# RESEARCH

**Open Access** 

# Refined converses of Jensen's inequality for operators

Jadranka Mićić<sup>1\*</sup>, Josip Pečarić<sup>2</sup> and Jurica Perić<sup>3</sup>

\*Correspondence: jmicic@fsb.hr <sup>1</sup> Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, 10000, Croatia Full list of author information is available at the end of the article

# Abstract

In this paper converses of a generalized Jensen's inequality for a continuous field of self-adjoint operators, a unital field of positive linear mappings and real-valued continuous convex functions are studied. New refined converses are presented by using the Mond-Pečarić method improvement. Obtained results are applied to refine selected inequalities with power functions. **MSC:** 47A63; 47A64

**Keywords:** Mond-Pečarić method; self-adjoint operator; positive linear mapping; converse of Jensen's operator inequality; convex function

# **1** Introduction

Let *T* be a locally compact Hausdorff space and let  $\mathcal{A}$  be a  $C^*$ -algebra of operators on some Hilbert space *H*. We say that a field  $(x_t)_{t\in T}$  of operators in  $\mathcal{A}$  is continuous if the function  $t \mapsto x_t$  is norm continuous on *T*. If in addition  $\mu$  is a Radon measure on *T* and the function  $t \mapsto ||x_t||$  is integrable, then we can form *the Bochner integral*  $\int_T x_t d\mu(t)$ , which is the unique element in  $\mathcal{A}$  such that

$$\varphi\left(\int_T x_t \, d\mu(t)\right) = \int_T \varphi(x_t) \, d\mu(t)$$

for every linear functional  $\varphi$  in the norm dual  $\mathcal{A}^*$ .

Assume further that there is a field  $(\phi_t)_{t\in T}$  of positive linear mappings  $\phi_t : \mathcal{A} \to \mathcal{B}$  from  $\mathcal{A}$  to another  $\mathcal{C}^*$ -algebra  $\mathcal{B}$  of operators on a Hilbert space K. We recall that a linear mapping  $\phi : \mathcal{A} \to \mathcal{B}$  is said to be positive if  $\phi(x) \ge 0$  for all  $x \ge 0$ . We say that such a field  $(\phi_t)_{t\in T}$  is continuous if the function  $t \mapsto \phi_t(x)$  is continuous for every  $x \in \mathcal{A}$ . Let the  $\mathcal{C}^*$ -algebras include the identity operators and let the function  $t \mapsto \phi_t(1_H)$  be integrable with  $\int_T \phi_t(1_H) d\mu(t) = k \mathbf{1}_K$  for some positive scalar k. If  $\int_T \phi_t(1_H) d\mu(t) = \mathbf{1}_K$ , we say that a field  $(\phi_t)_{t\in T}$  is unital.

Let B(H) be the  $C^*$ -algebra of all bounded linear operators on a Hilbert space H. We define bounds of a self-adjoint operator  $x \in B(H)$  by

$$m_{x} := \inf_{\|\xi\|=1} \langle x\xi, \xi \rangle \quad \text{and} \quad M_{x} := \sup_{\|\xi\|=1} \langle x\xi, \xi \rangle \tag{1}$$

for  $\xi \in H$ . If Sp(*x*) denotes the spectrum of *x*, then Sp(*x*)  $\subseteq [m_x, M_x]$ .

© 2013 Mićić et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.



For an operator  $x \in B(H)$ , we define the operator  $|x| := (x^*x)^{1/2}$ . Obviously, if x is self-adjoint, then  $|x| = (x^2)^{1/2}$ .

Jensen's inequality is one of the most important inequalities. It has many applications in mathematics and statistics and some other well-known inequalities are its special cases.

Let f be an operator convex function defined on an interval I. Davis [1] proved the socalled Jensen operator inequality

$$f(\phi(x)) \le \phi(f(x)), \tag{2}$$

where  $\phi: \mathcal{A} \to B(K)$  is a unital completely positive linear mapping from a  $C^*$ -algebra  $\mathcal{A}$  to linear operators on a Hilbert space K, and x is a self-adjoint element in  $\mathcal{A}$  with spectrum in I. Subsequently, Choi [2] noted that it is enough to assume that  $\phi$  is unital and positive.

Mond, Pečarić, Hansen, Pedersen *et al.* in [3–6] studied another generalization of (2) for operator convex functions. Moreover, Hansen *et al.* [7] presented a general formulation of Jensen's operator inequality for a bounded continuous field of self-adjoint operators and a unital field of positive linear mappings:

$$f\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right) \leq \int_{T}\phi_{t}\left(f(x_{t})\right)d\mu(t),\tag{3}$$

where f is an operator convex function.

There is an extensive literature devoted to Jensen's inequality concerning different refinements and extensive results, *e.g.*, see [8–20]. Mićić *et al.* [21] proved that the discrete version of (3) stands without operator convexity of f under a condition on the spectra of operators. Recently, Mićić *et al.* [22] presented a discrete version of refined Jensen's inequality for real-valued continuous convex functions. A continuous version is given below.

**Theorem 1** Let  $(x_t)_{t\in T}$  be a bounded continuous field of self-adjoint elements in a unital  $C^*$ -algebra  $\mathcal{A}$  defined on a locally compact Hausdorff space T equipped with a bounded Radon measure  $\mu$ . Let  $m_t$  and  $M_t$ ,  $m_t \leq M_t$ , be the bounds of  $x_t$ ,  $t \in T$ . Let  $(\phi_t)_{t\in T}$  be a unital field of positive linear mappings  $\phi_t : \mathcal{A} \to \mathcal{B}$  from  $\mathcal{A}$  to another unital  $C^*$ -algebra  $\mathcal{B}$ . Let

$$(m_x, M_x) \cap [m_t, M_t] = \emptyset$$
,  $t \in T$ , and  $a < b$ ,

where  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , are the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$  and

 $a = \sup\{M_t : M_t \le m_x, t \in T\}, \quad b = \inf\{m_t : m_t \ge M_x, t \in T\}.$ 

If  $f: I \to \mathbb{R}$  is a continuous convex (resp. concave) function provided that the interval I contains all  $m_t$ ,  $M_t$ , then

$$f\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right)\leq\int_{T}\phi_{t}(f(x_{t}))\,d\mu(t)-\delta_{f}\bar{x}\leq\int_{T}\phi_{t}(f(x_{t}))\,d\mu(t)$$

(resp.

$$f\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right) \geq \int_{T}\phi_{t}\left(f(x_{t})\right)d\mu(t) - \delta_{f}\bar{x} \geq \int_{T}\phi_{t}\left(f(x_{t})\right)d\mu(t)) \tag{4}$$

holds, where

$$\begin{split} \delta_f &\equiv \delta_f(\bar{m},\bar{M}) = f(\bar{m}) + f(\bar{M}) - 2f\left(\frac{\bar{m}+\bar{M}}{2}\right) \\ &\left(resp.\ \delta_f \equiv \delta_f(\bar{m},\bar{M}) = 2f\left(\frac{\bar{m}+\bar{M}}{2}\right) - f(\bar{m}) - f(\bar{M})\right), \\ &\bar{x} \equiv \bar{x}_x(\bar{m},\bar{M}) = \frac{1}{2}\mathbf{1}_K - \frac{1}{\bar{M}-\bar{m}} \left| x - \frac{\bar{m}+\bar{M}}{2} \mathbf{1}_K \right| \end{split}$$

and  $\bar{m} \in [a, m_x]$ ,  $\bar{M} \in [M_x, b]$ ,  $\bar{m} < \bar{M}$ , are arbitrary numbers.

