‖Lp,q <∞.
The space BMOa

Lp,q(X) (a≥ ,  < p,q ≤ ∞) consists of all martingale f ∈ Lp,q(X) such that

‖f ‖BMOa
Lp,q(X)

= sup
n

∥∥(
E
(‖f – fn–‖a|�n

))/a∥∥
Lp,q(X) < ∞.

Remark . The spaces BMOa
Lp,q(X) are independent of a and all corresponding norms are

equivalent. This allows us to denote any of them by BMOLp,q(X).

Proof If a ≥ , ϕ(x) = xa is a convex function, by Jensen’s inequality, we have E(‖f –
fn–‖|�n) ≤ (E(‖f – fn–‖a|�n))/a, which implies E(‖f – fn–‖|�n)∗(t) ≤ ((E(‖f – fn–‖a|
�n))/a)∗(t), i.e., BMOa

Lp,q(X) ⊂ BMO
Lp,q(X).

On the contrary, let gn = E(‖f – fn–‖|�n),Mg = supn ‖gn‖, hn = E(‖f – fn–‖a|�n)/a,Mh =
supn ‖hn‖. Now we set At = {ω : Mh > t}. Then Mg > t a.e. on At . (Factually, if there is a
B ⊂ At with μ(B) >  such thatMg ≤ t on B, then E(‖f – fn–‖|�n) ≤ t = E(t|�n) a.e. on B,
which implies ‖f – fn–‖ ≤ t a.e. on B. This is a contradiction for At .) So, P{ω :Mh > t} ≤
cP{ω :Mg > t}. Then

‖f ‖BMOa
Lp,q(X)

≤
(
q
∫ ∞



[
tP

(
Mh(ω) > t

)/p]q dt
t

)/q

≤ c
(
q
∫ ∞



[
tP

(
Mg(ω) > t

)/p]q dt
t

)/q

≤ c‖f ‖BMO
Lp,q(X)

,

i.e., BMO
Lp,q(X) ⊂ BMOa

Lp,q(X). Thus we complete the proof. �

Remark . If p = q = ∞, BMOLp,q(X) is the classical BMO space.
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Remark . For the classical BMO space, we have the following statement (see []):

‖f ‖BMO ∼ sup
τ

μ(τ < ∞)–/p‖f – fτ–‖Lp ,  ≤ p < ∞. (.)

It is well known that Lp,q is a subspace of Lp,r for  < p ≤ ∞,  < q < r ≤ ∞ and Lp,q

is a subspace of Lp,q for  < p ≤ p ≤ ∞,  < q,q ≤ ∞. Thus we have the following
proposition.

Proposition . () If  < p ≤ ∞,  < q < r ≤ ∞, BMOLp,q ⊆ BMOLp,r .
() If  < p ≤ p ≤ ∞,  < q,q ≤ ∞, BMOLp,q ⊆ BMOLp,q .

Theorem . Let f = (fn)n≥ be an X-valued martingale in Lp,q(X),  < p,q ≤ ∞. Then
f ∈ BMOLp,q(X) if and only if there exists an adapted process θ = (θ )n≥ such that

Cθ = sup
n

∥∥E(‖f – θn–‖|�n
)∥∥

Lp,q(X) <∞.

And, in any case, we have

‖|f ‖|BMOLp,q(X) := inf
θ
Cθ ≤ ‖f ‖BMOLp,q(X) ≤ c‖|f ‖|BMOLp,q(X) .

Proof Assume f ∈ BMOLp,q(X). Then, obviously,

‖|f ‖|BMOLp,q(X) ≤ ‖f ‖BMOLp,q(X) .

