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1 Introduction
Assume that randomvariablesXn, n ∈N = {, , . . .} are defined on a fixed probability space
(�,A,P).
First, we recall two definitions as follows.

Definition . Random variables X,X, . . . ,Xn, n≥ , are said to be negatively associated
(NA, in short) if

Cov
(
f (Xi , . . . ,Xik ), g(Xj , . . . ,Xjm )

) ≤ 

for any pair of nonempty disjoint subsetsA = {i, . . . , ik} andB = {j, . . . , jm}, k+m ≤ n, of the
set {, , . . . ,n} and for any bounded coordinatewise increasing real functions f (xi , . . . ,xik )
and g(xj , . . . ,xjm ),x, . . . ,xn ∈ R = (–∞,∞). Random variables Xn, n ∈ N, are NA if every
n ∈ N random variables X,X, . . . ,Xn are NA.
Random variables Xni, i,n ∈ N, are called an array of rowwise NA random variables if

for every n ∈N random variables Xni, i ∈N are, NA.

The concept of NA random variables was introduced by Block et al. [] and carefully
studied by Joav-Dev and Proschan []. Primarily motivated by this, Chandra and Ghosal
[, ] introduced the following dependence.

Definition . Random variables Xn, n ∈ N, are said to be asymptotically almost neg-
atively associated (AANA, in short) if there exists a nonnegative sequence q(n) →  as
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n→ ∞ such that

Cov
(
f (Xn), g(Xn+, . . . ,Xn+k)

) ≤ q(n)
{
Var

(
f (Xn)

)
Var

(
g(Xn+, . . . ,Xn+k)

)}/
for all n,k ∈N and for all coordinatewise nondecreasing continuous functions f and g for
which Var f (Xn) and Var g(Xn+, . . . ,Xn+k) exist.
Random variables Xni, i,n ∈ N, are called an array of rowwise AANA random variables

if for every n ∈N, random variables Xni, i ∈N, are AANA.

The family ofAANArandomvariables containsNA (in particular, independent) random
variables (with q(n) = , n ≥ ) and some more kinds of random variables which are not
much deviated from being negatively associated. An example of AANA random variables
which are not NA was constructed by Chandra and Ghosal []. For various results and
applications of AANA random variables, one can refer to Chandra and Ghosal [], Wang
et al. [], Ko et al. [], Yuan and An [], Wang et al. [, ] and Wang et al. [], Yang et al.
[], Shen and Wu [] among others.
The concept of complete convergence was introduced by Hsu and Robbins [] as fol-

lows. Random variables Un, n ∈ N, are said to converge completely to a constant C if∑∞
n= P(|Un – C| > ε) < ∞ for all ε > . In view of the Borel-Cantelli lemma, this implies

thatUn → C almost surely (a.s.). The converse is true if randomvariablesUn, n ∈N, are in-
dependent. Hsu and Robbins [] proved that arithmetic means of independent and iden-
tically distributed (i.i.d.) random variables converges completely to the expected value if
the variance of the summands is finite. Erdös [] proved the converse. The result of Hsu,
Robbins and Erdös is a fundamental theorem in probability theory and has been gener-
alized and extended in several directions by many authors. One of the most important
generalizations was provided by Baum and Katz [] for the strong law of large numbers
as follows.

Theorem A Let / < α ≤  and αp > . Let Xn, n ∈N be i.i.d. random variables with zero
means. Then the following statements are equivalent:

(i) E|X|p < ∞,
(ii)

∑∞
n= nαp–P(max≤j≤n |∑j

i=Xi| > εnα) < ∞ for all ε > .

Motivated by Baum and Katz [] for i.i.d. random variables, many authors studied the
Baum-Katz-type theorem for dependent random variables. One can refer to Peligrad [],
Shao [], Peligrad and Gut [], Kruglov et al. [], Wang and Hu [], Shen et al. [],
Wang et al. [], etc.
Next, we will give the definition of stochastic domination which is used frequently in

the paper.