The proof is similar to [22, Theorem 3] and we omit it.

On the other hand, Mond, Pečarić, Furuta *et al.* in [6, 23–27] investigated converses of Jensen's inequality. For presenting these results, we introduce some abbreviations. Let  $f : [m, M] \rightarrow \mathbb{R}, m < M$ . Then a linear function through (m, f(m)) and (M, f(M)) has the form  $h(z) = k_f z + l_f$ , where

$$k_f := \frac{f(M) - f(m)}{M - m}$$
 and  $l_f := \frac{Mf(m) - mf(M)}{M - m}$ . (5)

Using the Mond-Pečarić method, in [27] the following generalized converse of Jensen's operator inequality (2) is presented

$$F[\phi(f(A)),g(\phi(A))] \le \max_{m\le z\le M} F[k_f z + l_f,g(z)]\mathbf{1}_{\tilde{n}},\tag{6}$$

for a convex function f defined on an interval [m, M], m < M, where g is a real-valued continuous function on [m, M], F(u, v) is a real-valued function defined on  $U \times V$ , operator monotone in  $u, U \supset f[m, M], V \supset g[m, M], \phi : H_n \to H_{\tilde{n}}$  is a unital positive linear mapping and A is a self-adjoint operator with spectrum contained in [m, M].

A continuous version of (6) and in the case of  $\int_T \phi_t(1_H) d\mu(t) = k 1_K$  for some positive scalar *k*, is presented in [28]. Recently, Mićić *et al.* [29] obtained better bound than the one given in (6) as follows.

**Theorem 2** [29, Theorem 2.1] Let  $(x_t)_{t\in T}$  be a bounded continuous field of self-adjoint elements in a unital C\*-algebra  $\mathcal{A}$  with the spectra in [m, M], m < M, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure  $\mu$ , and let  $(\phi_t)_{t\in T}$  be a unital field of positive linear maps  $\phi_t : \mathcal{A} \to \mathcal{B}$  from  $\mathcal{A}$  to another unital C\*-algebra  $\mathcal{B}$ . Let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the self-adjoint operator  $x = \int_T \phi_t(x_t) d\mu(t)$  and  $f : [m, M] \to \mathbb{R}$ ,  $g : [m_x, M_x] \to \mathbb{R}$ ,  $F : U \times V \to \mathbb{R}$ , where  $f([m, M]) \subseteq U$ ,  $g([m_x, M_x]) \subseteq V$ and F is bounded.

If f is convex and F is an operator monotone in the first variable, then

$$F\left[\int_{T}\phi_{t}(f(x_{t}))\,d\mu(t),g\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right)\right] \leq C_{1}\mathbf{1}_{K} \leq C\mathbf{1}_{K},\tag{7}$$

where constants  $C_1 \equiv C_1(F, f, g, m, M, m_x, M_x)$  and  $C \equiv C(F, f, g, m, M)$  are

$$\begin{split} C_1 &= \sup_{\substack{m_x \leq z \leq M_x}} F[k_f z + l_f, g(z)] \\ &= \sup_{\substack{M - M_x \\ M - m}} F[pf(m) + (1 - p)f(M), g(pm + (1 - p)M)], \\ C &= \sup_{\substack{m \leq z \leq M}} F[k_f z + l_f, g(z)] \\ &= \sup_{\substack{0 \leq p \leq 1}} F[pf(m) + (1 - p)f(M), g(pm + (1 - p)M)]. \end{split}$$

If f is concave, then reverse inequalities are valid in (7) with inf instead of sup in bounds  $C_1$  and C.

In this paper, we present refined converses of Jensen's operator inequality. Applying these results, we further refine selected inequalities with power functions.

### 2 Main results

In the following we assume that  $(x_t)_{t\in T}$  is a bounded continuous field of self-adjoint elements in a unital  $C^*$ -algebra  $\mathcal{A}$  with the spectra in [m, M], m < M, defined on a locally compact Hausdorff space T equipped with a bounded Radon measure  $\mu$  and that  $(\phi_t)_{t\in T}$  is a unital field of positive linear mappings  $\phi_t : \mathcal{A} \to \mathcal{B}$  between  $C^*$ -algebras.

For convenience, we introduce abbreviations  $\tilde{x}$  and  $\delta_f$  as follows:

$$\widetilde{x} \equiv \widetilde{x}_{x_t,\phi_t}(m,M) \coloneqq \frac{1}{2} \mathbf{1}_K - \frac{1}{M-m} \int_T \phi_t\left( \left| x_t - \frac{m+M}{2} \mathbf{1}_H \right| \right) d\mu(t),\tag{8}$$

where *m*, *M*, *m* < *M*, are some scalars such that the spectra of  $x_t$ ,  $t \in T$ , are in [m, M];

$$\delta_f \equiv \delta_f(m, M) := f(m) + f(M) - 2f\left(\frac{m+M}{2}\right),\tag{9}$$

where  $f : [m, M] \to \mathbb{R}$  is a continuous function.

Obviously,  $m\mathbf{1}_H \leq x_t \leq M\mathbf{1}_H$  implies  $-\frac{M-m}{2}\mathbf{1}_H \leq x_t - \frac{m+M}{2}\mathbf{1}_H \leq \frac{M-m}{2}\mathbf{1}_H$  for  $t \in T$  and  $\int_T \phi_t(|x_t - \frac{m+M}{2}\mathbf{1}_H|) d\mu(t) \leq \frac{M-m}{2}\int_T \phi_t(\mathbf{1}_H) d\mu(t) = \frac{M-m}{2}\mathbf{1}_K$ . It follows  $\widetilde{x} \geq 0$ . Also, if f is *convex* (resp. *concave*), then  $\delta_f \geq 0$  (resp.  $\delta_f \leq 0$ ).

To prove our main result related to converse Jensen's inequality, we need the following lemma.

**Lemma 3** Let f be a convex function on an interval I, m,  $M \in I$  and  $p_1, p_2 \in [0,1]$  such that  $p_1 + p_2 = 1$ . Then

$$\min\{p_{1}, p_{2}\}\left[f(m) + f(M) - 2f\left(\frac{m+M}{2}\right)\right]$$

$$\leq p_{1}f(m) + p_{2}f(M) - f(p_{1}m + p_{2}M)$$

$$\leq \max\{p_{1}, p_{2}\}\left[f(m) + f(M) - 2f\left(\frac{m+M}{2}\right)\right].$$
(10)

*Proof* These results follow from [30, Theorem 1, p.717] for n = 2. For the reader's convenience, we give an elementary proof of (10).

Let  $a_i \le b_i$ , i = 1, 2, be positive real numbers such that  $A = a_1 + a_2 < B = b_1 + b_2$ . Using Jensen's inequality and its reverse, we get

$$Bf\left(\frac{b_{1}m + b_{2}M}{B}\right) - Af\left(\frac{a_{1}m + a_{2}M}{A}\right)$$
  

$$\leq (B - A)f\left(\frac{(b_{1} - a_{1})m + (b_{2} - a_{2})M}{B - A}\right)$$
  

$$\leq (b_{1} - a_{1})f(m) + (b_{2} - a_{2})f(M)$$
  

$$= b_{1}f(m) + b_{2}f_{2}(M) - (a_{1}f(m) + a_{2}f_{2}(M)).$$
(11)

Suppose that  $0 < p_1 < p_2 < 1$ ,  $p_1 + p_2 = 1$ . Replacing  $a_1$  and  $a_2$  by  $p_1$  and  $p_2$ , respectively, and putting  $b_1 = b_2 = p_2$ , A = 1 and  $B = 2p_2$  in (11), we get

$$2p_2f\left(\frac{m+M}{2}\right) - f\left(p_1f(m) + p_2f(M)\right) \le p_2f(m) + p_2f_2(M) - \left(p_1f(m) + p_2f_2(M)\right),$$

which gives the right-hand side of (10). Similarly, replacing  $b_1$  and  $b_2$  by  $p_1$  and  $p_2$ , respectively, and putting  $a_1 = a_2 = p_1$ ,  $A = 2p_1$  and B = 1 in (11), we obtain the left-hand side of (10).