Now let ‖|f ‖|BMOLp,q(X) < ∞ and θ = (θ )n≥ be any one such that Cθ <∞. Then we have

E
(‖f – fn–‖|�n

) ≤ E
(‖f – θn–‖|�n

)
+ ‖θn– – fn–‖

= E
(‖f – θn–‖|�n

)
+

∥∥E(
(f – θn–)|�n–

)∥∥
≤ E

(‖f – θn–‖|�n
)
+ E

(‖f – θn–‖|�n–
)

= E
(‖f – θn–‖|�n

)
+ E

(
E
(‖f – θn–‖|�n

)|�n–
)
.

Taking ‘inf’ over all possible θ and (.), we get the desired inequality. �

Theorem . Let f = (fn)n≥ be an X-valued martingale in BMOLp,q(X), where 
p + 

s
= 

r
and 

q +

s
= 

s ,  < p,q, r, s, s ≤ ∞. Then

‖f ‖BMOLp,q(X) ∼ sup
τ

μ
({τ < ∞})– 

s ‖f – fτ–‖Lr,s(X),

where ‘sup’ is taken over all stopping times τ .

Proof Assume that ‖f ‖BMOLp,q(X) < ∞, τ is any stopping time. Then, by Hölder’s inequality,
we have

‖f – fτ–‖Lr,s(X) =
∥∥(f – fτ–)χ{τ<∞}

∥∥
Lr,s(X)

≤ c‖f – fτ–‖Lp,q(X)‖χ{τ<∞}‖Ls,s (X)

http://www.journalofinequalitiesandapplications.com/content/2013/1/371
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≤ c sup
‖g‖(Lp,q)∗≤

∣∣∣∣
∫

{τ<∞}

(‖f – fτ–‖
)
g dμ

∣∣∣∣ · ‖χ{τ<∞}‖Ls,s (X)

= c
(
q
p

)/q

sup
‖g‖(Lp,q)∗≤

∣∣∣∣
∫

{τ<∞}
E
(‖f – fτ–‖ · g|�τ

)
dμ

∣∣∣∣ · μ(τ < ∞)

s

≤ c
(
q
p

)/q

‖f ‖BMOLp,q · μ(τ <∞)

s .

This proves one half of the assertion. Conversely, assume thatβ = supτ μ({τ <∞})– 
s ‖f –

fτ–‖Lr,s(X) < ∞, and τ is any stopping time, F ∈ �τ , F ⊂ {τ < ∞}. Define

τF =

⎧⎨
⎩τ if ω ∈ F ,

∞ if ω /∈ F .

Thus we get

β ≥ μ
({τ < ∞})– 

s ‖f – fτ–‖Lr,s(X)
=


μ(F)/s

‖f – fτF–‖Lr,s(X)

≥ 
μ(F)/s

‖f – fτF–‖Lr∧,r∧(X)

≥ 
μ(F)

‖f – fτF–‖L,(X)

=


μ(F)

∫
F
‖f – fτF–‖du.

That is, E(‖f – fτF–‖|�τF ) ≤ β . By Remark . we have

‖f ‖BMOLp,q(X) ≤ cβ .

Thus we complete the proof of the theorem. �

Proposition . Particularly, if s = r and p = q = ∞, we get Remark ..

By Theorem . and Theorem ., we have the following proposition.

Proposition . Let f = (fn)n≥ be an X-valued martingale in BMOLp,q(X), where 
p +


s
= 

r
and 

q +

s
= 

s ,  < p,q, r, s, s ≤ ∞. Then

‖f ‖BMOLp,q(X) ∼ inf
θ
sup

τ

μ
({τ < ∞})– 

s ‖f – θτ–‖Lr,s(X),

where ‘sup’ is taken over all stopping times τ and ‘inf’ is taken over all adapted process
θ = (θ )n≥.
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2 Carlesonmeasure and BMO-Lorentz martingale spaces
Definition . Let ν be a nonnegative measure on � ×N , where N is equipped with the
counting measure dm. Let τ̂ denote the tent over τ :

τ̂ =
{
(ω,k) : k ≥ τ (ω), τ (ω) < ∞}

.

