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Abstract
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1 Introduction
The concept of complete convergence was introduced by Hsu and Robbins [] as follows.
A sequence of random variables {Un,n≥ } is said to converge completely to a constant C
if

∑∞
n= P(|Un –C| > ε) < ∞ for all ε > . In view of the Borel-Cantelli lemma, this implies

that Un → C almost surely (a.s.). The converse is true if the {Un,n ≥ } are independent.
Hsu and Robbins [] proved that the sequence of arithmetic means of independent and
identically distributed (i.i.d.) random variables converges completely to the expected value
if the variance of the summands is finite. Erdös [] proved the converse. The result of Hsu-
Robbins-Erdös is a fundamental theorem in probability theory and has been generalized
and extended in several directions by many authors. See, for example, Spitzer [], Baum
and Katz [], Gut [], Zarei [], and so forth. The main purpose of the paper is to provide
complete convergence forweighted sums of arrays of rowwise ρ̃-mixing randomvariables.
Firstly, let us recall the definitions of sequences of ρ̃-mixing random variables and arrays

of rowwise ρ̃-mixing random variables.
Let {Xn,n ≥ } be a sequence of random variables defined on a fixed probability space

(�,F ,P). Write FS = σ (Xi, i ∈ S ⊂N). Given two σ -algebras B,R in F , let

ρ(B,R) = sup
X∈L(B),Y∈L(R)

|EXY – EXEY |
(VarXVarY )/

.

Define the ρ̃-mixing coefficients by

ρ̃(k) = sup
{
ρ(FS ,FT ) : finite subsets S,T ⊂N such that dist(S,T)≥ k

}
, k ≥ .

Obviously,  ≤ ρ̃(k + ) ≤ ρ̃(k) ≤ , and ρ̃() = .
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Definition . A sequence {Xn,n ≥ } of random variables is said to be a ρ̃-mixing se-
quence if there exists k ∈N such that ρ̃(k) < .
An array {Xni, i ≥ ,n≥ } of random variables is called rowwise ρ̃-mixing random vari-

ables if for every n≥ , {Xni, i≥ } is a sequence of ρ̃-mixing random variables.

ρ̃-mixing random variables were introduced by Bradley [] and many applications have
been found. ρ̃-mixing is similar to ρ-mixing, but both are quite different. Many authors
have studied this concept and provided interesting results and applications. See, for ex-
ample, Bryc and Smolenski [], Peligrad [, ], Peligrad and Gut [], Utev and Peligrad
[], Gan [], Cai [], Zhu [],Wu and Jiang [, ], An and Yuan [], Kuczmaszewska
[], Sung [], Wang et al. [–], and so on.
Recently, An and Yuan [] obtained a complete convergence result for weighted sums

of identically distributed ρ̃-mixing random variables as follows.

Theorem . Let p > /α and / < α ≤ . Let {Xn,n ≥ } be a sequence of identically dis-
tributed ρ̃-mixing random variables with EX = . Assume that {ani,  ≤ i≤ n,n≥ } is an
array of real numbers satisfying

n∑
i=

|ani|p =O
(
nδ

)
for some  < δ < , (.)

�Ank = �
{
 ≤ i ≤ n : |ani|p > (k + )–

} ≥ ne–/k , ∀k ≥ ,n≥ . (.)

Then the following statements are equivalent:
(i) E|X|p < ∞;
(ii)

∑∞
n= npα–P(max≤j≤n |∑j

i= aniXi| > εnα) < ∞ for all ε > .

Sung [] pointed out that the array {ani,  ≤ i ≤ n,n ≥ } satisfying both (.) and (.)
does not exist and obtained a new complete convergence result for weighted sums of iden-
tically distributed ρ̃-mixing random variables as follows.

Theorem . Let p > /α and / < α ≤ . Let {Xn,n ≥ } be a sequence of identically
distributed ρ̃-mixing random variables with EX = . Assume that {ani,  ≤ i ≤ n,n ≥ } is
an array of real numbers satisfying

n∑
i=

|ani|q =O(n) for some q > p. (.)

If E|X|p <∞, then

∞∑
n=

npα–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXi

∣∣∣∣∣ > εnα

)
< ∞, ∀ε > . (.)

Conversely, if (.)holds for any array {ani, ≤ i ≤ n,n≥ } satisfying (.), then E|X|p < ∞.

