
Kim et al. Journal of Inequalities and Applications 2013, 2013:358
http://www.journalofinequalitiesandapplications.com/content/2013/1/358

RESEARCH Open Access

Fuzzy approximation of Euler-Lagrange
quadratic mappings
Hark-Mahn Kim1, John M Rassias2 and Juri Lee1*

*Correspondence:
annans@hanmail.net
1Department of Mathematics,
Chungnam National University,
Daejeon, 305-764, Korea
Full list of author information is
available at the end of the article

Abstract
In this article, we consider the Hyers-Ulam stability of the Euler-Lagrange quadratic
functional equation

f (kx + ly) + f (kx – ly) = kl
[
f (x + y) + f (x – y)

]
+ 2(k – l)

[
kf (x) – lf (y)

]
in fuzzy Banach spaces, where k, l are nonzero rational numbers with k �= l.

1 Introduction
The theory of fuzzy spaces has much progressed as the theory of randomness has devel-
oped. Some mathematicians have defined fuzzy norms on a vector space from various
points of view [–]. Following Cheng and Mordeson [], Bag and Samanta [] gave the
idea of fuzzy norm in such a manner that the corresponding fuzzy metric is of Kramosil
and Michalek type [] and investigated some properties of fuzzy normed spaces [].
We use the definition of fuzzy normed spaces given in [, , ].

Definition . [, , ] Let X be a real vector space. A function N : X ×R → [, ] is said
to be a fuzzy norm on X if for all x, y ∈ X and all s, t ∈ R,

(N) N(x, t) =  for t ≤ ;
(N) x =  if and only if N(x, t) =  for all t > ;
(N) N(cx, t) =N(x, t

|c| ) for c �= ;
(N) N(x + y, s + t) ≥ min{N(x, s),N(y, t)};
(N) N(x, ·) is a non-decreasing function on R and limt→∞ N(x, t) = ;
(N) for x �= , N(x, ·) is continuous on R.

The pair (X,N) is called a fuzzy normed vector space. The properties of fuzzy normed
vector spaces and examples of fuzzy norms are given in [, ].

Definition . [, , ] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X is
said to be convergent or to converges to x if there exists an x ∈ X such that limn→∞ N(xn –
x, t) =  for all t > . In this case, x is called the limit of the sequence {xn}, and we denote it
by N- limn→∞ xn = x.
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Definition . [, , ] Let (X,N) be a fuzzy normed vector space. A sequence {xn} in X
is called Cauchy if for each ε >  and each t > , there exists an n ∈ N such that for all
n≥ n and all p > , we have N(xn+p – xn, t) >  – ε.

It is well known that every convergent sequence in a fuzzy normed space is a Cauchy se-
quence. If each Cauchy sequence is convergent, then the fuzzy norm is said to be complete
and the fuzzy normed vector space is called a fuzzy Banach space.
We say that amapping f : X → Y between fuzzy normed spacesX and Y is continuous at

x ∈ X if for each sequence {xn} converging to each x ∈ X, the sequence {f (xn)} converges
to f (x). If f : X → Y is continuous at each x ∈ X, then f : X → Y is said to be continuous
on X (see []).
We recall the fixed point theorem from [], which is needed in Section .
Let X be a set. A function d : X × X → [,∞] is called a generalized metric on X if d

satisfies:
() d(x, y) =  if and only if x = y;
() d(x, y) = d(y,x) for all x, y ∈ X ;
() d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ X .

Theorem . [, ] Let (X,d) be a complete generalized metric space and let J : X → X
be a strictly contractive mapping with the Lipschitz constant L < . Then, for each given
element x ∈ X, either

d
(
Jnx, Jn+x

)
= ∞

for all nonnegative integers n or there exists a positive integer n such that
() d(Jnx, Jn+x) < ∞, ∀n≥ n;
() the sequence {Jnx} converges to a fixed point y∗ of J ;
() y∗ is the unique fixed point of J in the set Y = {y ∈ X|d(Jnx, y) < ∞};
() d(y, y∗) ≤ 

–Ld(y, Jy) for all y ∈ Y .