ν is said to be an s-Carleson measure if

‖|ν‖| = sup
τ

ν(τ̂ )
μ({τ < ∞})s < ∞,

where τ runs through all stopping times.

Theorem . Let  < p,q ≤ ∞, and g = (gn)n≥ be a real-valued martingale and dν =
|kg|δk dμ, where δk is the Dirac measure centered at k. So, if g ∈ BMO

Lp,q , ν is a /p′-
Carleson measure. Moreover, if  < p,q < ∞, the converse is also true, where 

p′ + 
p = ,


q′ + 

q = .

Proof Let g = (gn)n≥ be a real-valued martingale, let ν be generated by g as above, and let
τ be any stopping time. Then, for  < q < ∞,

ν(τ̂ ) = E

( ∞∑
k=

|kg|χ{τ (ω)≤k}

)

= E

(
E

( ∞∑
k=τ (ω)

|kg|
∣∣∣�τ

)
χ{τ (ω)≤k}

)

= E
(
E
(|g – gτ–||�τ

)
χ{τ (ω)≤k}

)
≤ c

∥∥E(|g – gτ–||�τ

)∥∥
Lp,q · ‖χ{τ (ω)≤k}‖Lp′ ,q′

= c
∥∥E(|g – gτ–||�τ

) 
 ·∥∥

Lp,q · ‖χ{τ (ω)≤k}‖Lp′ ,q′
≤ c

∥∥E(|g – gτ–||�τ

)/∥∥
Lp,q · μ({

τ (ω) ≤ k
})/p′

≤ c‖g‖BMO
Lp,q

· μ({
τ (ω) ≤ k

})/p′
.

So, g ∈ BMO
Lp,q implies that ν is a /p′-Carleson measure and ‖|ν‖| ≤ ‖g‖BMO

Lp,q
.

Conversely, for any n and any F ∈ �n, we define

τ =

⎧⎨
⎩n if ω ∈ F ,

∞ if ω /∈ F .

Since ν is a /p′-Carleson measure, we have

‖|ν‖| ≥ 
μ({τ < ∞})/p′ ν

({
(ω,k) : k ≥ τ (ω), τ (ω) <∞})

=


μ(F)/p′

∫
F

∞∑
k=n

|kg| dμ

http://www.journalofinequalitiesandapplications.com/content/2013/1/371
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≥ 
μ(F)

∫
F

∞∑
k=n

|kg| dμ

=


μ(F)

∫
F
|g – gn–| dμ.

That is, ‖|ν‖| ≥ E(|g – gn–||�n). Then we have ‖g‖BMO
Lp,q

≤ c‖|ν‖|. Thus, we complete

the proof of the theorem. �

3 The characterization of Banach space’s geometrical properties
Let  < q < ∞. Then a Banach space X has an equivalent q-uniformly convex norm if and
only if for one  < p < ∞ (or equivalently, for every  < p < ∞) there exists a positive con-
stant c such that

∥∥S(q)(f )∥∥p ≤ c sup
n

‖fn‖p

for all finite Lp-martingales f with values inX. Again, the validity of the converse inequality
amounts to saying that X has an equivalent q-uniformly smooth norm.

Definition . Let X and X be two Banach spaces. Let L(X,X) denote the space of
all bounded linear operators from X to X. Let v = (vn)n≥ be an adapted sequence such
that vn ∈ L∞(L(X,X)) and supn≥ ‖vn‖L∞(L(X,X)) ≤ . Then the martingale transform T
associated to v is defined as follows. For any X-valued martingale f = (fn)n≥,

(Tf )n =
n∑
k=

vkdfk .

We get the following results from [, ].

Lemma . With the assumptions above, the following statements are equivalent:
() There exists a positive constant c such that

‖Tf ‖BMO(X) ≤ c‖f ‖BMO(X), ∀f ∈ BMO(X).

() There exists a positive constant c such that

∥∥(Tf )∗∥∥BMO(X)
≤ c‖f ‖BMO(X), ∀f ∈ BMO(X).