Formore details about the complete convergence result for weighted sums of dependent
sequences, one can refer to Wu [, ], Wang et al. [, ], and so forth. The main pur-
pose of this paper is to further study the complete convergence for weighted sums of arrays
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of rowwise ρ̃-mixing random variables under mild conditions. The main idea is inspired
by Baek et al. [] and Wu []. As applications, the results of Baum and Katz [] from
the i.i.d. case to the arrays of rowwise ρ̃-mixing setting are obtained. The Marcinkiewicz-
Zygmund type strong law of large numbers for sequences of ρ̃-mixing random variables
is provided. We give some sufficient conditions for complete convergence for weighted
sums of arrays of rowwise ρ̃-mixing random variables without assumption of identical
distribution. The techniques used in the paper are the Rosenthal type inequality and the
truncation method.
Throughout this paper, the symbol C denotes a positive constant which is not nec-

essarily the same one in each appearance and 	x
 denotes the integer part of x. For
a finite set A, the symbol �A denotes the number of elements in the set A. Let I(A)
be the indicator function of the set A. Denote logx = lnmax(x, e), X+ = max(X, ) and
X– =max(–X, ).
The paper is organized as follows. Two important lemmas are provided in Section . The

main results and their proofs are presented in Section .We get complete convergence for
arrays of rowwise ρ̃-mixing random variables which are stochastically dominated by a
random variable X.

2 Preliminaries
Firstly, we give the definition of stochastic domination.

Definition . A sequence {Xn,n ≥ } of random variables is said to be stochastically
dominated by a random variable X if there exists a positive constant C such that

P
(|Xn| > x

) ≤ CP
(|X| > x

)
(.)

for all x ≥  and n≥ .
An array {Xni, i≥ ,n≥ } of rowwise random variables is said to be stochastically dom-

inated by a random variable X if there exists a positive constant C such that

P
(|Xni| > x

) ≤ CP
(|X| > x

)
(.)

for all x ≥ , i≥  and n≥ .

The proofs of the main results of the paper are based on the following two lemmas. One
is the classic Rosenthal type inequality for ρ̃-mixing random variables obtained by Utev
and Peligrad [], the other is the fundamental inequalities for stochastic domination.

Lemma . (cf. Utev and Peligrad [, Theorem .]) Let {Xn,n ≥ } be a sequence of ρ̃-
mixing random variables, EXi = , E|Xi|p < ∞ for some p ≥  and for every i ≥ . Then
there exists a positive constant C depending only on p such that

E

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣
p)

≤ C

{ n∑
i=

E|Xi|p +
( n∑

i=

EX
i

)p/}
.

http://www.journalofinequalitiesandapplications.com/content/2013/1/356


Shen et al. Journal of Inequalities and Applications 2013, 2013:356 Page 4 of 14
http://www.journalofinequalitiesandapplications.com/content/2013/1/356

Lemma . Let {Xni, i ≥ ,n ≥ } be an array of rowwise random variables which is
stochastically dominated by a random variable X. For any α >  and b > , the following
two statements hold:

E|Xni|αI
(|Xni| ≤ b

) ≤ C
[
E|X|αI(|X| ≤ b

)
+ bαP

(|X| > b
)]
, (.)

E|Xni|αI
(|Xni| > b

) ≤ CE|X|αI(|X| > b
)
, (.)

where C and C are positive constants.

Proof The proof of this lemma can be found in Wu [] or Wang et al. []. �

3 Main results and their applications
In this section, we provide complete convergence for weighted sums of arrays of row-
wise ρ̃-mixing random variables. As applications, the Baum and Katz type result and the
Marcinkiewicz-Zygmund type strong law of large numbers for sequences of ρ̃-mixing
random variables are obtained. Let {Xni, i ≥ ,n ≥ } be an array of rowwise ρ̃-mixing
random variables. We assume that the mixing coefficients ρ̃(·) in each row are the
same.

Theorem . Let {Xni, i ≥ ,n ≥ } be an array of rowwise ρ̃-mixing random variables
which is stochastically dominated by a random variable X and EXni =  for all i ≥ , n ≥ ,
β ≥ –. Let {ani, i≥ ,n≥ } be an array of constants such that

sup
i≥

|ani| =O
(
n–r

)
for some r >  (.)

and

∞∑
i=

|ani| =O
(
nα

)
for some α ∈ [, r). (.)

