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Abstract
In this paper, we first introduce the concepts of (λ,μ)-fuzzy subfields. Then we
generalize the concepts of fuzzy linear spaces, we define (λ,μ)-fuzzy linear
subspaces, and we obtain some of their fundamental properties. Lastly, we list some
possible directions of the extending of the present work.
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1 Introduction and preliminaries
The concept of fuzzy sets was first introduced by Zadeh [] in , and then the fuzzy sets
have been used in the reconsideration of classical mathematics. Recently, Yuan [] intro-
duced the concept of fuzzy subgroup with thresholds. A fuzzy subgroup with thresholds λ

andμ is also called a (λ,μ)-fuzzy subgroup. Yao continued to research (λ,μ)-fuzzy normal
subgroups, (λ,μ)-fuzzy quotient subgroups and (λ,μ)-fuzzy subrings in [–].
Nanda [] introduced the concepts of fuzzy field and fuzzy linear space and gave some

results. Biswas [] pointed out that Proposition . of []was incorrect and redefined fuzzy
field and fuzzy linear space. Gu and Lu [] listed two examples to show that Proposition .
in [] is also incorrect and redefined the concept of fuzzy linear space.
In this paper, we first introduce the concepts of (λ,μ)-fuzzy subfields. Next, we gener-

alize the concepts of fuzzy linear spaces over fuzzy fields to (λ,μ)-fuzzy linear subspaces
over (λ,μ)-fuzzy subfields, and give some fundamental properties.
Let us recall some definitions and notions.
By a fuzzy subset of a nonempty set X we mean a mapping from X to the unit interval

[, ]. If A is a fuzzy subset of X, then we denote Aα = {x ∈ X|A(x)≥ α} for all α ∈ [, ].
Throughout this paper, we always assume that ≤ λ < μ ≤ .

2 (λ,μ)-fuzzy subfields
Definition  A fuzzy subset F of a fieldF is said to be a (λ,μ)-fuzzy subfield ofF if ∀k, l ∈ F,
we have
() F(k + l)∨ λ ≥ F(k)∧ F(l)∧ μ;
() F(–k)∨ λ ≥ F(k)∧ μ;
() F(kl)∨ λ ≥ F(k)∧ F(l)∧ μ;
() F(k–)∨ λ ≥ F(k)∧ μ, where k �= .

From the previous definition, we can easily conclude that a fuzzy subfield defined by Gu
[, ] or Biswas [] is a (, )-fuzzy subfield.
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Proposition  Let F be a (λ,μ)-fuzzy subfield of a field F, then ∀k ∈ F, we have
() F()∨ λ ≥ F(k)∧ μ;
() F()∨ λ ≥ F(k)∧ μ, where k �= ;
() F()∨ λ ≥ F()∧ μ.

Proof F()∨ λ = F(k + (–k))∨ λ ∨ λ ≥ (F(k)∧ F(–k)∧ μ)∨ λ = (F(k)∨ λ)∧ (F(–k)∨ λ)∧
(μ ∨ λ)≥ F(k)∧ (F(k)∧ μ)∧ μ = F(k)∧ μ. Thus we complete the proof of ().
() can be proved similarly and () is a corollary of (). �

Theorem  Let F be a fuzzy subset of a field F. Then the following are equivalent:
() F is a (λ,μ)-fuzzy subfield of F;
() Fα is a subfield of F, for any α ∈ (λ,μ], where Fα �= ∅.

Proof It is a corollary of Proposition . of []. �

We use F, F to stand for two fields in the following and define sup∅ = , where ∅ is the
empty set.

Proposition  Let f : F → F be a homomorphism, and let F be a (λ,μ)-fuzzy subfield
of F. Then f (F) is a (λ,μ)-fuzzy subfield of F, where

f (F)(y) = sup
x∈F

{
F(x)|f (x) = y

}
, ∀y ∈ F.

Proof Similar to the proof of Proposition . in []. �

Proposition  Let f : F → F be a homomorphism, and let F be a (λ,μ)-fuzzy sublattice
of F. Then f –(F) is a (λ,μ)-fuzzy sublattice of F, where

f –(F)(x) = F
(
f (x)

)
, ∀x ∈ F.