If  $p_1 = 0$ ,  $p_2 = 1$  or  $p_1 = 1$ ,  $p_2 = 0$ , then inequality (10) holds, since f is convex. If  $p_1 = p_2 = 1/2$ , then we have an equality in (10).

The main result of an improvement of the Mond-Pečarić method follows.

**Lemma 4** Let  $(x_t)_{t \in T}$ ,  $(\phi_t)_{t \in T}$ , m and M be as above. Then

$$\int_{T} \phi_t(f(x_t)) \, d\mu(t) \le k_f \int_{T} \phi_t(x_t) \, d\mu(t) + l_f \mathbf{1}_K - \delta_f \widetilde{x} \le k_f \int_{T} \phi_t(x_t) \, d\mu(t) + l_f \mathbf{1}_K \tag{12}$$

for every continuous convex function  $f : [m, M] \to \mathbb{R}$ , where  $\tilde{x}$  and  $\delta_f$  are defined by (8) and (9), respectively.

*If f is concave, then the reverse inequality is valid in* (12).

*Proof* We prove only the convex case. By using (10) we get

$$f(p_1m + p_2M) \le p_1f(m) + p_2f(M) - \min\{p_1, p_2\}\left[f(m) + f(M) - 2f\left(\frac{m+M}{2}\right)\right]$$
(13)

for every  $p_1, p_2 \in [0,1]$  such that  $p_1 + p_2 = 1$ . Let functions  $p_1, p_2 : [m,M] \rightarrow [0,1]$  be defined by

$$p_1(z) = \frac{M-z}{M-m}, \qquad p_2(z) = \frac{z-m}{M-m}$$

Then, for any  $z \in [m, M]$ , we can write

$$f(z) = f\left(\frac{M-z}{M-m}m + \frac{z-m}{M-m}M\right) = f\left(p_1(z)m + p_2(z)M\right).$$

By using (13) we get

$$f(z) \le \frac{M-z}{M-m}f(m) + \frac{z-m}{M-m}f(M) - \tilde{z}\left[f(m) + f(M) - 2f\left(\frac{m+M}{2}\right)\right],\tag{14}$$

where

$$\tilde{z} = \frac{1}{2} - \frac{1}{M-m} \left| z - \frac{m+M}{2} \right|,$$

since

$$\min\left\{\frac{M-z}{M-m},\frac{z-m}{M-m}\right\} = \frac{1}{2} - \frac{1}{M-m}\left|z - \frac{m+M}{2}\right|$$

Now since  $Sp(x_t) \subseteq [m, M]$ , by utilizing the functional calculus to (14), we obtain

$$f(x_t) \leq \frac{M - x_t}{M - m} f(m) + \frac{x_t - m}{M - m} f(M) - \widetilde{x}_t \left[ f(m) + f(M) - 2f\left(\frac{m + M}{2}\right) \right],$$

where

$$\widetilde{x}_t = \frac{1}{2} \mathbb{1}_H - \frac{1}{M-m} \left| x_t - \frac{m+M}{2} \mathbb{1}_H \right|.$$

Applying a positive linear mapping  $\phi_t$ , integrating and using  $\int_T \phi_t(1_H) d\mu(t) = 1_K$ , we get the first inequality in (12) since

$$\widetilde{x} = \int_T \phi_t(\widetilde{x}_t) \, d\mu(t) = \frac{1}{2} \mathbb{1}_K - \frac{1}{M-m} \int_T \phi_t\left( \left| x_t - \frac{m+M}{2} \mathbb{1}_H \right| \right) d\mu(t).$$

By using that  $\delta_f \tilde{x} \ge 0$ , the second inequality in (12) holds.

We can use Lemma 4 to obtain refinements of some other inequalities mentioned in the introduction. First, we present a refinement of Theorem 2.

**Theorem 5** Let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ and let  $m_{\tilde{x}}$  be the lower bound of the operator  $\tilde{x}$ . Let  $f : [m,M] \to \mathbb{R}$ ,  $g : [m_x, M_x] \to \mathbb{R}$ ,  $F: U \times V \to \mathbb{R}$ , where  $f([m, M]) \subseteq U$ ,  $g([m_x, M_x]) \subseteq V$  and F is bounded.

If f is convex and F is operator monotone in the first variable, then

$$F\left[\int_{T} \phi_{t}(f(x_{t})) d\mu(t), g\left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)\right]$$

$$\leq F\left[k_{f}x + l_{f} - \delta_{f}\widetilde{x}, g\left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)\right]$$

$$\leq \sup_{m_{x} \leq z \leq M_{x}} F\left[k_{f}z + l_{f} - \delta_{f}m_{\widetilde{x}}, g(z)\right]\mathbf{1}_{K} \leq \sup_{m_{x} \leq z \leq M_{x}} F\left[k_{f}z + l_{f}, g(z)\right]\mathbf{1}_{K}.$$
(15)

If f is concave, then the reverse inequality is valid in (15) with inf instead of sup.

*Proof* We prove only the convex case. Then  $\delta_f \ge 0$  implies  $0 \le \delta_f m_{\tilde{x}} 1_K \le \delta_f \tilde{x}$ . By using (12) it follows that

$$\int_T \phi_t(f(x_t)) d\mu(t) \leq k_f x + l_f - \delta_f \widetilde{x} \leq k_f x + l_f - \delta_f m_{\widetilde{x}} \mathbf{1}_K \leq k_f x + l_f.$$

Using operator monotonicity of  $F(\cdot, \nu)$  in the first variable, we obtain (15).

## 3 Difference-type converse inequalities

By using Jensen's operator inequality, we obtain that

$$\alpha g\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right) \leq \int_{T}\phi_{t}\left(f(x_{t})\right)d\mu(t) \tag{16}$$

holds for every operator convex function f on [m, M], every function g and real number  $\alpha$  such that  $\alpha g \leq f$  on [m, M]. Now, applying Theorem 5 to the function  $F(u, v) = u - \alpha v$ ,  $\alpha \in \mathbb{R}$ , we obtain the following converse of (16). It is also a refinement of [29, Theorem 3.1].

**Theorem 6** Let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ and  $f : [m, M] \to \mathbb{R}$ ,  $g : [m_x, M_x] \to \mathbb{R}$  be continuous functions. If f is convex and  $\alpha \in \mathbb{R}$ , then

$$\int_{T} \phi_t (f(x_t)) d\mu(t) - \alpha g \left( \int_{T} \phi_t(x_t) d\mu(t) \right) \le \max_{m_x \le z \le M_x} \{ k_f z + l_f - \alpha g(z) \} \mathbf{1}_K - \delta_f \widetilde{x}.$$
(17)

If f is concave, then the reverse inequality is valid in (17) with min instead of max.