Assume further that  + α + β >  and there exists some δ >  such that α/r +  < δ ≤  and
s =max( + +α+β

r , δ). If E|X|s < ∞, then for all ε > ,

∞∑
n=

nβP

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)
<∞. (.)

If  + α + β <  and E|X| < ∞, then (.) still holds for all ε > .

Proof Without loss of generality, we assume that ani >  for all i ≥  and n ≥  (other-
wise, we use a+ni and a–ni instead of ani respectively, and note that ani = a+ni – a–ni). From the
conditions (.) and (.), we assume that

sup
i≥

ani = n–r ,
∞∑
i=

ani = nα , n≥ . (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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If  + α + β <  and E|X| < ∞, then the result can be easily proved by the following:

∞∑
n=

nβP

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)
≤ C

∞∑
n=

nβE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣
)

≤ C
∞∑
n=

nβ

n∑
i=

E|aniXni|

≤ C
∞∑
n=

nα+βE|X| <∞.

In the following, we consider the case of  + α + β > . Denote

X ′
ni = aniXniI

(|aniXni| ≤ 
)
, i≥ ,n≥ .

It is easy to check that for any ε > ,

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)
⊂

(
max
≤i≤n

|aniXni| > 
)

∪
(
max
≤j≤n

∣∣∣∣∣
j∑

i=

X ′
ni

∣∣∣∣∣ > ε

)
,

which implies that

P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)

≤ P
(
max
≤i≤n

|aniXni| > 
)
+ P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

X ′
ni

∣∣∣∣∣ > ε

)

≤
n∑
i=

P
(|aniXni| > 

)
+ P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > ε – max

≤j≤n

∣∣∣∣∣
j∑

i=

EX ′
ni

∣∣∣∣∣
)
. (.)

Firstly, we show that

max
≤j≤n

∣∣∣∣∣
j∑

i=

EX ′
ni

∣∣∣∣∣ →  as n→ ∞. (.)

Actually, by the conditions EXni = , Lemma ., (.) and E|X|+α/r < ∞ (since E|X|s < ∞),
we have that

max
≤j≤n

∣∣∣∣∣
j∑

i=

EX ′
ni

∣∣∣∣∣ = max
≤j≤n

∣∣∣∣∣
j∑

i=

EaniXniI
(|aniXni| ≤ 

)∣∣∣∣∣
= max

≤j≤n

∣∣∣∣∣
j∑

i=

EaniXniI
(|aniXni| > 

)∣∣∣∣∣
≤

n∑
i=

E|aniXni|+α/rI
(
x|aniXni| > 

)
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≤ C
n∑
i=

a+α/r
ni E|X|+α/rI

(
|X| > 

ani

)

≤ C
(
sup
i≥

ani
)α/r n∑

i=

aniE|X|+α/rI
(|X| > nr

)

≤ C
(
n–r

)α/rnαE|X|+α/rI
(|X| > nr

)
= CE|X|+α/rI

(|X| > nr
) →  as n→ ∞,

which implies (.). It follows from (.) and (.) that for n large enough,

P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)
≤

n∑
i=

P
(|aniXni| > 

)
+ P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > ε



)
.

Hence, to prove (.), we only need to show that

I .=
∞∑
n=

nβ

n∑
i=

P
(|aniXni| > 

)
< ∞ (.)

and

J .=
∞∑
n=

nβP

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > ε



)
< ∞. (.)

By (.) and E|X|s < ∞, we can get that

∞∑
n=

nβ

n∑
i=

P
(|aniXni| > 

) ≤ C
∞∑
n=

nβ

n∑
i=

P
(|aniX| > 

)

≤ C
∞∑
n=

nβ

n∑
i=

aniE|X|I
(

|X| > 
ani

)

≤ C
∞∑
n=

nα+βE|X|I(|X| > nr
)

≤ C
∞∑
n=

nα+β

∞∑
k=n

E|X|I(kr ≤ |X| < (k + )r
)

= C
∞∑
k=

k∑
n=

nα+βE|X|I(kr ≤ |X| < (k + )r
)

≤ C
∞∑
k=

k+α+βE|X|I(kr ≤ |X| < (k + )r
)

≤ C
∞∑
k=

E|X|+(+α+β)/rI
(
kr ≤ |X| < (k + )r

)

≤ CE|X|+(+α+β)/r < ∞,

which implies (.).