Definition . Random variables Xn, n ∈ N, are said to be stochastically dominated by a
random variable X if for every n ∈N there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)

for all x ≥ .
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An array of rowwise random variablesXni, i,n ∈N, is said to be stochastically dominated
by a random variable X if for every n ∈N there exists a positive constant C such that

sup
i≥

P
(|Xni| > x

) ≤ CP
(|X| > x

)

for all x ≥ .

Wang et al. [] discussed the complete convergence for an array of rowwise AANA
randomvariableswhich are stochastically dominated by a randomvariableX and obtained
the following result.

Theorem B Let Xni, i,n ∈ N, be an array of rowwise AANA random variables which are
stochastically dominated by a random variable X and EXni =  for every i,n ∈N with q(n)
from Definition ..

(i) Let / < α ≤ , p >  and αp > . If E|X|p < ∞ and
∑∞

n= qs/r(n) < ∞ for some
r ∈ ( · k–,  · k–] and

r >max

(
,

αp – 
α – /

,p
)
,

where integer number k ≥  and s .= r/(r – ) for r > , then for all ε > ,

∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xni

∣∣∣∣∣ > εnα

)
< ∞.

(ii) If E|X| log |X| < ∞ and
∑∞

n= q(n) < ∞, then for all ε > ,

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xni

∣∣∣∣∣ > εn

)
< ∞.

The complete convergence for an array of rowwise random variables was studied by
many authors. See, for example, the complete convergence for an array of rowwise inde-
pendent random variables was studied by Hu et al. [], Sung et al. [], Kruglov et al.
[] and others. Recently, many authors extended the complete convergence for an array
of rowwise independent random variables to the cases of dependent random variables.
One can refer to Kuczmaszewska [, ], Chen et al. [], Kruglov [], Zhou and Lin
[], Guo [], Wu [], and so on.
The main purpose of the paper is to further study the complete convergence and com-

plete moment convergence of weighted sums for an array of rowwise AANA random vari-
ables. The result of the paper generalizes the Baum-Katz theorem onAANA random vari-
ables in different methods. As an application, we get the Marcinkiewicz-Zygmund type
strong law of large numbers for weighted sums on AANA random variables. Our results
extend and improve the corresponding ones of [].
Throughout this paper, for r > , let s .= r/(r – ) be the dual number of r. The symbols

C,C,C, . . . denote positive constants which may be different in various places. Assume
that I(A) is the indicator function of the set A. Let x+ =max(,x) and logx = lnmax(x, e),
where lnx denotes the natural logarithm. an =O(bn) stands for |an| ≤ C|bn|.
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2 Preliminaries
To prove the main results of the paper, we need the following lemmas.

Lemma . (cf. [, Lemma ..]) Let Xn, n ∈ N, be random variables,which are stochas-
tically dominated by a random variable X. Then, for any a >  and b > , the following two
statements hold:

E|Xn|aI
(|Xn| ≤ b

) ≤ C
{
E|X|aI(|X| ≤ b

)
+ baP

(|X| > b
)}

and

E|Xn|aI
(|Xn| > b

) ≤ CE|X|aI(|X| > b
)
,

where C and C are positive constants.

Lemma . (cf. [, Lemma .]) Let Xn, n ∈ N, be AANA random variables with q(n) from
Definition .. Assume that fn, n ∈ N are all nondecreasing (or all nonincreasing) and con-
tinuous functions, then fn(Xn), n ∈ N, are still AANA random variables with q(n).

Lemma . (cf. [, Theorem .]) Let r >  and Xn, n ∈ N, be AANA random variables
with q(n) from Definition ..
If

∑∞
n= q(n) < ∞, then there exists a positive constant Cr depending only on r such that

for all n ≥  and  < r ≤ ,

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣
r)

≤ Cr

n∑
i=

E|Xi|r .