Remark 1 (1) Obviously,

$$\int_{T} \phi_t(f(x_t)) d\mu(t) - \alpha g\left(\int_{T} \phi_t(x_t) d\mu(t)\right)$$
  
$$\leq \max_{m_x \leq z \leq M_x} \{k_f z + l_f - \alpha g(z)\} \mathbf{1}_K - \delta_f \widetilde{y} \leq \max_{m_x \leq z \leq M_x} \{k_f z + l_f - \alpha g(z)\} \mathbf{1}_K$$

for every convex function f, every  $\alpha \in \mathbb{R}$ , and  $m_{\tilde{x}} \mathbb{1}_K \leq \tilde{y} \leq \tilde{x}$ , where  $m_{\tilde{x}}$  is the lower bound of  $\tilde{x}$ .

- (2) According to [29, Corollary 3.2], we can determine the constant in the RHS of (17).
- (i) Let *f* be convex. We can determine the value  $C_{\alpha}$  in

$$\int_T \phi_t(f(x_t)) d\mu(t) - \alpha g\left(\int_T \phi_t(x_t) d\mu(t)\right) \leq C_\alpha 1_K - \delta_f \widetilde{x}$$

as follows:

• if  $\alpha \leq 0$ , *g* is convex or  $\alpha \geq 0$ , *g* is concave, then

$$C_{\alpha} = \max\left\{k_f m_x + l_f - \alpha g(m_x), k_f M_x + l_f - \alpha g(M_x)\right\};$$
(18)

• if  $\alpha \leq 0$ , *g* is concave or  $\alpha \geq 0$ , *g* is convex, then

$$C_{\alpha} = \begin{cases} k_f m_x + l_f - \alpha g(m_x) & \text{if } \alpha g'_-(z) \ge k_f \text{ for every } z \in (m_x, M_x), \\ k_f z_0 + l_f - \alpha g(z_0) & \text{if } \alpha g'_-(z_0) \le k_f \le \alpha g'_+(z_0) \\ & \text{ for some } z_0 \in (m_x, M_x), \\ k_f M_x + l_f - \alpha g(M_x) & \text{ if } \alpha g'_+(z) \le k_f \text{ for every } z \in (m_x, M_x). \end{cases}$$

$$(19)$$

(ii) Let *f* be concave. We can determine the value  $c_{\alpha}$  in

$$c_{\alpha} 1_{K} - \delta_{f} \widetilde{x} \leq \int_{T} \phi_{t}(f(x_{t})) d\mu(t) - \alpha g\left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)$$

as follows:

- if α ≤ 0, g is convex or α ≥ 0, g is concave, then c<sub>α</sub> is equal to the right-hand side in
   (19) with reverse inequality signs;
- if α ≤ 0, g is concave or α ≥ 0, g is convex, then c<sub>α</sub> is equal to the right-hand side in
   (18) with min instead of max.

Theorem 6 and Remark 1(2) applied to functions  $f(z) = z^p$  and  $g(z) = z^q$  give the following corollary, which is a refinement of [29, Corollary 3.3].

**Corollary** 7 Let  $(x_t)_{t \in T}$  be a field of strictly positive operators, let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ . Let  $\tilde{x}$  be defined by (8).

(i) Let  $p \in (-\infty, 0] \cup [1, \infty)$ . Then

$$\int_T \phi_t(x_t^p) d\mu(t) - \alpha \left(\int_T \phi_t(x_t) d\mu(t)\right)^q \leq C^*_\alpha 1_K - \left(m^p + M^p - 2^{1-p}(m+M)^p\right) \widetilde{x},$$

where the constant  $C^{\star}_{\alpha}$  is determined as follows:

• *if*  $\alpha \leq 0$ ,  $q \in (-\infty, 0] \cup [1, \infty)$  *or*  $\alpha \geq 0$ ,  $q \in (0, 1)$ , *then* 

$$C_{\alpha}^{\star} = \max\{k_{t^{p}}m_{x} + l_{t^{p}} - \alpha m_{x}^{q}, k_{t^{p}}M_{x} + l_{t^{p}} - \alpha M_{x}^{q}\};$$
(20)

• *if*  $\alpha \le 0, q \in (0, 1)$  *or*  $\alpha \ge 0, q \in (-\infty, 0] \cup [1, \infty)$ *, then* 

$$C_{\alpha}^{\star} = \begin{cases} k_{t^{p}}m_{x} + l_{t^{p}} - \alpha m_{x}^{q} & \text{if } (\alpha q/k_{t^{p}})^{1/(1-q)} \leq m_{x}, \\ l_{t^{p}} + \alpha (q-1)(\alpha q/k_{t^{p}})^{q/(1-q)} & \text{if } m_{x} \leq (\alpha q/k_{t^{p}})^{1/(1-q)} \leq M_{x}, \\ k_{t^{p}}M_{x} + l_{t^{p}} - \alpha M_{x}^{q} & \text{if } (\alpha q/k_{t^{p}})^{1/(1-q)} \geq M_{x}, \end{cases}$$
(21)

where  $k_{t^p} := (M^p - m^p)/(M - m)$  and  $l_{t^p} := (Mm^p - mM^p)/(M - m)$ . (ii) Let  $p \in (0, 1)$ . Then

$$c_{\alpha}^{\star} \mathbf{1}_{K} + \left(2^{1-p}(m+M)^{p} - m^{p} - M^{p}\right) \widetilde{x} \leq \int_{T} \phi_{t}\left(x_{t}^{p}\right) d\mu(t) - \alpha \left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)^{q},$$

where the constant  $c^{\star}_{\alpha}$  is determined as follows:

- *if* α ≤ 0, q ∈ (-∞, 0] ∪ [1, ∞) *or* α ≥ 0, q ∈ (0, 1), *then* c<sup>\*</sup><sub>α</sub> *is equal to the right-hand side in* (21);
- if α ≤ 0, q ∈ (0,1) or α ≥ 0, q ∈ (-∞,0] ∪ [1,∞), then c<sup>\*</sup><sub>α</sub> is equal to the right-hand side in (20) with min instead of max.

Using Theorem 6 and Remark 1 for  $g \equiv f$  and  $\alpha = 1$  and utilizing elementary calculations, we obtain the following converse of Jensen's inequality.

**Theorem 8** Let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ and let  $f : [m, M] \to \mathbb{R}$  be a continuous function.

If f is convex, then

$$0 \leq \int_{T} \phi_t (f(x_t)) d\mu(t) - f \left( \int_{T} \phi_t(x_t) d\mu(t) \right) \leq \bar{C} \mathbf{1}_K - \delta_f \widetilde{x},$$
(22)

where  $\widetilde{x}$  and  $\delta_f$  are defined by (8) and (9), respectively, and

$$\bar{C} = \max_{m_x \le z \le M_x} \{ k_f z + l_f - f(z) \}.$$
(23)

Furthermore, if f is strictly convex differentiable, then the bound  $\overline{C}1_K - \delta_f \tilde{x}$  satisfies the following condition:

$$0 \leq \overline{C}1_K - \delta_f \widetilde{x} \leq \{f(M) - f(m) - f'(m)(M - m) - \delta_f m_{\widetilde{x}}\}1_K,$$

where  $m_{\tilde{x}}$  is the lower bound of the operator  $\tilde{x}$ . We can determine the value  $\bar{C}$  in (23) as follows:

$$\bar{C} = k_f z_0 + l_f - f(z_0), \tag{24}$$

where

$$z_{0} = \begin{cases} m_{x} & \text{if } f'(m_{x}) \ge k_{f}, \\ f'^{-1}(k_{f}) & \text{if } f'(m_{x}) \le k_{f} \le f'(M_{x}), \\ M_{x} & \text{if } f'(M_{x}) \le k_{f}. \end{cases}$$
(25)

In the dual case, when f is concave, the reverse inequality is valid in (22) with min instead of max in (23). Furthermore, if f is strictly concave differentiable, then the bound  $\overline{C}1_K - \delta_f \tilde{x}$  satisfies the following condition:

$$\left\{f(M)-f(m)-f'(m)(M-m)-\delta_f m_{\widetilde{x}}\right\}\mathbf{1}_K \leq \overline{C}\mathbf{1}_K - \delta_f \widetilde{x} \leq 0.$$

We can determine the value  $\overline{C}$  in (24) with  $z_0$ , which equals the right-hand side in (25) with reverse inequality signs.