In , Isac and TM Rassias [] were the first to provide a new application of fixed
point theorems to prove the of stability theory of functional equations. By using fixed
point methods, the stability problems of several functional equations have been exten-
sively investigated by a number of authors (see [–, –]).
The stability problem of functional equations originated from a question of Ulam []

concerning the stability of group homomorphisms. Hyers [] gave the first affirmative
partial answer to the question of Ulam for additive mappings on Banach spaces. Hyers’s
theorem was generalized by Aoki [] for additive mappings and by TM Rassias [] for
linear mappings by considering an unbounded Cauchy difference. A generalization of the
TM Rassias theorem was obtain by Gǎvruta [] by replacing the unbounded Cauchy dif-
ference by a general control function in the spirit of TM Rassias’s approach.
The functional equation

f (x + y) + f (x – y) = f (x) + f (y)

is called a quadratic functional equation. In particular, every solution of the quadratic
functional equation is said to be a quadratic function. A Hyers-Ulam stability problem for
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the quadratic functional equation was proved by Skof [] for mappings f : X → Y , where
X is a normed space and Y is a Banach space. Cholewa [] noticed that the theorem
of Skof is still true if the relevant domain X is replaced by an Abelian group. Czerwik
[] proved the Hyers-Ulam stability of the quadratic functional equation. In particular,
JMRassias investigated theHyers-Ulam stability for the relative Euler-Lagrange functional
equation

f (ax + by) + f (bx – ay) =
(
a + b

)[
f (x) + f (y)

]

in [, ]. The stability problems of several functional equations have been extensively
investigated by a number of authors, and there are many interesting results concerning
this problem (see [–]).
In [], Kim, Lee and Son have investigated the Hyers-Ulam stability of the quadratic

functional equation

f (kx + y) + f (kx – y) = kf (x + y) + kf (x – y) + (k – )
[
kf (x) – f (y)

]
()

for any fixed integer k with k �= , .
In this paper, we prove the generalized Hyers-Ulam stability of the Euler-Lagrange

quadratic functional equation

f (kx + ly) + f (kx – ly) = kl
[
f (x + y) + f (x – y)

]
+ (k – l)

[
kf (x) – lf (y)

]
()

in fuzzy Banach spaces, where k, l are nonzero rational numbers with k �= l.

2 General solution of (2)
Lemma . A mapping f : X → Y between linear spaces satisfies the functional equation

f (kx + y) + f (kx – y) = kf (x + y) + kf (x – y) + (k – )
[
kf (x) – f (y)

]

for any fixed rational number k with k �= ,  if and only if f is quadratic.

Proof Let f be a solution of equation (). Letting x = y =  in (), we have f () = . Putting
y =  in (), we get f (kx) = kf (x). Putting x =  in (), we get f (–y) = f (y). Thus, themapping
f is even. Therefore, it suffices to prove that if a mapping f satisfies equation () for any
fixed rational k with k �= , , then f is quadratic. Now, replacing y by x + y in (), we have

f
(
(k + )x + y

)
+ f

(
(k – )x – y

)
= kf (x + y) + kf (y) + k(k – )f (x) – (k – )f (x + y) ()

for all x, y ∈ X. Replacing y by –y in (), we obtain

f
(
(k + )x – y

)
+ f

(
(k – )x + y

)
= kf (x – y) + kf (y) + k(k – )f (x) – (k – )f (x – y) ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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for all x, y ∈ X. Adding () to (), we get

f
(
(k + )x + y

)
+ f

(
(k + )x – y

)
+ f

(
(k – )x + y

)
+ f

(
(k – )x – y

)
= k

[
f (x + y) + f (x – y)

]
– (k – )

[
f (x + y) + f (x – y)

]
= –(k – )

[
f (x + y) + f (x – y)