If
∑∞

n= qs/r(n) <∞ for some r ∈ ( · k–,  · k–], where integer number k ≥ , then there
exists a positive constant Dr depending only on r such that for all n ≥ ,

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣
r)

≤ Dr

{ n∑
i=

E|Xi|r +
( n∑

i=

EX
i

)r/}
.

Lemma . (cf. [, Lemma .]) Let Yn, Zn, n ∈ N be random variables. Then, for any
q > , ε >  and a > ,

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(Yi + Zi)

∣∣∣∣∣ – εa

)+

≤
(


εq

+


q – 

)


aq–
E max

≤j≤n

∣∣∣∣∣
j∑

i=

Yi

∣∣∣∣∣
q

+ E max
≤j≤n

∣∣∣∣∣
j∑

i=

Zi

∣∣∣∣∣.
3 Main results and their proofs
In this section, let Xni, i,n ∈ N, be an array of rowwise AANA random variables, i.e., for
every n ∈ N, Xni, i ∈ N, are AANA random variables with the identical mixing coefficient
q(i) and let ani, i,n ∈ N, be an array of real numbers. Let Xn, n ∈ N, be AANA random
variables with q(n) from Definition ..
In the following, let ψ(x) =  or ψ(x) = logx. Note that the function ψ(x) has the follow-

ing properties (see []):

http://www.journalofinequalitiesandapplications.com/content/2013/1/359
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(a) for all m ≥ k ≥ ,

m∑
n=k

nr–ψ(n)≤ Cmrψ(m) if r >  (.)

and

∞∑
n=m

nr–ψ(n)≤ Cmrψ(m) if r < ; (.)

(b) for all p > ,

ψ
(|x|p) ≤ C(p)ψ

(|x|) ≤ C(p)ψ
(
 + |x|). (.)

We will consider the following conditions.

(H)
∑∞

n= qs/r(n) < ∞ for some r ∈ ( · k–,  · k–] and r > αp–
α–/ , where integer number

k ≥  if α > /, αp >  and p≥ .
(H)

∑∞
n= q(n) < ∞ if α > /, αp >  and  ≤ p <  or α > / and αp = .

Theorem . Let α > 
 and αp ≥ . Assume that Xni, i,n ∈ N, are an array of rowwise

AANA random variables which are stochastically dominated by a random variable X, ani,
i,n ∈N, are an array of real numbers with

∑n
i= |ani|q =O(n) for some q >max{ αp–

α–/ , }. Let
EXni =  for all i,n ∈N, if p ≥  and the conditions (H) and (H) are satisfied. If

E|X|pψ(|X|) < ∞, (.)

then

∞∑
n=

nαp–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > εnα

)
< ∞ for all ε > . (.)

Proof Without loss of generality, we can assume that ani >  for all i,n ∈N. For fixed n ∈N,
let X ′

ni = –nαI(Xni < –nα) + XniI(|Xni| ≤ nα) + nαI(Xni > nα) and X ′′
ni = Xni – X ′

ni, i ≥ . We
will consider the following three cases.
(i) Let p > . It is easy to check that

∞∑
n=

nαp–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > εnα

)

≤
∞∑
n=

nαp–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > εnα/

)

+
∞∑
n=

nαp–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X ′′
ni – EX ′′

ni
)∣∣∣∣∣ > εnα/

)

:= I∗ + J∗.
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By Cr inequality and
∑n

i= a
q
ni =O(n), it is easy to check that for all  < γ ≤ q,


n

n∑
i=

aγ

ni ≤
(

n

n∑
i=

aqni

)γ /q

=O(). (.)