**Example 1** We give examples for the matrix cases and  $T = \{1, 2\}$ . We put  $f(t) = t^4$ , which is convex, but not operator convex. Also, we define mappings  $\Phi_1, \Phi_2 : M_3(\mathbb{C}) \to M_2(\mathbb{C})$  by  $\Phi_1((a_{ij})_{1 \le i,j \le 3}) = \frac{1}{2}(a_{ij})_{1 \le i,j \le 2}, \Phi_2 = \Phi_1$  and measures by  $\mu(\{1\}) = \mu(\{2\}) = 1$ .



(I) First, we observe an example without the spectra condition (see Figure 1(a)). Then we obtain a refined inequality as in (22), but do not have refined Jensen's inequality.

If 
$$X_1 = 2 \begin{pmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 and  $X_2 = 2 \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ , then  $X = 2 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 

and  $m_1 = -1.604$ ,  $M_1 = 4.494$ ,  $m_2 = 0$ ,  $M_2 = 2$ , m = -1.604, M = 4.494 (rounded to three decimal places). We have

$$(\Phi_1(X_1) + \Phi_2(X_2))^4 = \begin{pmatrix} 16 & 0 \\ 0 & 0 \end{pmatrix} \stackrel{\geq}{\neq} \begin{pmatrix} 80 & 40 \\ 40 & 24 \end{pmatrix} = \Phi_1(X_1^4) + \Phi_2(X_2^4)$$

and

$$\begin{split} \Phi_1(X_1^4) + \Phi_2(X_2^4) &= \begin{pmatrix} 80 & 40 \\ 40 & 24 \end{pmatrix} \\ &< \Phi_1(X_1^4) + \Phi_2(X_2^4) + \bar{C}I_2 - \delta_f \widetilde{X} &= \begin{pmatrix} 111.742 & 39.327 \\ 39.327 & 142.858 \end{pmatrix} \\ &< (\Phi_1(X_1) + \Phi_2(X_2))^4 + \bar{C}I_2 &= \begin{pmatrix} 243.758 & 0 \\ 0 & 227.758 \end{pmatrix}, \end{split}$$

since  $\overline{C} = 227.758$ ,  $\delta_f = 405.762$ ,  $\widetilde{X} = \begin{pmatrix} 0.325 & -0.097 \\ -0.097 & 0.2092 \end{pmatrix}$ .

(II) Next, we observe an example with the spectra condition (see Figure 1(b)). Then we obtain a series of inequalities involving refined Jensen's inequality and its converses.

If 
$$X_1 = \begin{pmatrix} -4 & 1 & 1 \\ 1 & -2 & -1 \\ 1 & -1 & -1 \end{pmatrix}$$
 and  $X_2 = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}$ , then  $X = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ 

and  $m_1 = -4.866$ ,  $M_1 = -0.345$ ,  $m_2 = 1.345$ ,  $M_2 = 5.866$ , m = -4.866, M = 5.866, a = -0.345, b = 1.345 and we put  $\bar{m} = a$ ,  $\bar{M} = b$  (rounded to three decimal places). We

have

$$\begin{split} \left( \Phi_1(X_1) + \Phi_2(X_2) \right)^4 &= \begin{pmatrix} 0.0625 & 0 \\ 0 & 0 \end{pmatrix} \\ &< \Phi_1(X_1^4) + \Phi_2(X_2^4) - \delta_f(a, b) \bar{X} &= \begin{pmatrix} 639.921 & -255 \\ -255 & 117.856 \end{pmatrix} \\ &< \Phi_1(X_1^4) + \Phi_2(X_2^4) &= \begin{pmatrix} 641.5 & -255 \\ -255 & 118.5 \end{pmatrix} \\ &< \left( \Phi_1(X_1) + \Phi_2(X_2) \right)^4 + \bar{C}I_2 - \delta_f(m, M) \widetilde{X} &= \begin{pmatrix} 731.649 & -162.575 \\ -162.575 & 325.15 \end{pmatrix} \\ &< \left( \Phi_1(X_1) + \Phi_2(X_2) \right)^4 + \bar{C}I_2 &= \begin{pmatrix} 872.471 & 0 \\ 0 & 872.409 \end{pmatrix}, \end{split}$$

since  $\delta_f(a,b) = 3.158$ ,  $\bar{X} = \begin{pmatrix} 0.5 & 0 \\ 0 & 0.204 \end{pmatrix}$ ,  $\delta_f(m,M) = 1744.82$ ,  $\tilde{X} = \begin{pmatrix} 0.325 & -0.097 \\ -0.097 & 0.2092 \end{pmatrix}$  and  $\bar{C} = 872.409$ .

Applying Theorem 8 to  $f(t) = t^p$ , we obtain the following refinement of [29, Corollary 3.6].

**Corollary 9** Let  $(x_t)_{t \in T}$  be a field of strictly positive operators, let  $m_x$  and  $M_x$ ,  $m_x \le M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ . Let  $\tilde{x}$  be defined by (8). Then

$$0 \leq \int_{T} \phi_t(x_t^p) d\mu(t) - \left(\int_{T} \phi_t(x_t) d\mu(t)\right)^p$$
  
$$\leq \bar{C}(m_x, M_x, m, M, p) \mathbf{1}_K - (m^p + M^p - 2^{1-p}(m+M)^p) \tilde{x}$$
  
$$\leq \bar{C}(m_x, M_x, m, M, p) \mathbf{1}_K \leq C(m, M, p) \mathbf{1}_K$$

for  $p \notin (0,1)$ , and

$$C(m,M,p)\mathbf{1}_{K} \leq \overline{c}(m_{x},M_{x},m,M,p)\mathbf{1}_{K}$$

$$\leq \overline{c}(m_{x},M_{x},m,M,p)\mathbf{1}_{K} + (2^{1-p}(m+M)^{p} - m^{p} - M^{p})\widetilde{x}$$

$$\leq \int_{T} \phi_{t}(x_{t}^{p}) d\mu(t) - \left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)^{p} \leq 0$$

for  $p \in (0, 1)$ , where

$$\bar{C}(m_x, M_x, m, M, p) = \begin{cases} k_{t^p} m_x + l_{t^p} - m_x^p & \text{if } pm_x^{p-1} \ge k_{t^p}, \\ C(m, M, p) & \text{if } pm_x^{p-1} \le k_{t^p} \le pM_x^{p-1}, \\ k_{t^p} M_x + l_{t^p} - M_x^p & \text{if } pM_x^{p-1} \le k_{t^p}, \end{cases}$$
(26)

and  $\bar{c}(m_x, M_x, m, M, p)$  equals the right-hand side in (26) with reverse inequality signs. C(m, M, p) is the known Kantorovich-type constant for difference (see, i.e., [6, §2.7]):

$$C(m, M, p) = (p-1) \left( \frac{M^p - m^p}{p(M-m)} \right)^{1/(p-1)} + \frac{Mm^p - mM^p}{M-m} \quad for \ p \in \mathbb{R}.$$

### 4 Ratio-type converse inequalities

In [29, Theorem 4.1] the following ratio-type converse of (16) is given:

$$\int_{T} \phi_t(f(x_t)) d\mu(t) \le \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f}{g(z)} \right\} g\left( \int_{T} \phi_t(x_t) d\mu(t) \right), \tag{27}$$

where *f* is convex and g > 0. Applying Theorem 5 and Theorem 6, we obtain the following two refinements of (27).