]
+ k(k – )f (x) + kf (y) ()

for all x, y ∈ X. From the substitution y := kx + y in (), we have

f (kx + y) + f (y) = k
[
f
(
(k + )x + y

)
+ f

(
(k – )x + y

)]
+ k(k – )f (x) – (k – )f (kx + y) ()

for all x, y ∈ X. Replacing y by –y in (), we get

f (kx – y) + f (y) = k
[
f
(
(k + )x – y

)
+ f

(
(k – )x – y

)]
+ k(k – )f (x) – (k – )f (kx – y) ()

for all x, y ∈ X. Adding () to (), we get

f (kx + y) + f (kx – y) = k
[
f
(
(k + )x + y

)
+ f

(
(k + )x – y

)]
+ k

[
f
(
(k – )x + y

)
+ f

(
(k – )x – y

)]
– (k – )

[
f (kx + y) + f (kx – y)

]
+ k(k – )f (x) – f (y) ()

for all x, y ∈ X. It follows from (), by using () and (), that

f (kx + y) + f (kx – y) = k
[
f (x + y) + f (x – y)

]
– k(k – )

[
f (x + y) + f (x – y)

]
+ k(k – )f (x) + (k – )(k – )f (y) ()

for all x, y ∈ X. If we replace x by x in (), then we obtain that

f (kx + y) + f (kx – y) = k
[
f (x + y) + f (x – y)

]
+ k(k – )f (x) – (k – )f (y) ()

for all x, y ∈ X. Associating () with (), we conclude that the mapping f satisfies the
equation

f (x + y) + f (x – y) = 
[
f (x + y) + f (x – y)

]
+ 

[
f (x) – f (x)

]
– f (y)

for all x, y ∈ X. Then f (x) = Q(x) + Q(x) for all x ∈ X, where Q is quadratic and Q is
quartic by the papers [–]. Therefore, f is quadratic because of the property f (kx) =
kf (x).
Conversely, if a mapping f is quadratic, then it is obvious that f satisfies (). �

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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Theorem . Amapping f : X → Y with f () =  between linear spaces satisfies the func-
tional equation () if and only if f is quadratic.

Proof Let f be a solution of equation () and f () = . Putting y =  in (), we get f (kx) =
kf (x) for all x ∈ X. Putting x =  and replacing y by x, we have

f (lx) + f (–lx) = l(l – k)f (x) + klf (–x) ()

for all x ∈ X. Replacing x by –x in (), one gets

f (–lx) + f (lx) = l(l – k)f (–x) + klf (x) ()

for all x ∈ X. Subtracting equation () from (), we find f (–x) = f (x) and so f (lx) = lf (x)
for all x ∈ X. Thus equation () can be rewritten as

f (ax + y) + f (ax – y) = af (x + y) + af (x – y) + a(a – )f (x) – (a – )f (y),

where a := k
l �= ,  for all x, y ∈ X. Therefore, it follows from Lemma . that f is quadratic.

Conversely, if a mapping f is quadratic, then it is obvious that f satisfies equation ().
�

3 Stability of equation (2) by direct method
Throughout this paper, we assume that X is a linear space, (Y ,N) is a fuzzy Banach space
and (Z,N ′) is a fuzzy normed space.
For notational convenience, given a mapping f : X → Y , we define the difference opera-

tor Dklf : X → Y of equation () by

Dklf (x, y) := f (kx + ly) + f (kx – ly) – kl
[
f (x + y) + f (x – y)

]
– (k – l)

[
kf (x) – lf (y)

]
for all x, y ∈ X.

Theorem . Assume that a mapping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t

) ≥ N ′(ϕ(x, y), t) ()

and ϕ : X → Z is a mapping for which there is a constant s ∈ R satisfying  < |s| < k such
that

N ′(ϕ(kx,ky), t) ≥ N ′(sϕ(x, y), t) ()

for all x ∈ X and all t > . Then we can find a unique quadratic mapping Q : X → Y satis-
fying the equation DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥ N ′
(

ϕ(x, )
(k – |s|) , t

)
, t >  ()

for all x ∈ X.