For J∗, noting that |X ′′
ni| ≤ |Xni|I(|Xni| > nα), we have by Markov’s inequality, Lemma .

and (.), that

J∗ ≤ C
∞∑
n=

nαp––αψ(n)
n∑
i=

aniE
∣∣X ′′

ni
∣∣

≤ C
∞∑
n=

nαp––αψ(n)
n∑
i=

aniE|Xni|I
(|Xni| > nα

)

≤ C
∞∑
n=

nαp––αψ(n)E|X|I(|X| > nα
)

= C
∞∑
n=

nαp––αψ(n)
∞∑
j=n

E|X|I(j < |X|/α ≤ j + 
)

= C
∞∑
j=

E|X|I(j < |X|/α ≤ j + 
) j∑

n=

nαp––αψ(n)

≤ C
∞∑
j=

jαp–αψ(j)E|X|I(j < |X|/α ≤ j + 
)

≤ CE|X|pψ(|X|/α) ≤ CE|X|pψ(|X|) < ∞. (.)

For I∗, note that for every n ∈N, aniX ′
ni –EaniX ′

ni, i ∈N, are AANA random variables from
Lemma .. By Markov’s inequality, Lemma . and Jensen’s inequality, we have that for
any r ≥ ,

I∗ ≤ Cr

∞∑
n=

nαp––αrψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
aniX ′

ni – EaniX ′
ni
)∣∣∣∣∣

r)

≤ Cr

∞∑
n=

nαp––αrψ(n)
n∑
i=

arniE
∣∣X ′

ni
∣∣r +Cr

∞∑
n=

nαp––αrψ(n)

( n∑
i=

aniE
(
X ′
ni
))r/

:= I∗ + I∗ . (.)

We consider the following three cases.
Case . α > /, αp >  and p≥ .
Take r = q. By q >max{ αp–

α–/ , }, it follows that q > p and αp –  – αq + q/ < –.
For I∗ , we have by Cr inequality that

I∗ ≤ C
∞∑
n=

nαp––αqψ(n)
n∑
i=

aqni
(
E|Xni|qI

(|Xni| ≤ nα
)
+ nαqP

(|Xni| > nα
))

≤ C
∞∑
n=

nαp––αqψ(n)
n∑
i=

aqni
(
E|X|qI(|X| ≤ nα

)
+ nαqP

(|X| > nα
))

http://www.journalofinequalitiesandapplications.com/content/2013/1/359
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≤ C
∞∑
n=

nαp––αqψ(n)E|X|qI(|X| ≤ nα
)
+C

∞∑
n=

nαp––αψ(n)E|X|I(|X| > nα
)

≤ C
∞∑
n=

nα(p–q)–ψ(n)
n∑
j=

jαqP
(
j –  < |X|/α ≤ j

)
+CE|X|pψ(|X|)

≤ C
∞∑
j=

jαqP
(
j –  < |X|/α ≤ j

) ∞∑
n=j

nα(p–q)–ψ(n) +CE|X|pψ(|X|)

≤ C
∞∑
j=

jαpψ(j)P
(
j –  < |X|/α ≤ j

)
+CE|X|pψ(|X|)

≤ CE|X|pψ(|X|/α) ≤ CE|X|pψ(|X|) < ∞. (.)

For I∗ , note that EX < ∞ if E|X|pψ(|X|) <∞ for p≥ . We have by (.) that

I∗ ≤ C
∞∑
n=

nαp––αqψ(n)

( n∑
i=

aniEX

ni

)q/

≤ C
∞∑
n=

nαp––αqψ(n)

( n∑
i=

aniEX


)q/

≤ C
∞∑
n=

nαp––αq+q/ψ(n) < ∞.

Case . α > /, αp >  and  < p < .
Take r = . Similar to the proofs of (.), (.) and (.), we have that

I∗ ≤ C
∞∑
n=

nαp––αψ(n)
n∑
i=

ani
(
EX

niI
(|Xni| ≤ nα

)
+ nαP

(|Xni| > nα
))

≤ C
∞∑
n=

nαp––αψ(n)EXI
(|X| ≤ nα

)
+C

∞∑
n=

nαp––αψ(n)E|X|I(|X| > nα
)

< ∞. (.)