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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By Markov’s inequality, Lemma ., Cr ’s inequality and Jensen’s inequality, we have for
M ≥  that

∞∑
n=

nβP

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > ε



)

≤ C
∞∑
n=

nβE

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣

M)

≤ C
∞∑
n=

nβ

[( n∑
i=

E
∣∣X ′

ni
∣∣)M/

+
n∑
i=

E
∣∣X ′

ni
∣∣M]

.= J + J. (.)

Take

M >max

(
,

( + β)
r[δ – ( + α/r)]

,  +
 + α + β

r

)
,

which implies that β – r[δ – ( +α/r)]M/ < – and α +β – r(M– ) < –. Since E|X|δ < ∞,
we have by Lemma ., Markov’s inequality and (.) that

J
.= C

∞∑
n=

nβ

( n∑
i=

E
∣∣X ′

ni
∣∣)M/

= C
∞∑
n=

nβ

[ n∑
i=

E|aniXni|I
(|aniXni| ≤ 

)]M/

≤ C
∞∑
n=

nβ

[ n∑
i=

P
(|aniX| > 

)
+

n∑
i=

E|aniX|I(|aniX| ≤ 
)]M/

≤ C
∞∑
n=

nβ

( n∑
i=

aδ
niE|X|δ

)M/ (
since δ ≤ 

)

≤ C
∞∑
n=

nβ

[(
sup
i≥

ani
)δ– n∑

i=

ani

]M/

≤ C
∞∑
n=

nβ
[
n–r(δ–) · nα

]M/

= C
∞∑
n=

nβ–r[δ–(+α/r)]M/ < ∞. (.)

By Lemma . again, we can see that

J
.= C

∞∑
n=

nβ

n∑
i=

E
∣∣X ′

ni
∣∣M

= C
∞∑
n=

nβ

n∑
i=

E|aniXni|MI
(|aniXni| ≤ 

)

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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≤ C
∞∑
n=

nβ

n∑
i=

P
(|aniX| > 

)
+C

∞∑
n=

nβ

n∑
i=

E|aniX|MI(|aniX| ≤ 
)

.= J + J. (.)

J <∞ has been proved by (.). In the following, we show that J <∞. Denote

Inj =
{
i : (nj)r ≤ /ani <

[
n(j + )

]r}, n≥ , j ≥ . (.)

It is easily seen that Ink ∩ Inj = ∅ for k �= j and
⋃∞

j= Inj =N for all n ≥ . Hence,

J = C
∞∑
n=

nβ

n∑
i=

E|aniX|MI(|aniX| ≤ 
)

≤ C
∞∑
n=

nβ

∞∑
j=

∑
i∈Inj

E|aniX|MI(|aniX| ≤ 
)

≤ C
∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rME|X|MI(|X| ≤ [
n(j + )

]r)

≤ C
∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rM
n(j+)∑
k=

E|X|MI(k ≤ |X| r < k + 
)

= C
∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rM
n∑
k=

E|X|MI(k ≤ |X| r < k + 
)

+C
∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rM
n(j+)∑
k=n+

E|X|MI(k ≤ |X| r < k + 
)

.= J + J. (.)

It is easily seen that for allm≥ , we have that

nα =
∞∑
i=

ani =
∞∑
j=

∑
i∈Inj

ani ≥
∞∑
j=

(�Inj)
[
n(j + )

]–r

≥
∞∑
j=m

(�Inj)
[
n(j + )

]–r ≥
∞∑
j=m

(�Inj)
[
n(j + )

]–r[n(m + )
n(j + )

]r(M–)

=
∞∑
j=m

(�Inj)
[
n(j + )

]–rM[
n(m + )

]r(M–),

which implies that for allm ≥ ,

∞∑
j=m

(�Inj)(nj)–rM ≤ Cnα · n–r(M–) ·m–r(M–) = Cnα–r(M–) ·m–r(M–). (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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Therefore,

J
.= C

∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rM
n∑
k=

E|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
n=

nβ · nα–r(M–)
n∑
k=

E|X|MI(k ≤ |X| r < k + 
)