() For some  ≤ p < ∞ (or equivalently, for every  ≤ p <∞), there exists a positive
constant c such that

‖Tf ‖Lp(X) ≤ c‖f ‖Lp(X), ∀f ∈ Lp(X).

Theorem . Let X be a Banach space,  ≤ q < ∞,  < p < ∞. Then the following state-
ments are equivalent:
() There exists a positive constant c such that for any finite X-valued martingale,

∥∥S(q)(f )∥∥BMOLp,q(X)
≤ c‖f ‖BMOLp,q(X) .

() X has an equivalent norm which is q-uniformly convex.

http://www.journalofinequalitiesandapplications.com/content/2013/1/371
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Proof () ⇒ () Let 
p +


s
= 

r ,

q +


s
= 

r ,  < p,q, r, s, s ≤ ∞ By Theorem . we have

∥∥S(q)(f )∥∥BMOLp,q(X)
∼ sup

τ

μ
({τ < ∞})– 

s
∥∥S(q)(f ) – S(q)τ–(f )

∥∥
Lr,r (X), (.)

‖f ‖BMOa
Lp,q(X)

∼ sup
τ

μ
({τ < ∞})– 

s ‖f – fτ–‖Lr,r (X). (.)

So, if () holds, we have

∥∥S(q)(f ) – S(q)τ–(f )
∥∥
Lr,r (X) ≤ c‖f – fτ–‖Lr,r (X).

By Remark . we have

∥∥S(q)(f )∥∥BMO ≤ c‖f ‖BMO. (.)

We now consider a martingale transform operator Q from the family of X-valued mar-
tingales to that of lq(X)-valued martingales. Let v ∈ L(X, lq(X)) be the operator defined
by vk(x) = {xj}∞j= for x ∈ X, where xj = x if j = k and xj =  otherwise. Q is the martingale
transform associated to the sequence (vk):

(Qf )n =
n∑
k=

vkdfk = (df,df, . . . ,dfn, , . . .).

Then

(Qf )∗ = S(q)(f ). (.)

By (.) and (.) we have

∥∥(Qf )∗
∥∥
BMO ≤ c‖f ‖BMO.

By Lemma . we have

∥∥S(q)(f )∥∥q =
∥∥(Qf )∗

∥∥
q ≤ c‖f ‖q.

Thus, by Pisier’s theorem, X has an equivalent q-uniformly convex norm.
() ⇒ () Suppose that X has an equivalent q-uniformly convex norm. By Pisier’s theo-

rem [], we find, for any  ≤ n < ∞,

E

( ∞∑
i=n

‖dfi‖q
∣∣∣�n

)
≤ cE

(‖f – fn–‖q|�n
)
.

Since E(|S(q)(f ) – S(q)n–(f )|q|�n) ≤ cE(|(S(q)(f ))q – (S(q)n–(f ))q||�n), we have

E
(∣∣S(q)(f ) – S(q)n–(f )

∣∣q|�n
) ≤ cE

(‖f – fn–‖q|�n
)
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/371
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Thus

∥∥S(q)(f )∥∥BMOLp,q(X)
≤ c‖f ‖BMOLp,q(X) .

We complete the proof. �

Theorem . Let X be a Banach space and  < p ≤ ,  < q < ∞. If there exists a positive
constant c such that for any finite X-valued martingale

‖f ‖BMOLp(X) ≤ c
∥∥S(p)(f )∥∥BMOLp(X)

, (.)

then X has an equivalent norm which is p-uniformly smooth.
On the contrary, if X has an equivalent norm which is p-uniformly smooth, then

‖f ‖BMOa
Lp,q(X)

≤ c
∥∥S(p)(f )∥∥BMOa

Lp,q(X)

for every martingale f .