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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Proof We observe from () that

N ′(ϕ(
knx,kny

)
, t

) ≥ N ′(snϕ(x, y), t) =N ′
(

ϕ(x, y),
t

|s|n
)
, t > ,

N ′(ϕ(
knx,kny

)
, |s|nt) ≥ N ′(ϕ(x, y), t), t > 

()

for all x, y ∈ X. Putting y :=  in (), we obtain

N
(
f (kx) – kf (x), t

) ≥ N ′(ϕ(x, ), t), or

N
(
f (x) –

f (kx)
k

,
t

k

)
≥ N ′(ϕ(x, ), t) ()

for all x ∈ X. Therefore it follows from (), () that

N
(
f (knx)
kn

–
f (kn+x)
k(n+)

,
|s|nt

k(n+)

)
≥ N ′(ϕ(

knx, 
)
, |s|nt) ≥ N ′(ϕ(x, ), t)

for all x ∈ X and any integer n≥ . So,

N

(
f (x) –

f (knx)
kn

,
n–∑
i=

|s|it
k(i+)

)
= N

( n–∑
i=

(
f (kix)
ki

–
f (ki+x)
k(i+)

)
,
n–∑
i=

|s|it
k(i+)

)

≥ min
≤i≤n–

{
N

(
f (kix)
ki

–
f (ki+x)
k(i+)

,
|s|it

k(i+)

)}

≥ N ′(ϕ(x, ), t), t > , ()

which yields

N

(
f (kmx)
km

–
f (km+px)
k(m+p) ,

m+p–∑
i=m

|s|it
k(i+)

)

=N

(m+p–∑
i=m

(
f (kix)
ki

–
f (ki+x)
k(i+)

)
,
m+p–∑
i=m

|s|it
k(i+)

)

≥ min
m≤i≤m+p–

{
N

(
f (kix)
ki

–
f (ki+x)
k(n+)

,
|s|it

k(i+)

)}

≥ N ′(ϕ(x, ), t), t > ,

for all x ∈ X and any integers p > ,m ≥ . Hence, one obtains

N
(
f (kmx)
km

–
f (km+px)
k(m+p) , t

)
≥ N ′

(
ϕ(x, ),

t∑m+p–
i=m

|s|i
k(i+)

)
()

for all x ∈ X and any integers p > ,m ≥ , t > . Since
∑m+p–

i=m
|s|i
ki is a convergent series, we

see, by taking the limit m → ∞ in the last inequality, that the sequence { f (knx)kn } is Cauchy
in the fuzzy Banach space (Y ,N) and so it converges in Y . Therefore amappingQ : X → Y
defined by

Q(x) :=N- lim
n→∞

f (knx)
kn

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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is well defined for all x ∈ X. It means that limn→∞ N( f (k
nx)

kn –Q(x), t) = , t > , for all x ∈ X.
In addition, we see from () that

N
(
f (x) –

f (knx)
kn

, t
)

≥ N ′
(

ϕ(x, ),
t∑n–

i=
|s|i

k(i+)

)
()

and so

N
(
f (x) –Q(x), t

) ≥ min

{
N

(
f (x) –

f (knx)
kn

, ( – ε)t
)
,N

(
f (knx)
kn

–Q(x), εt
)}

≥ N ′
(

ϕ(x, ),
( – ε)t∑n–
i=

|s|i
k(i+)

)

≥ N ′(ϕ(x, ), ( – ε)
(
k – |s|)t),  < ε < , ()

for sufficiently large n and for all x ∈ X and all t > . Since ε is arbitrary and N ′ is left
continuous, we obtain

N
(
f (x) –Q(x), t

) ≥ N ′(ϕ(x, ), (k – |s|)t), t > ,

for all x ∈ X, which yields the approximation ().
In addition, it is clear from () and (N) that the relation

N
(
Dklf (knx,kny)

kn
, t

)
≥ N ′(ϕ(

knx,kny
)
,knt

)

≥ N ′
(

ϕ(x, y),
kn

|s|n t
)

→  as n→ ∞

holds for all x, y ∈ X and all t > . Therefore, we obtain by use of limn→∞ N( f (k
nx)

kn –Q(x), t) =
 (t > ) that

N
(
DklQ(x, y), t

)
≥ min

{
N

(
DklQ(x, y) –

Dklf (knx,kny)
kn

,
t


)
,N

(
Dklf (knx,kny)

kn
,
t


)}

=N
(
Dklf (knx,kny)

kn
,
t


)
(for sufficiently large n)