≤ C
∑

k=

∞∑
n=

nα+β–r(M–)E|X|MI(k ≤ |X| r < k + 
)

+C
∞∑
k=

∞∑
n=	k/


nα+β–r(M–)E|X|MI(k ≤ |X| r < k + 
)

≤ C +C
∞∑
k=

k+α+β–r(M–)E|X|MI(k ≤ |X| r < k + 
)

≤ C +C
∞∑
k=

E|X|M+ +α+β
r –(M–)I

(
k ≤ |X| r < k + 

)

≤ C +CE|X|+ +α+β
r < ∞ (

since E|X|s < ∞)
(.)

and

J
.= C

∞∑
n=

nβ

∞∑
j=

(�Inj)(nj)–rM
n(j+)∑
k=n+

E|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
n=

nβ

∞∑
k=n+

∑
j≥ k

n–

(�Inj)(nj)–rME|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
n=

nβ

∞∑
k=n+

nα–r(M–)
(
k
n

)–r(M–)

E|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
k=

	k/
∑
n=

nα+β · k–r(M–)E|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
k=

k+α+β–r(M–)E|X|MI(k ≤ |X| r < k + 
)

≤ C
∞∑
k=

E|X|M+ +α+β
r –(M–)I

(
k ≤ |X| r < k + 

)

≤ CE|X|+ +α+β
r < ∞ (

sinceE|X|s <∞)
. (.)

Thus, the inequality (.) follows from (.)-(.), (.), (.) and (.). This completes
the proof of the theorem. �

Theorem . Let {Xni, i ≥ ,n ≥ } be an array of rowwise ρ̃-mixing random variables
which is stochastically dominated by a random variable X and EXni =  for all i ≥ , n ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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Let {ani, i ≥ ,n≥ } be an array of constants such that (.) holds and

∞∑
i=

|ani| =O(). (.)

If E|X| log |X| <∞, then for all ε > ,

∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

aniXni

∣∣∣∣∣ > ε

)
<∞. (.)

Proof We use the same notations as those in Theorem .. According to the proof of The-
orem ., we only need to show that (.) and (.) hold, where β = – and α = .
The fact E|X| log |X| < ∞ yields that

I .=
∞∑
n=

n–
n∑
i=

P
(|aniXni| > 

)

≤ C
∞∑
n=

n–
n∑
i=

P
(|aniX| > 

)

≤ C
∞∑
k=

k∑
n=

n–E|X|I(kr ≤ |X| < (k + )r
)

≤ C
∞∑
k=

logkE|X|I(kr ≤ |X| < (k + )r
)

≤ C
∞∑
k=

E|X| log |X|I(kr ≤ |X| < (k + )r
)

≤ CE|X| log |X| < ∞,

which implies (.) for β = –.
By Markov’s inequality, Lemmas . and ., we can get that

J .=
∞∑
n=

n–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

(
X ′
ni – EX ′

ni
)∣∣∣∣∣ > ε



)

≤ C
∞∑
n=

n–
n∑
i=

E
∣∣X ′

ni
∣∣

= C
∞∑
n=

n–
n∑
i=

E|aniXni|I
(|aniXni| ≤ 

)

≤ C
∞∑
n=

n–
n∑
i=

P
(|aniX| > 

)

+C
∞∑
n=

n–
n∑
i=

E|aniX|I(|aniX| ≤ 
)

≤ C + J * + J *. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/356
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Here, J * and J * are J and J whenM = , respectively. Similar to the proof of J, we can get
that

J * ≤ C +CE|X| <∞. (.)

Similar to the proof of J, we have

J * ≤ C
∞∑
k=

[k/]∑
n=

n– · k–rE|X|I(k ≤ |X| r < k + 
)

≤ C
∞∑
k=

logk · k–r · krE|X|I(k ≤ |X| r < k + 
)

≤ CE|X| log |X| < ∞. (.)

This completes the proof of the theorem from the statements above. �

ByTheorems . and ., we can extend the results of BaumandKatz [] for independent
and identically distributed random variables to the case of arrays of rowwise ρ̃-mixing
random variables as follows.

Corollary . Let {Xni, i ≥ ,n ≥ } be an array of rowwise ρ̃-mixing random variables
which is stochastically dominated by a random variable X and EXni =  for all i ≥ , n≥ .