**Theorem 10** Let  $m_x$  and  $M_x$ ,  $m_x \le M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ and let  $f : [m, M] \to \mathbb{R}$ ,  $g : [m_x, M_x] \to \mathbb{R}$  be continuous functions.

If f is convex and g > 0, then

$$\int_{T} \phi_t(f(x_t)) d\mu(t) \le \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f}{g(z)} \right\} g\left( \int_{T} \phi_t(x_t) d\mu(t) \right) - \delta_f \widetilde{x}$$
(28)

and

$$\int_{T} \phi_t (f(x_t)) d\mu(t) \le \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f - \delta_f m_{\widetilde{x}}}{g(z)} \right\} g \left( \int_{T} \phi_t(x_t) d\mu(t) \right), \tag{29}$$

where  $\tilde{x}$  and  $\delta_f$  are defined by (8) and (9), respectively, and  $m_{\tilde{x}}$  is the lower bound of the operator  $\tilde{x}$ . If f is concave, then reverse inequalities are valid in (28) and (29) with min instead of max.

*Proof* We prove only the convex case. Let  $\alpha_1 = \max_{m_x \le z \le M_x} \{\frac{k_f z + l_f}{g(z)}\}$ . Then there is  $z_0 \in [m_x, M_x]$  such that  $\alpha_1 = \frac{k_f z_0 + l_f}{g(z_0)}$  and  $\frac{k_f z + l_f}{g(z)} \le \alpha_1$  for all  $z \in [m_x, M_x]$ . It follows that  $k_f z_0 + l_f - \alpha_1 g(z_0) = 0$  and  $k_f z + l_f - \alpha_1 g(z) \le 0$  for all  $z \in [m_x, M_x]$ . So,

$$\max_{m_x \leq z \leq M_x} \left\{ k_f z + l_f - \alpha_1 g(z) \right\} = 0.$$

By using (17), we obtain (28). Inequality (29) follows directly from Theorem 5 by putting  $F(u, v) = v^{-1/2}uv^{-1/2}$ .

**Remark 2** (1) Inequality (28) is a refinement of (27) since  $\delta_f \tilde{x} \ge 0$ . Also, (29) is a refinement of (27) since  $m_{\tilde{x}} \ge 0$  and g > 0 implies

$$\max_{m_x \leq z \leq M_x} \left\{ \frac{k_f z + l_f - \delta_f m_{\widetilde{x}}}{g(z)} \right\} \leq \max_{m_x \leq z \leq M_x} \left\{ \frac{k_f z + l_f}{g(z)} \right\}.$$

(2) Let the assumptions of Theorem 10 hold. Generally, there is no relation between the right-hand sides of inequalities (28) and (29) under the operator order (see Example 2). But, for example, if  $g(\int_T \phi_t(x_t) d\mu(t)) \le g(z_0) \mathbb{1}_K$ , where  $z_0 \in [m_x, M_x]$  is the point where it achieves  $\max_{m_x \le z \le M_x} \{\frac{k_f z + l_f}{g(z)}\}$ , then the following order holds:

$$\begin{split} \int_{T} \phi_t \big( f(x_t) \big) \, d\mu(t) &\leq \max_{m_x \leq z \leq M_x} \bigg\{ \frac{k_f z + l_f}{g(z)} \bigg\} g \bigg( \int_{T} \phi_t(x_t) \, d\mu(t) \bigg) - \delta_f \widetilde{x} \\ &\leq \max_{m_x \leq z \leq M_x} \bigg\{ \frac{k_f z + l_f - \delta_f m_{\widetilde{x}}}{g(z)} \bigg\} g \bigg( \int_{T} \phi_t(x_t) \, d\mu(t) \bigg). \end{split}$$

**Example 2** Let  $f(t) = g(t) = t^4$ ,  $\Phi_k((a_{ij})_{1 \le i,j \le 3}) = \frac{1}{2}(a_{ij})_{1 \le i,j \le 2}$  and  $\mu(\{k\}) = 1, k = 1, 2$ .

If 
$$X_1 = \begin{pmatrix} 4 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 0 & 1 \end{pmatrix}$$
 and  $X_2 = \begin{pmatrix} 5 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 3 \end{pmatrix}$ , then  $X = \begin{pmatrix} 4.5 & 0 \\ 0 & 2 \end{pmatrix}$ 

and  $m_1 = 0.623$ ,  $M_1 = 4.651$ ,  $m_2 = 1.345$ ,  $M_2 = 5.866$ , m = 0.623, M = 5.866 (rounded to three decimal places). We have

$$\Phi_{1}(X_{1}^{4}) + \Phi_{2}(X_{2}^{4}) = \begin{pmatrix} 629.5 & -87.5 \\ -87.5 & 99 \end{pmatrix}$$

$$< \alpha_{1}(\Phi_{1}(X_{1}) + \Phi_{2}(X_{2}))^{4} - \delta_{f}\tilde{x} = \begin{pmatrix} 7823.449 & -53.737 \\ -53.737 & 139.768 \end{pmatrix}$$

$$< \alpha_{1}(\Phi_{1}(X_{1}) + \Phi_{2}(X_{2}))^{4} = \begin{pmatrix} 7974.38 & 0 \\ 0 & 311.148 \end{pmatrix},$$
(30)

since  $\alpha_1 = \max_{m_x \le z \le M_x} \{ \frac{k_f z + l_f}{g(z)} \} = 19.447, \, \delta_f = 962.73, \, \widetilde{x} = \begin{pmatrix} 0.157 & 0.056 \\ 0.056 & 0.178 \end{pmatrix}$ . Further,

$$\begin{aligned}
\Phi_1(X_1^4) + \Phi_2(X_2^4) &= \begin{pmatrix} 629.5 & -87.5 \\ -87.5 & 99 \end{pmatrix} \\
&< \alpha_2(\Phi_1(X_1) + \Phi_2(X_2))^4 &= \begin{pmatrix} 5246.13 & 0 \\ 0 & 204.696 \end{pmatrix} \\
&< \alpha_1(\Phi_1(X_1) + \Phi_2(X_2))^4 &= \begin{pmatrix} 7974.38 & 0 \\ 0 & 311.148 \end{pmatrix},
\end{aligned}$$
(31)

since  $\alpha_2 = \max_{m_x \le z \le M_x} \{ \frac{k_f z + l_f - \delta_f m_{\tilde{x}}}{g(z)} \} = 12.794$ . We remark that there is no relation between matrices in the right-hand sides of equalities (30) and (31).