≥ N ′
(

ϕ(x, y),
kn

|s|n t
)
, t > 

→  as n→ ∞,

which impliesDklQ(x, y) =  by (N). Thus we find thatQ is a quadratic mapping satisfying
equation () and inequality () near the approximate quadratic mapping f : X → Y .
To prove the aforementioned uniqueness, we assumenow that there is another quadratic

mapping Q′ : X → Y which satisfies inequality (). Then one establishes by the equality

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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Q′(knx) = knQ(x) and () that

N
(
Q(x) –Q′(x), t

)
= N

(
Q(knx)
kn

–
Q′(knx)
kn

, t
)

≥ min

{
N

(
Q(knx)
kn

–
f (knx)
kn

,
t


)
,N

(
f (knx)
kn

–
Q′(knx)
kn

,
t


)}

≥ N ′(ϕ(
knx, 

)
,
(
k – |s|)knt)

≥ N ′
(

ϕ(x, ),
(k – |s|)knt

|s|n
)
, t > ,

for all n ∈ N, which tends to  as n → ∞ by (N). Therefore one obtains Q(x) = Q′(x) for
all x ∈ X, completing the proof of uniqueness. �

We remark that if k =  in Theorem ., then N ′(ϕ(x, y), t) ≥ N ′(ϕ(x, y), t
|s|n ) →  as n →

∞, and so ϕ(x, y) =  for all x, y ∈ X. Hence Dklf (x, y) =  for all x, y ∈ X and f is itself a
quadratic mapping.

Theorem . Assume that a mapping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t

) ≥ N ′(ϕ(x, y), t) ()

and that ϕ : X → Z is a mapping for which there is a constant s ∈ R satisfying |s| > k such
that

N ′
(

ϕ

(
x
k
,
y
k

)
, t

)
≥ N ′

(

s
ϕ(x, y), t

)
, t > , ()

for all x ∈ X and all t > . Then we can find a unique quadratic mapping Q : X → Y satis-
fying the equation DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥ N ′
(

ϕ(x, )
(|s| – k)

, t
)
, t > , ()

for all x ∈ X.

Proof It follows from () and () that

N
(
f (x) – kf

(
x
k

)
,

t
|s|

)
≥ N ′(ϕ(x, ), t), t > ,

for all x ∈ X. Therefore it follows that

N

(
f (x) – knf

(
x
kn

)
,
n–∑
i=

ki

|s|i+ t
)

≥ N ′(ϕ(x, ), t), t > ,

for all x ∈ X and any integer n > . Thus we see from the last inequality that

N
(
f (x)–knf

(
x
kn

)
, t

)
≥ N ′

(
ϕ(x, ),

t∑n–
i=

ki
|s|i+

)
≥ N ′(ϕ(x, ), (|s|–k)t), t > .

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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The remaining assertion goes in a similar way as the corresponding part of Theo-
rem .. �

We also observe that if k =  in Theorem ., then N ′(ϕ(x, y), t) ≥ N ′(ϕ(x, y), |s|nt) → 
as n → ∞, and so ϕ(x, y) =  for all x, y ∈ X. Hence, Dklf =  and f is itself a quadratic
mapping.

Corollary . Let X be a normed space and (R,N ′) be a fuzzy normed space. Assume that
there exist real numbers θ ≥ , θ ≥  and that p is a real number such that either  < p < 
or p > . If a mapping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t

) ≥ N ′(θ‖x‖p + θ‖y‖p, t
)

for all x, y ∈ X and all t > , then we can find a unique quadratic mapping Q : X → Y
satisfying the equation DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥
⎧⎨
⎩N ′( θ‖x‖p

(k–|k|p) , t), if  < p < , |k| >  (p > , |k| < ),

N ′( θ‖x‖p
(|k|p–k) , t), if p > , |k| >  ( < p < , |k| < )

for all x ∈ X and all t > .

Proof Taking ϕ(x, y) = θ‖x‖p + θ‖y‖p and applying Theorems . and ., we obtain the
desired approximation, respectively. �

The following is a simple example that the quadratic functional equation Dklf (x, y) = ,
k ≥ , k > l ≥  is not stable for p =  in Corollary .. This is a counterexample for the
singular case p =  in a real space with a fuzzy norm N(x, t) =N ′(x, t) = t

t+‖x‖ .