Case . α > /, αp =  and p > .
Take r = . Note that / < α <  if αp = . Similar to the proof of (.), it follows that

I∗ <∞.
(ii) Let p = . Note that α ≥  from αp≥ . By EXni =  for i,n ∈N, Lemma ., (.) and

(.), we have that

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

aniEX ′
ni

∣∣∣∣∣ ≤ n–α

n∑
i=

aniE|Xni|I
(|Xni| > nα

)
≤ n–αE|X|I(|X| > nα

) →  as n→ ∞.

Hence for n large enough, we have

n–α max
≤j≤n

∣∣∣∣∣
j∑

i=

aniX ′
ni

∣∣∣∣∣ < ε


. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/359
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It follows that

∞∑
n=

nα–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > εnα

)

≤
∞∑
n=

nα–ψ(n)
n∑
i=

P
(|Xni| > nα

)

+
∞∑
n=

nα–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniX ′
ni

∣∣∣∣∣ > εnα

)

≤ C
∞∑
n=

nα–ψ(n)P
(|X| > nα

)

+C
∞∑
n=

nα–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

ani
(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > εnα



)

:= CI +CI. (.)

For I, we have by (.) and (.) that

I =
∞∑
n=

nα–ψ(n)
∞∑
i=n

P
(
iα < |X| ≤ (i + )α

)

=
∞∑
i=

P
(
iα < |X| ≤ (i + )α

) i∑
n=

nα–ψ(n)

≤ C
∞∑
i=

P
(
iα < |X| ≤ (i + )α

)
iαψ(i)

≤ CE|X|ψ(|X|/α) ≤ CE|X|ψ(|X|) <∞. (.)

For I, we have by Markov’s inequality, Lemma ., Lemma ., (.) and (.) that

I ≤ C
∞∑
n=

n–α–ψ(n)E max
≤j≤n

( j∑
i=

ani
(
X ′
ni – EX ′

ni
))

≤ C
∞∑
n=

n–α–ψ(n)
n∑
i=

aniE
(
X ′
ni
)

= C
∞∑
n=

n–α–ψ(n)

{ n∑
i=

aniEX

niI

(|Xni| ≤ nα
)
+ nα

n∑
i=

aniP
(|Xni| > nα

)}

≤ C
∞∑
n=

n–α–ψ(n)EXI
(|X| ≤ nα

)
+C

∞∑
n=

nα–ψ(n)P
(|X| > nα

)

= C
∞∑
n=

n–α–ψ(n)
n∑
k=

EXI
(
(k – )α < |X| ≤ kα

)
+C

= C
∞∑
k=

EXI
(
(k – )α < |X| ≤ kα

) ∞∑
n=k

n–α–ψ(n) +C

http://www.journalofinequalitiesandapplications.com/content/2013/1/359
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≤ C
∞∑
k=

k–αψ(k)EXI
(
(k – )α < |X| ≤ kα

)
+C

≤ CE|X|ψ(|X|) +C <∞. (.)

By (.)-(.), (.) holds for the case p = .
(iii) Let  < p < . Denote

j∑
i=

aniXni =
j∑

i=

aniXniI
(|Xni| ≤ nα

)
+

j∑
i=

aniXniI
(|Xni| > nα

)
=: S′

nj + S′′
nj. (.)

Noting that E|X|pψ(|X|) < ∞, we have by Markov’s inequality, Lemma . and (.)-(.),
that

∞∑
n=

nαp–ψ(n)P
(
max
≤j≤n

∣∣S′
nj
∣∣ > εnα

)

≤ ε–
∞∑
n=

nαp––αψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXniI
(|Xni| ≤ nα

)∣∣∣∣∣
)

≤ ε–
∞∑
n=

nαp––αψ(n)
n∑
i=

aniE|Xni|I
(|Xni| ≤ nα

)

≤ Cε–
∞∑
n=

nαp––αψ(n)E|X|I(|X| ≤ nα
)
+Cε–

∞∑
n=

nαp–ψ(n)P
(|X| > nα

)