**Remark 3** Similar to [29, Corollary 4.2], we can determine the constant in the RHS of (29).

(i) Let f be convex. We can determine the value C in

$$\int_T \phi_t \big( f(x_t) \big) \, d\mu(t) \leq Cg \bigg( \int_T \phi_t(x_t) \, d\mu(t) \bigg)$$

as follows:

- if g is convex, then

$$C_{\alpha} = \begin{cases} \frac{k_{f}m_{x}+l_{f}-\delta_{f}m_{\tilde{x}}}{g(m_{x})} & \text{if } g_{-}'(z) \geq \frac{k_{f}g(z)}{k_{f}z+l_{f}-\delta_{f}m_{\tilde{x}}} \text{ for every } z \in (m_{x}, M_{x}), \\ \frac{k_{f}z_{0}+l_{f}-\delta_{f}m_{\tilde{x}}}{g(z_{0})} & \text{if } g_{-}'(z_{0}) \leq \frac{k_{f}g(z_{0})}{k_{f}z_{0}+l_{f}-\delta_{f}m_{\tilde{x}}} \leq g_{+}'(z_{0}) \\ & \text{for some } z_{0} \in (m_{x}, M_{x}), \\ \frac{k_{f}M_{x}+l_{f}-\delta_{f}m_{\tilde{x}}}{g(M_{x})} & \text{if } g_{+}'(z) \leq \frac{k_{f}g(z)}{k_{f}z+l_{f}-\delta_{f}m_{\tilde{x}}} \text{ for every } z \in (m_{x}, M_{x}); \end{cases}$$
(32)

• if g is concave, then

$$C = \max\left\{\frac{k_f m_x + l_f - \delta_f m_{\widetilde{x}}}{g(m_x)}, \frac{k_f M_x + l_f - \delta_f m_{\widetilde{x}}}{g(M_x)}\right\}.$$
(33)

Also, we can determine the constant  $\boldsymbol{D}$  in

$$\int_T \phi_t(f(x_t)) \, d\mu(t) \leq Dg\left(\int_T \phi_t(x_t) \, d\mu(t)\right) - \delta_f \widetilde{x}$$

in the same way as the above constant *C* but without  $m_{\tilde{x}}$ . (ii) Let *f* be concave. We can determine the value *c* in

$$cg\left(\int_T \phi_t(x_t) \, d\mu(t)\right) \leq \int_T \phi_t(f(x_t)) \, d\mu(t)$$

as follows:

- if *g* is convex, then *c* is equal to the right-hand side in (33) with min instead of max;
- if *g* is concave, then *c* is equal to the right-hand side in (32) with reverse inequality signs.

Also, we can determine the constant d in

$$dg\left(\int_T \phi_t(x_t) \, d\mu(t)\right) - \delta_f \widetilde{x} \leq \int_T \phi_t(f(x_t)) \, d\mu(t)$$

in the same way as the above constant *c* but without  $m_{\tilde{x}}$ .

Theorem 10 and Remark 3 applied to functions  $f(z) = z^p$  and  $g(z) = z^q$  give the following corollary, which is a refinement of [29, Corollary 4.4].

**Corollary 11** Let  $(x_t)_{t\in T}$  be a field of strictly positive operators, let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ . Let  $\tilde{x}$  be defined by (8),  $m_{\tilde{x}}$  be the lower bound of the operator  $\tilde{x}$  and  $\delta_p := m^p + M^p - 2^{1-p}(m+M)^p$ .

(i) Let  $p \in (-\infty, 0] \cup [1, \infty)$ . Then

$$\int_T \phi_t(x_t^p) \, d\mu(t) \leq C^{\star} \left( \int_T \phi_t(x_t) \, d\mu(t) \right)^q,$$

where the constant  $C^*$  is determined as follows:

• *if*  $q \in (-\infty, 0] \cup [1, \infty)$ *, then* 

$$C^{\star} = \begin{cases} \frac{k_{t^{p}} m_{x} + l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{m_{x}^{q}} & \text{if } \frac{q}{1-q} \frac{l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{k_{t^{p}}} \leq m_{x}, \\ \frac{l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{1-q} (\frac{1-q}{q} \frac{k_{t^{p}}}{l_{t^{p}} - \delta_{p} m_{\widetilde{x}}})^{q} & \text{if } m_{x} \leq \frac{q}{1-q} \frac{l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{k_{t^{p}}} \leq M_{x}, \\ \frac{k_{t^{p}} M_{x} + l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{M_{x}^{q}} & \text{if } \frac{q}{1-q} \frac{l_{t^{p}} - \delta_{p} m_{\widetilde{x}}^{x}}{k_{t^{p}}} \geq M_{x}; \end{cases}$$
(34)

• *if* 
$$q \in (0, 1)$$
*, then*

$$C^{\star} = \max\left\{\frac{k_{t^p}m_x + l_{t^p} - \delta_p m_{\widetilde{x}}}{m_x^q}, \frac{k_{t^p}q, M_x + l_{t^p} - \delta_p m_{\widetilde{x}}}{M_x^q}\right\}.$$
(35)

Also,

$$\int_T \phi_t(x_t^p) \, d\mu(t) \leq D^{\star} \left( \int_T \phi_t(x_t) \, d\mu(t) \right)^q - \delta_p \widetilde{x}$$

holds, where  $D^*$  is determined in the same way as the above constant  $C^*$  but without  $m_{\tilde{x}}$ .

(ii) *Let* 
$$p \in (0, 1)$$
*. Then*

$$c^{\star}\left(\int_{T}\phi_{t}(x_{t})\,d\mu(t)\right)^{q}\leq\int_{T}\phi_{t}\left(x_{t}^{p}
ight)d\mu(t),$$

where the constant  $c^*$  is determined as follows:

- *if*  $q \in (-\infty, 0] \cup [1, \infty)$ , *then*  $c^*$  *is equal to the right-hand side in* (35) *with* min *instead of* max;
- if q ∈ (0,1), then c<sup>\*</sup><sub>α</sub> is equal to the right-hand side in (34).
   Also,

$$d^{\star} \left( \int_{T} \phi_t(x_t) \, d\mu(t) \right)^q - \delta_p \widetilde{x} \leq \int_{T} \phi_t \left( x_t^p \right) d\mu(t)$$

holds, where  $\delta_p \leq 0$ ,  $\tilde{x} \geq 0$  and  $d^*$  is determined in the same way as the above constant  $d^*$  but without  $m_{\tilde{x}}$ .

Using Theorem 10 and Remark 3 for  $g \equiv f$  and utilizing elementary calculations, we obtain the following converse of Jensen's operator inequality.

**Theorem 12** Let  $m_x$  and  $M_x$ ,  $m_x \le M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ . If  $f : [m, M] \to \mathbb{R}$  is a continuous convex function and strictly positive on  $[m_x, M_x]$ , then

$$\int_{T} \phi_t(f(x_t)) d\mu(t) \le \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f - \delta_f m_{\widetilde{x}}}{f(z)} \right\} f\left( \int_{T} \phi_t(x_t) d\mu(t) \right)$$
(36)

and

$$\int_{T} \phi_t(f(x_t)) d\mu(t) \le \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f}{f(z)} \right\} f\left( \int_{T} \phi_t(x_t) d\mu(t) \right) - \delta_f \widetilde{x}, \tag{37}$$

where  $\tilde{x}$  and  $\delta_f$  are defined by (8) and (9), respectively, and  $m_{\tilde{x}}$  is the lower bound of the operator  $\tilde{x}$ .

In the dual case, if f is concave, then the reverse inequalities are valid in (36) and (37) with min instead of max.