Example . Let φ : R→ R be defined by

φ(x) =

⎧⎨
⎩μx if |x| < ,

μ otherwise,

where μ >  is a positive constant, and define f : R→ R by

f (x) =
∞∑
i=

φ(kix)
ki

for all x ∈ R.

Then f satisfies the functional inequality

∣∣f (kx + ly) + f (kx – ly) – kl
[
f (x + y) + f (x – y)

]
– k(k – l)

[
kf (x) – lf (y)

]∣∣
≤ kμ(k + kl – l + )

k – 
(|x| + |y|) ()

for all x, y ∈ R, but there do not exist a quadratic function Q : R→ R and a constant β > 
such that

∣∣f (x) –Q(x)
∣∣ ≤ β|x| for all x ∈ R. ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/358
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Proof It is easy to see that φ is bounded by μ and f is bounded by kμ
k– on R. First, if

|x| + |y| ≥ 
k or , then

∣∣Dklf (x, y)
∣∣ ≤ kμ

k – 
{

(
k + kl – l + 

)} ≤ kμ(k + kl – l + )
k – 

(|x| + |y|)

and thus () is true. Now suppose that  < |x| + |y| < 
k . Then there exists a positive

integer i such that


ki+

≤ |x| + |y| < 
ki+

, ()

so that ki |x| < 
k , k

i |y| < 
k and ki–(kx± ly), ki–(x± y), ki–x, ki–y all belong to

the interval (–, ). Hence, for i = , , . . . , i – ,

Dklφ
(
kix,kiy

)
= 

since each term ofDklφ(kix,kiy) is defined byμx. Therefore, it follows from the definition
of f and inequality () that

∣∣Dklf (x, y)
∣∣ ≤

∞∑
i=


ki

∣∣Dklφ
(
kix,kiy

)∣∣ ≤
∞∑
i=i


ki

∣∣Dklφ
(
kix,kiy

)∣∣

≤
∞∑
i=i


ki

{

(
k + kl – l + 

)}
μ =

kμ(k + kl – l + )
ki (k – )

≤ kμ(k + kl – l + )
k – 

(|x| + |y|) ()

for all x, y ∈ R with  < |x| + |y| < 
k . Thus f satisfies inequality () for all x, y ∈ R.

We claim that the quadratic functional equation Dklf (x, y) =  is not stable for p =  in
Corollary .. Suppose on the contrary that there exist a quadratic mapping Q : R → R
and a constant β >  satisfying (). Since f is bounded and continuous for all x ∈ R,
Q is bounded on any open interval containing the origin and continuous at the origin.
Therefore, Qmust have the form Q(x) = ηx for any x in R. Thus we obtain that

∣∣f (x)∣∣ ≤ (
β + |η|)|x| for all x ∈ R. ()

However, we can choose a positive integer p with pμ > β + |η|. Then if x ∈ (, 
kp– ), then

kix ∈ (, ) for all i = , , . . . ,p – , and so for this x we get

f (x) =
∞∑
i=

φ(kix)
ki

≥
p–∑
i=

μ(kix)

ki
= pμx >

(
β + |η|)x,

which contradicts (). Therefore the quadratic functional equation Dklf (x, y) =  is not
stable if p =  = q is assumed in Corollary .. �

http://www.journalofinequalitiesandapplications.com/content/2013/1/358


Kim et al. Journal of Inequalities and Applications 2013, 2013:358 Page 11 of 15
http://www.journalofinequalitiesandapplications.com/content/2013/1/358

Corollary . Assume that for k �= , there exists a real number θ ≥  such that the map-
ping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t

) ≥ N ′(θ , t)

for all x, y ∈ X and all t > . Then we can find a unique quadratic mapping Q : X → Y
satisfying the equation DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥ N ′
(

θ

|k – | , t
)

for all x ∈ X and all t > .

We remark that if θ = , then N(Dklf (x, y), t) ≥ N ′(, t) = , and so Dklf (x, y) = . Thus
we get f =Q is itself a quadratic mapping.