= Cε–
∞∑
n=

nαp––αψ(n)
n∑
j=

E|X|I(j –  < |X|/α ≤ j
)

+Cε–
∞∑
n=

nαp–ψ(n)
∞∑
j=n

P
(
j < |X|/α ≤ j + 

)

≤ Cε–
∞∑
j=

jαP
(
j –  < |X|/α ≤ j

) ∞∑
n=j

nαp––αψ(n)

+Cε–
∞∑
j=

P
(
j < |X|/α ≤ j + 

) j∑
n=

nαp–ψ(n)

≤ Cε–
∞∑
j=

jαpψ(j)P
(
j –  < |X|/α ≤ j

)
+Cε–

∞∑
j=

jαpψ(j)P
(
j < |X|/α ≤ j + 

)

≤ CE|X|pψ(|X|/α) ≤ CE|X|pψ(|X|) < ∞ (.)

and

∞∑
n=

nαp–ψ(n)P
(
max
≤j≤n

∣∣S′′
nj
∣∣ > εnα

)

≤ ε–p/
∞∑
n=

nαp/–ψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXniI
(|Xni| > nα

)∣∣∣∣∣
)p/
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≤ ε–p/
∞∑
n=

nαp/–ψ(n)
n∑
i=

ap/ni E|Xni|p/I
(|Xni| > nα

)

≤ Cε–p/
∞∑
n=

nαp/–ψ(n)E|X|p/I(|X| > nα
)

= Cε–p/
∞∑
n=

nαp/–ψ(n)
∞∑
j=n

E|X|p/I(j < |X|/α ≤ j + 
)

≤ Cε–p/
∞∑
j=

jαp/P
(
j < |X|/α ≤ j + 

) j∑
n=

nαp/–ψ(n)

≤ Cε–p/
∞∑
j=

jαpψ(j)P
(
j –  < |X|/α ≤ j

)

≤ CE|X|pψ(|X|/α) ≤ CE|X|pψ(|X|) < ∞. (.)

Hence (.)-(.) imply (.). From all the statements above, we have proved (.). �

Remark . Taking ψ(x) ≡  and ani ≡  in Theorem ., we can get (i) of Theorem B;
meanwhile, relax the mixing coefficient condition

∑∞
n= qs/r(n) <∞ to

∑∞
n= q(n) < ∞ for

the case α > /, αp >  and  < p < . In addition, we extend the case / < α ≤ , p >  and
αp >  to the case α > /, αp≥ . Taking ψ(x)≡ , ani ≡  and α = , p =  in Theorem .,
we can get (ii) of Theorem B and weaken the condition E|X| log |X| < ∞ to the condition
E|X| < ∞. Hence we extend and improve the corresponding results of [].

Remark . Under the conditions of Theorem ., we have that for p > ,

∞∑
n=

nαp––αψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ – εnα

)+

< ∞. (.)

In fact, by Lemma . with r ≥ , we get

∞∑
n=

nαp––αψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ – εnα

)+

≤ C
∞∑
n=

nαp––αrψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
aniX ′

ni – EaniX ′
ni
)∣∣∣∣∣

)r

+
∞∑
n=

nαp––αψ(n)E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
aniX ′′

ni – EaniX ′′
ni
)∣∣∣∣∣

)
.

By the process of the proof of Theorem . in the case p > , it follows that (.) holds.

Similar to the proof of Theorem ., we can get easily the following result.

Theorem . Let α > 
 and αp≥ . Let Xn, n ∈ N, be AANA random variables which are

stochastically dominated by a random variable X.Assume that an, n ∈N, are real numbers

http://www.journalofinequalitiesandapplications.com/content/2013/1/359
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with
∑n

i= |ai|q =O(n) for some q >max{ αp–
α–/ , }, the conditions (H) and (H) are satisfied.

If (.) holds, then

∞∑
n=

nαp–ψ(n)P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aiXi

∣∣∣∣∣ > εnα

)
< ∞ for all ε > .