(i) Let p >  and  ≤ t < . If E|X|pt < ∞, then for all ε > ,

∞∑
n=

np–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xni

∣∣∣∣∣ > εn

t

)
<∞. (.)

(ii) If E|X| log |X| < ∞, then for all ε > ,

∞∑
n=


n
P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xni

∣∣∣∣∣ > εn

)
< ∞. (.)

Proof (i) Let ani =  if i > n and ani = n–/t if i ≤ n. Hence, conditions (.) and (.) hold
for r = /t and α =  – /t < r. β .= p –  > –. It is easy to check that

 + α + β = p –

t
> ,  +

 + α + β

r
= pt .= s,

α

r
+  = t < pt .= s.

Therefore, the desired result (.) follows from Theorem . immediately.
(ii) Let ani =  if i > n and ani = n– if i ≤ n. Hence, conditions (.) and (.) hold for

r = –. Therefore, the desired result (.) follows from Theorem . immediately. This
completes the proof of the corollary. �

Similar to the proofs of Theorems .-. and Corollary ., we can get the following
Baum and Katz type result for sequences of ρ̃-mixing random variables.
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Theorem. Let {Xn,n≥ } be a sequence of ρ̃-mixing random variables which is stochas-
tically dominated by a random variable X and EXn =  for n ≥ .

(i) Let p >  and  ≤ t < . If E|X|pt < ∞, then for all ε > ,

∞∑
n=

np–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣ > εn

t

)
< ∞. (.)

(ii) If E|X| log |X| < ∞, then for all ε > ,

∞∑
n=


n
P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣ > εn

)
<∞. (.)

By Theorem ., we can get the Marcinkiewicz-Zygmund type strong law of large num-
bers for ρ̃-mixing random variables as follows.

Corollary . Let {Xn,n ≥ } be a sequence of ρ̃-mixing random variables which is
stochastically dominated by a random variable X and EXn =  for n ≥ .

(i) Let p >  and  ≤ t < . If E|X|pt < ∞, then

n–

t

n∑
i=

Xi →  a.s., n→ ∞. (.)

(ii) If E|X| log |X| < ∞, then


n

n∑
i=

Xi →  a.s., n → ∞. (.)

Proof (i) By (.), we can get that for all ε > ,

∞ >
∞∑
n=

np–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣ > εn

t

)

=
∞∑
k=

k+–∑
n=k

np–P

(
max
≤j≤n

∣∣∣∣∣
j∑

i=

Xi

∣∣∣∣∣ > εn

t

)

≥
{∑∞

k=(k)p–kP(max≤j≤k |∑j
i=Xi| > ε k+

t ) if p ≥ ,∑∞
k=(k+)p–kP(max≤j≤k |∑j

i=Xi| > ε k+
t ) if  < p < ,

≥
{∑∞

k= P(max≤j≤k |∑j
i=Xi| > ε k+

t ) if p≥ ,


∑∞

k= P(max≤j≤k |∑j
i=Xi| > ε k+

t ) if  < p < .

By Borel-Cantelli lemma, we obtain that

max≤j≤k |∑j
i=Xi|

 k+
t

→  a.s., k → ∞. (.)
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For all positive integers n, there exists a positive integer k such that k– ≤ n < k . We
have by (.) that

|∑n
i=Xi|
n 

t
≤ max

k–≤n<k

|∑n
i=Xi|
n 

t
≤ 

t max≤j≤k |∑j
i=Xi|


k+
t

→  a.s., k → ∞,

which implies (.).
(ii) Similar to the proof of (i), we can get (ii) immediately. The details are omitted. This

completes the proof of the corollary. �

Remark . We point out that the cases  + α + β >  and  + α + β <  are considered
in Theorem . and the case  + α + β =  is considered in Theorem ., respectively.
Theorem . and Theorem . consider the complete convergence for weighted sums of
arrays of rowwise ρ̃-mixing random variables, while Theorem . considers the complete
convergence for weighted sums of sequences of ρ̃-mixing random variables. In addition,
Theorem . and Theorem . could be applied to obtain the Baum and Katz type result
for arrays of rowwise ρ̃-mixing random variables, while Theorem . could be applied to
establish the Marcinkiewicz-Zygmund type strong law of large numbers for sequences of
ρ̃-mixing random variables.
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