4 Stability of equation (2) by fixed point method
Now, in the next theorem, we are going to consider a stability problem concerning the
stability of equation () by using a fixed point theorem of the alternative for contraction
mappings on generalized complete metric spaces due to Margolis and Diaz [].

Theorem . Assume that there exists a constant s ∈ R with |s| �=  and q >  satisfying
 < |s| q < k such that a mapping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t + t

) ≥ min
{
N ′(ϕ(x), tq ),N ′(ϕ(y), tq)} ()

for all x, y ∈ X, ti >  (i = , ) and that ϕ : X → Z is a mapping satisfying

N ′(ϕ(kx), t) ≥ N ′(sϕ(x), t) ()

for all x ∈ X and all t > . Then there exists a unique quadratic mapping Q : X → Y satis-
fying the equation DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥ min

{
N ′

(
ϕ(x)

(k – |s| q )q
, tq

)
, N ′

(
ϕ()

(k – |s| q )q
, tq

)}
()

for all x ∈ X and all t > .

Proof We consider the set of functions

� :=
{
g : X → Y |g() = 

}
and define a generalized metric on � as follows:

d�(g,h) := inf
{
K ∈ [,∞] :N

(
g(x) – h(x),Kt

) ≥ min
{
N ′(ϕ(x), tq),N ′(ϕ(), tq)},

∀x ∈ X,∀t > 
}
.

Then one can easily see that (�,d�) is a complete generalized metric space [, ].
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Now, we define an operator J :� → � as

Jg(x) =
g(kx)
k

for all g ∈ �, x ∈ X.
We first prove that J is strictly contractive on �. For any g,h ∈ �, let ε ∈ [,∞) be any

constant with d�(g,h) ≤ ε. Then we deduce from the use of () and the definition of
d�(g,h) that

N
(
g(x) – h(x), εt

) ≥ min
{
N ′(ϕ(x), tq),N ′(ϕ(), tq)}, ∀x ∈ X, t > 

⇒ N
(
g(kx)
k

–
h(kx)
k

,
|s| q εt
k

)
≥ min

{
N ′(ϕ(kx), |s|tq),N ′(ϕ(), |s|tq)}

⇒ N
(
Jg(x) – Jh(x),

|s| q εt
k

)
≥ min

{
N ′(ϕ(x), tq),N ′(ϕ(), tq)}, ∀x ∈ X, t > 

⇒ d�(Jg, Jh) ≤ |s| q ε
k

.

Since ε is an arbitrary constant with d�(g,h) ≤ ε, we see that for any g,h ∈ �,

d�(Jg, Jh) ≤ |s| q
k

d�(g,h),

which implies J is strictly contractive with the constant |s|

q

k <  on �.
We now want to show that d(f , Jf ) < ∞. If we put y := , ti := t (i = , ) in (), then we

arrive at

N
(
f (x) –

f (kx)
k

,
t
k

)
≥ min

{
N ′(ϕ(x), tq),N ′(ϕ(), tq)},

which yields d�(f , Jf ) ≤ 
k and so d�(Jnf , Jn+f )≤ d�(f , Jf ) ≤ 

k for all n ∈N.
Using the fixed point theorem of the alternative for contractions on generalized com-

plete metric spaces due to Margolis and Diaz [], we see the following (i), (ii) and (iii):
(i) There is a mapping Q : X → Y with Q() =  such that

d�(f ,Q)≤ 

 – |s|

q

k

d�(f , Jf ) ≤ 

k – |s| q

and Q is a fixed point of the operator J , that is, 
kQ(kx) = JQ(x) =Q(x) for all x ∈ X. Thus

we can get

N
(
f (x) –Q(x),

t

k – |s| q
)

≥ min
{
N ′(ϕ(x), tq),N ′(ϕ(), tq)},

N
(
f (x) –Q(x), t

) ≥ min
{
N ′(ϕ(x), (k – |s| q )qtq),N ′(ϕ(), (k – |s| q )qtq)}

for all t >  and all x ∈ X.
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(ii) d�(Jnf ,Q) →  as n → ∞. Thus we obtain

N
(
f (knx)
kn

–Q(x), t
)