Proof Similar to the proof of Proposition . in []. �

3 (λ,μ)-fuzzy linear subspaces
Definition  Let F be a (λ,μ)-fuzzy subfield of a field F, V be a linear space over F and
V be a fuzzy subset of V. V is called a (λ,μ)-fuzzy linear subspace of V over F if for all
x, y ∈V, k ∈ F, we have
() V (x + y)∨ λ ≥ V (x)∧V (y)∧ μ;
() V (–x)∨ λ ≥ V (x)∧ μ;
() V (kx)∨ λ ≥ F(k)∧V (x)∧ μ;
() F()∨ λ ≥ V (x)∧ μ.

Obviously, the previous definition is a generalization of fuzzy linear space defined by Gu
and Tu (see Definition . in []).

Theorem  Let F be a (λ,μ)-fuzzy subfield of a field F, let V be a linear space over F, and
let V be a fuzzy subset of V. V is a (λ,μ)-fuzzy linear subspace of V over F if and only if,
for all x, y ∈V, k, l ∈ F, we have
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() V (kx + ly)∨ λ ≥ F(k)∧V (x)∧ F(l)∧V (y)∧ μ;
() F()∨ λ ≥ V (x)∧ μ.

Proof ‘⇒’
For all x, y ∈V, k, l ∈ F, we have

V (kx + ly)∨ λ = V (kx + ly)∨ λ ∨ λ ≥ (
V (kx)∧V (ly)∧ μ

) ∨ λ

=
(
V (kx)∨ λ

) ∧ (
V (ly)∨ λ

) ∧ (μ ∨ λ)

≥ F(k)∧V (x)∧ F(l)∧V (y)∧ μ.

‘⇐’
From F()∨λ ≥ V (x)∧μ, we know that λ ≥ V (x)∧μ or F()≥ V (x)∧μ. Two cases are

possible:
Case . If λ ≥ V (x)∧ μ, then
() V (x + y)∨ λ ≥ λ ≥ V (x)∧ μ ≥ V (x)∧V (y)∧ μ;
() V (–x)∨ λ ≥ λ ≥ V (x)∧ μ;
() V (kx)∨ λ ≥ λ ≥ V (x)∧ μ ≥ F(k)∧V (x)∧ μ.
Case . F()≥ V (x)∧ μ, then
() V (x + y)∨ λ = V (x + y)∨ λ ≥ F()∧V (x)∧ F()∧V (y)∧ μ = V (x)∧V (y)∧ μ;
() V (–x)∨ λ = V (–x + x)∨ λ ∨ λ ≥ (F(–)∧V (x)∧ F()∧V (x)∧ μ)∨ λ ≥ (F(–)∨

λ)∧ (V (x)∨λ)∧ (F()∨λ)∧ (μ∨λ)≥ (F()∧μ)∧V (x)∧ (F()∧μ)∧μ = V (x)∧μ.
() V (kx)∨ λ = V (kx + x)∨ λ ∨ λ ≥ (F(k)∧V (x)∧ F()∧V (x)∧ μ)∨ λ = (F(k)∨ λ)∧

(V (x)∨ λ)∧ (F()∨ λ)∧ (μ ∨ λ)≥ F(k)∧V (x)∧ (F()∧ μ)∧ μ = F(k)∧V (x)∧ μ.
�

Theorem  Let F be a (λ,μ)-fuzzy subfield of a field F, let V be a linear space over F, and
let V be a fuzzy subset of V. Then the following are equivalent:
() V is a (λ,μ)-fuzzy linear subspace over F ;
() Vα is a linear subspace over Fα , for any α ∈ (λ,μ], where Fα �= ∅ and Vα �= ∅.

Proof ‘() ⇒ ()’
Let V be a (λ,μ)-fuzzy linear subspace over F .
Take any α ∈ (λ,μ] such that Fα �= ∅ and Vα �= ∅; we need to show that kx + ly ∈ Vα ,

∀x, y ∈ Vα , ∀k, l ∈ Fα .
From F(k) ≥ α, F(l) ≥ α, V (x) ≥ α, V (y) ≥ α, and α ≤ μ, we conclude that V (kx + ly)∨