Proof Let X∗ be the dual space of X. It suffices to prove that X∗ has an equivalent
p′-uniformly convex norm, where p′ is the conjugate index of p. By Pisier’s theorem, this
is equivalent to showing that

∥∥S(p′)(g)
∥∥
Lp′

≤ c
∥∥g∗∥∥

Lp′
= c‖g‖H∗

p′ (X
∗). (.)

Recall that H∗
p′ (X∗) is defined by

H∗
p′
(
X∗) = {

X∗-valued martingale g = (gn) : g∗ ∈ Lp′
}
.

It is well known that BMOLp(X) can be identified as a subspace of H∗
p′ (X∗). Thus, for any

finite martingale, f = (fn)n≥ ∈ BMOLp(X) and g = (gn)n≥ ∈ H∗
p′ (X∗).

∣∣〈g, f 〉∣∣ = ∫
�

〈
g(ω), f (ω)

〉
dP ≤ c‖f ‖BMOLp(X) · ‖g‖H∗

p′ (X
∗).

On the other hand, ‖S(p′)(g)‖Lp′ is the norm of the difference sequence (dgn) in Lp′ (lp′ (X∗)).
Thus

∥∥S(p′)(g)
∥∥
Lp′

= sup
(ak )

{∣∣∣∑〈dgk ,ak〉
∣∣∣ : ∥∥(ak)∥∥Lp(lp(X))

≤ 
}

= sup
(ak )

{∣∣∣∑〈
dgk ,Ek(ak) – Ek–(ak)

〉∣∣∣ : ∥∥(ak)∥∥Lp(lp(X))
≤ 

}
.

Set dfk = Ek(ak) – Ek–(ak) and f =
∑

dfk . Then f is an X-valued martingale. We have

∥∥S(p′)(g)
∥∥
Lp′

= sup
(ak )

{∣∣∣∑〈dgk ,dfk〉
∣∣∣} ≤ c‖f ‖BMOLp(X) · ‖g‖H∗

p′ (X
∗). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/371
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It remains to estimate ‖f ‖BMOLp(X) . Since ‖(ak)‖Lp(lp(X)) ≤ , we can also get the conditional
case E((

∑∞
k=n ‖ak‖p)|�n) ≤ . Then by (.)

‖f ‖BMOLp(X) ≤ c
∥∥S(p)(f )∥∥BMOLp(X)

≤ c sup
n

∥∥E(∥∥S(p)(f ) – S(p)n–(f )
∥∥p|�n

)∥∥
Lp

≤ c sup
n

∥∥E(∥∥S(p)(f )p – S(p)n–(f )
p∥∥|�n

)∥∥
Lp

≤ c sup
n

∥∥∥∥∥E
( ∞∑

k=n

∥∥Ek(ak) – Ek–(ak)
∥∥p

∣∣∣�n

)∥∥∥∥∥
Lp

≤ c

∥∥∥∥∥E
(( ∞∑

k=n

‖ak‖p
)∣∣∣�n

)∥∥∥∥∥
Lp

≤ c.

On the contrary, we define f̂ τ = (f̂ τ
i , ), where �̂i = �τ+i, f̂ τ

i = fτ+i – fτ , i≥ . So, we have

(
S(p)

(
f̂ τ

))p = S(p)(f )p – S(p)τ (f )p.

Suppose that X has an equivalent p-uniformly smooth norm. Then by Pisier’s theorem,
we have

∥∥f̂ τ
∥∥
p ≤ c

∥∥(S(p)(f̂ τ
)∥∥

p,

i.e.,

E
(‖f – f τ‖p) ≤ E

(
S(p)(f )p – S(p)τ (f )p

)
.

Moreover, we conditionalize it, we will get

E
(‖f – f τ‖p|�τ+

) ≤ E
(
S(p)(f )p – S(p)τ (f )p|�τ+

)
.

By the definition and Theorem ., we get

‖f ‖BMOa
Lp,q(X)

≤ c
∥∥S(p)(f )∥∥BMOa

Lp,q(X)
.

Thus we complete the proof. �
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