=N
(
f
(
knx

)
–Q

(
knx

)
,knt

)
≥ min

{
N ′

(
ϕ(knx)

(k – |s| q )q
,knqtq

)
,N ′

(
ϕ()

(k – |s| q )q
,knqtq

)}

=min

{
N ′

(
ϕ(x)

(k – |s| q )q
,
(
kq

|s|
)n

tq
)
,N ′

(
ϕ()

(k – |s| q )q
,
(
kq

|s|
)n

tq
)}

→  as n→ ∞
(
kq

|s| > 
)

for all t >  and all x ∈ X, that is, the mapping Q : X → Y given by

N- lim
n→∞

f (knx)
kn

=Q(x) ()

is well defined for all x ∈ X. In addition, it follows from the conditions (), () and (N)
that

N
(
Dklf (knx,kny)

kn
, t

)
≥ min

{
N ′

(
ϕ
(
knx

)
,
knqtq

q

)
,N ′

(
ϕ
(
kny

)
,
knqtq

q

)}

= min

{
N ′

(
|s|nϕ(x), k

nqtq

q

)
,N ′

(
|s|nϕ(y), k

nqtq

q

)}

= min

{
N ′

(
ϕ(x),

(
kq

|s|
)n tq

q

)
,N ′

(
ϕ(y),

(
kq

|s|
)n tq

q

)}

→  as n→ ∞, t > , ()

for all x ∈ X. Therefore we obtain, by use of (N), () and (),

N
(
DklQ(x, y), t

) ≥ min

{
N

(
DklQ(x, y) –

Dklf (knx,kny)
kn

,
t


)
,N

(
Dklf (knx,kny)

kn
,
t


)}

= N
(
Dklf (knx,kny)

kn
,
t


)
(for sufficiently large n)

≥ min

{
N ′

(
ϕ(x),

(
kq

|s|
)n tq

q

)
,N ′

(
ϕ(y),

(
kq

|s|
)n tq

q

)}
→  as n→ ∞, t > ,

which implies DklQ(x, y) =  by (N), and so the mapping Q is quadratic satisfying equa-
tion ().
(iii) The mapping Q is a unique fixed point of the operator J in the set 	 = {g ∈

�|d�(f , g) < ∞}. Thus if we assume that there exists another Euler-Lagrange type
quadratic mapping Q′ : X → Y satisfying inequality (), then

Q′(x) =
Q′(kx)
k

= JQ′(x), d�

(
f ,Q′) ≤ 

(k – |s| q )
<∞,
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and so Q′ is a fixed point of the operator J and Q′ ∈ 	 = {g ∈ �|d�(f , g) < ∞}. By the
uniqueness of the fixed point of J in 	, we find that Q =Q′, which proves the uniqueness
of Q satisfying inequality (). This ends the proof of the theorem. �

We observe that if  < |s| <  in Theorem ., then min{N ′(ϕ(x), tq),N ′(ϕ(), tq)} =
N ′(ϕ(x), tq) for all x ∈ X and all t >  since N ′(ϕ(x), tq) ≥ N ′(ϕ(), tq

|s|n ) →  as n → ∞ by
().

Theorem . Assume that there exists a constant s ∈ R with |s| �=  and q >  satisfying
|s| q > k such that a mapping f : X → Y with f () =  satisfies the inequality

N
(
Dklf (x, y), t + t

) ≥ min
{
N ′(ϕ(x), tq ),N ′(ϕ(y), tq)}

for all x, y ∈ X, ti >  (i = , ) and that ϕ : X → Z is a mapping satisfying

N ′
(

ϕ

(
x
k

)
, t

)
≥ N ′

(

s
ϕ(x), t

)

for all x ∈ X. Then there exists a unique quadratic mapping Q : X → Y satisfying the equa-
tion DklQ(x, y) =  and the inequality

N
(
f (x) –Q(x), t

) ≥ min

{
N ′

(
ϕ(x)

(|s| q – k)q
, tq

)
,N ′

(
ϕ()

(|s| q – k)q
, tq

)}
, t > ,

for all x ∈ X.

Proof The proof of this theorem is similar to that of Theorem .. �
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