λ ≥ F(k)∧V (x)∧F(l)∧V (y)∧μ ≥ α∧μ = α. Note that λ < α, we obtain thatV (kx+ly)≥ α.
So kx + ly ∈ Vα .
‘() ⇐ ()’
Conversely, let Vα be a linear subspace over Fα , for any α ∈ (λ,μ]. If there exist x, y ∈ V

and k, l ∈ F such that V (kx + ly) ∨ λ < α = F(k) ∧ V (x) ∧ F(l) ∧ V (y) ∧ μ, then α ∈ (λ,μ],
x, y ∈ Vα , k, l ∈ Fα . But kx+ ly /∈ Aα . This is a contradiction with thatVα is a linear subspace
over Fα .
Again, if there exists x ∈ V such that F()∨λ < α = V (x)∧μ, then α ∈ (λ,μ], x ∈ Vα and

 /∈ Fα . This is a contradiction to that Vα is a linear subspace over a subfield Fα of F. �

We use V, V to stand for two linear spaces over the same field F in the following.
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Proposition  Let F be a (λ,μ)-fuzzy subfield of a field F, let f : V → V be a linear
transformation over F, and V be a (λ,μ)-fuzzy linear subspace of V over F . Then f (V) is
a (λ,μ)-fuzzy linear subspace of V over F , where

f (V)(y) = sup
x∈V

{
V(x)|f (x) = y

}
, ∀y ∈V.

Proof If f –(y) = ∅ or f –(y) = ∅ for any y, y ∈ V, then (f (V)(ky + ly))∨λ ≥  = F(k)∧
f (V)(y)∧ F(l)∧ f (V)(y)∧ μ.
Suppose that f –(y) �= ∅, f –(y) �= ∅ for any y, y ∈ V, then f –(ky + ly) �= ∅. So for any

k, l ∈ F , we have

f (V)(ky + ly)∨ λ

= sup
t∈V

{
A(t)|f (t) = ky + ly

} ∨ λ

= sup
t∈V

{
V(t)∨ λ|f (t) = ky + ly

}

≥ sup
x,x∈V

{(
V(kx + lx)

) ∨ λ|f (x) = y, f (x) = y
}

≥ sup
x,x∈V

{(
F(k)∧V(x)∧ F(l)∧V(x)

) ∧ μ|f (x) = y, f (x) = y
}

=
(
sup
x∈V

{
V(x)|f (x) = y

} ∧ sup
x∈V

{
V(x)|f (x) = y

}) ∧ F(k)∧ F(l)∧ μ

= f (V)(y)∧ f (V)(y)∧ F(k)∧ F(l)∧ μ.

And for all y ∈V, we have

F()∨ λ = sup
x∈V

{
F()∨ λ|V(x) = y

}

≥ sup
x∈V

{
V(x)∧ μ|V(x) = y

}

= sup
x∈V

{
V(x)|V(x) = y

} ∧ μ

= f (V)(y)∧ μ.

Thus f (V) is a (λ,μ)-fuzzy linear subspace of V over F . �

Proposition  Let F be a (λ,μ)-fuzzy subfield of a field F, let f : V → V be a linear
transformation over F, and let V be a (λ,μ)-fuzzy linear subspace of V over F . Then
f –(V) is a (λ,μ)-fuzzy linear subspace of V over F , where

f –(V)(x) = V
(
f (x)

)
, ∀x ∈V.

Proof For any x,x ∈ V and k, l ∈ F , we have

f –(V)(kx + lx)∨ λ = V
(
f (kx + lx)

) ∨ λ

= V
(
kf (x) + lf (x)

) ∨ λ
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≥ F(k)∧V
(
f (x)

) ∧ F(l)∧V
(
f (x)

) ∧ μ

= F(k)∧ f –(V)(x)∧ F(l)∧ f –(V)(x)∧ μ.

And for all x ∈ V, we have

f –(V)(x)∧ μ = V
(
f (x)

) ∧ μ ≤ F()∨ λ.

So, f –(V) is a (λ,μ)-fuzzy linear subspace of V over F . �

4 Further research
The present work can be extended in several directions. Let us indicate some possibilities.
. One can define (λ,μ)-fuzzy hypervector spaces and study their properties

(definitions of fuzzy hypervector spaces can be found in []).
. One may give the definition of (λ,μ)-fuzzy linear subspaces over (λ,μ)-fuzzy

subfields, where  ≤ λ < μ ≤  and  ≤ λ < μ ≤ . Then explore the properties
of them.

. One can investigate the interval-valued (type , lattice-valued, etc.) (λ,μ)-fuzzy
linear subspaces.

. One can also research (λ,μ)-anti-fuzzy linear subspaces [].
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