Remark . Similar to Remark ., taking ψ(x)≡  and ai ≡  in Theorem ., we can get
(i) of Theorem . in []; meanwhile, relax themixing coefficient condition

∑∞
n= qs/r(n) <

∞ to
∑∞

n= q(n) < ∞ for the case α > /, αp >  and  < p < . In addition, we extend the
case / < α ≤ , p >  and αp >  to the case α > /, αp ≥ . Taking ψ(x) ≡ , ani ≡ 
and α = , p =  in Theorem ., we can get (ii) of Theorem . in [] and weaken the
condition E|X| log |X| < ∞ to the condition E|X| < ∞. Hence, we extend and improve the
corresponding results of [].

In the following, we give theMarcinkiewicz-Zygmund type strong law of large numbers
of weights sums on AANA random variables.

Corollary . Let α > 
 and αp≥ . Let Xn, n ∈N, be AANA random variables which are

stochastically dominated by a random variable X. Assume that an, n ∈N are real numbers
with

∑n
i= |ai|q =O(n) for some q >max{ αp–

α–/ , }, the conditions (H) and (H) are satisfied.
If E|X|p < ∞, then

∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aiXi

∣∣∣∣∣ > εnα

)
< ∞ (.)

and

n–α

n∑
i=

aiXi →  a.s. n→ ∞. (.)

Further, for p > ,

∞∑
n=

nαp––αE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aiXi

∣∣∣∣∣ – εnα

)+

< ∞. (.)

Proof Taking ψ(x) =  in Theorem ., we get (.) easily. Similar to the proof of (.),
(.) is obtained immediately. We only need to prove (.).
By (.), it follows that for all ε > ,

∞ >
∞∑
n=

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aiXi

∣∣∣∣∣ > εnα

)
=

∞∑
k=

k+–∑
n=k

nαp–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aiXi

∣∣∣∣∣ > εnα

)

≥
⎧⎨
⎩

∑∞
k=(k)αp–kP(max≤j≤k |∑j

i= aiXi| > ε(k+)α) if αp≥ ,∑∞
k=(k+)αp–kP(max≤j≤k |∑j

i= aiXi| > ε(k+)α) if  ≤ αp < 

≥
⎧⎨
⎩

∑∞
k= P(max≤j≤k |∑j

i= aiXi| > ε(k+)α) if αp≥ ,


∑∞

k= P(max≤j≤k |∑j
i= aiXi| > ε(k+)α) if  ≤ αp < .
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By the Borel-Cantelli lemma, we obtain that

max≤j≤k |∑j
i= aiXi|

(k+)α
→  a.s. k → ∞. (.)

For all positive integers n, there exists a positive integer k such that k– ≤ n≤ k . We have
by (.) that

n–α

∣∣∣∣∣
n∑
i=

aiXi

∣∣∣∣∣ ≤ max
k–≤n≤k

n–α

∣∣∣∣∣
n∑
i=

aiXi

∣∣∣∣∣ ≤ α max≤j≤k |∑j
i= aiXi|

(k+)α
→  a.s. k → ∞,

which implies that

n–α

n∑
i=

aiXi →  a.s. n→ ∞.

This completes the proof of the corollary. �

Remark . Taking an ≡  in Corollary ., we can get the Baum-Katz result on AANA
random variables. Comparing with Theorem . and Corollary . of [], Corollary .
relaxes the mixing coefficient condition

∑∞
n= qs/r(n) < ∞ to

∑∞
n= q(n) < ∞ for the case

α > /, αp >  and  < p < . In addition, we also consider the case αp =  and the case αp≥
 and  < p ≤ . Taking α =  and p =  in Corollary ., we can get the Hsu-Robbins-type
theorem (see []) on AANA random variables. Taking α =  and p =  in Corollary .,
we improve (ii) of Theorem . and (ii) of Corollary . in [].
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