Furthermore, if f is convex differentiable on  $[m_x, M_x]$ , we can determine the constant

$$\alpha_1 \equiv \alpha_1(m, M, m_x, M_x, f) = \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f - \delta_f m_{\widetilde{x}}}{f(z)} \right\}$$

in (36) as follows:

$$\alpha_{1} = \begin{cases} \frac{k_{f}m_{x}+l_{f}-\delta_{f}m_{\tilde{x}}}{f(m_{x})} & \text{if } f'(z) \geq \frac{k_{f}f(z)}{k_{f}z+l_{f}-\delta_{f}m_{\tilde{x}}} \text{ for every } z \in (m_{x},M_{x}), \\ \frac{k_{f}z_{0}+l_{f}-\delta_{f}m_{\tilde{x}}}{f(z_{0})} & \text{if } f'(z_{0}) = \frac{k_{f}f(z_{0})}{k_{f}z_{0}+l_{f}-\delta_{f}m_{\tilde{x}}} \text{ for some } z_{0} \in (m_{x},M_{x}), \\ \frac{k_{f}M_{x}+l_{f}-\delta_{f}m_{\tilde{x}}}{f(M_{x})} & \text{if } f'(z) \leq \frac{k_{f}f(z)}{k_{f}z+l_{f}-\delta_{f}m_{\tilde{x}}} \text{ for every } z \in (m_{x},M_{x}). \end{cases}$$
(38)

Also, if f is strictly convex twice differentiable on  $[m_x, M_x]$ , then we can determine the constant

$$\alpha_2 \equiv \alpha_2(m, M, m_x, M_x, f) = \max_{m_x \le z \le M_x} \left\{ \frac{k_f z + l_f}{f(z)} \right\}$$

in (37) as follows:

$$\alpha_2 = \frac{k_f z_0 + l_f}{f(z_0)},\tag{39}$$

where  $z_0 \in (m_x, M_x)$  is defined as the unique solution of the equation  $k_f f(z) = (k_f z + l_f)f'(z)$ provided  $(k_f m_x + l_f)f'(m_x)/f(m_x) \le k_f \le (k_f M_x + l_f)f'(M_x)/f(M_x)$ . Otherwise,  $z_0$  is defined as  $m_x$  or  $M_x$  provided  $k_f \le (k_f m_x + l_f)f'(m_x)/f(m_x)$  or  $k_f \ge (k_f M_x + l_f)f'(M_x)/f(M_x)$ , respectively.

In the dual case, if f is concave differentiable, then the value  $\alpha_1$  is equal to the right-hand side in (38) with reverse inequality signs. Also, if f is strictly concave twice differentiable, then we can determine the value  $\alpha_2$  in (39) with  $z_0$ , which equals the right-hand side in (39) with reverse inequality signs.

**Remark 4** If *f* is convex and strictly negative on  $[m_x, M_x]$ , then (36) and (37) are valid with min instead of max. If *f* is concave and strictly negative, then reverse inequalities are valid in (36) and (37).

Applying Theorem 12 to  $f(t) = t^p$ , we obtain the following refinement of [29, Corollary 4.8].

**Corollary 13** Let  $(x_t)_{t\in T}$  be a field of strictly positive operators, let  $m_x$  and  $M_x$ ,  $m_x \leq M_x$ , be the bounds of the operator  $x = \int_T \phi_t(x_t) d\mu(t)$ . Let  $\tilde{x}$  be defined by (8),  $m_{\tilde{x}}$  be the lower bound of the operator  $\tilde{x}$  and  $\delta_p := m^p + M^p - 2^{1-p}(m+M)^p$ .

If  $p \notin (0,1)$ , then

$$0 \leq \int_{T} \phi_{t}(x_{t}^{p}) d\mu(t) \leq \bar{K}(m_{x}, M_{x}, m, M, p, 0) \left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)^{p} - \delta_{p}$$
  
$$\leq \bar{K}(m_{x}, M_{x}, m, M, p, 0) \left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)^{p}$$
  
$$\leq K(m, M, p) \left(\int_{T} \phi_{t}(x_{t}) d\mu(t)\right)^{p}$$
(40)

and

$$0 \leq \int_{T} \phi_{t}(x_{t}^{p}) d\mu(t) \leq \bar{K}(m_{x}, M_{x}, m, M, p, m_{\tilde{x}}) \left( \int_{T} \phi_{t}(x_{t}) d\mu(t) \right)^{p}$$
  
$$\leq \bar{K}(m_{x}, M_{x}, m, M, p, 0) \left( \int_{T} \phi_{t}(x_{t}) d\mu(t) \right)^{p}$$
  
$$\leq K(m, M, p) \left( \int_{T} \phi_{t}(x_{t}) d\mu(t) \right)^{p}, \qquad (41)$$

where

$$\bar{K}(m_x, M_x, m, M, p, c) = \begin{cases} \frac{k_{\mu}p \, m_x + l_{\mu}p - c\delta_p}{m_x^2} & \text{if } \frac{p(l_tp - c\delta_p)}{m_x} \ge (1-p)k_{t^p}, \\ K(m, M, p, c) & \text{if } \frac{p(l_tp - c\delta_p)}{m_x} < (1-p)k_{t^p} < \frac{p(l_tp - c\delta_p)}{M_x}, \\ \frac{k_{t^p}M_x + l_{t^p} - c\delta_p}{M_x^p} & \text{if } \frac{p(l_tp - c\delta_p)}{M_x} \le (1-p)k_{t^p}. \end{cases}$$
(42)

K(m, M, p, c) is a generalization of the known Kantorovich constant  $K(m, M, p) \equiv K(m, M, p, 0)$  (defined in [6, §2.7]) as follows:

$$K(m, M, p, c) = \frac{mM^{p} - Mm^{p} + c\delta_{p}(M - m)}{(p - 1)(M - m)} \left(\frac{p - 1}{p} \frac{M^{p} - m^{p}}{mM^{p} - Mm^{p} + c\delta_{p}(M - m)}\right)^{p},$$
(43)

for  $p \in \mathbb{R}$  and  $0 \le c \le 0.5$ . If  $p \in (0, 1)$ , then

$$\int_{T} \phi_t(x_t^p) d\mu(t) \ge \bar{k}(m_x, M_x, m, M, p, 0) \left( \int_{T} \phi_t(x_t) d\mu(t) \right)^p - \delta_p \tilde{x}$$
$$\ge \bar{k}(m_x, M_x, m, M, p, 0) \left( \int_{T} \phi_t(x_t) d\mu(t) \right)^p$$
$$\ge K(m, M, p) \left( \int_{T} \phi_t(x_t) d\mu(t) \right)^p \ge 0$$

and

$$\begin{split} \int_{T} \phi_t(x_t^p) \, d\mu(t) &\geq \bar{k}(m_x, M_x, m, M, p, m_{\widetilde{x}}) \bigg( \int_{T} \phi_t(x_t) \, d\mu(t) \bigg)^p \\ &\geq \bar{k}(m_x, M_x, m, M, p, 0) \bigg( \int_{T} \phi_t(x_t) \, d\mu(t) \bigg)^p \\ &\geq K(m, M, p) \bigg( \int_{T} \phi_t(x_t) \, d\mu(t) \bigg)^p \geq 0, \end{split}$$

where  $\bar{k}(m_x, M_x, m, M, p, c)$  equals the right-hand side in (42) with reverse inequality signs.

*Proof* The second inequalities in (40) and (41) follow directly from (37) and (36) by using (39) and (38), respectively. The last inequality in (40) follows from

$$\begin{split} \bar{K}(m_x, M_x, m, M, p, 0) &= \max_{m_x \le z \le M_x} \left\{ \frac{k_{t^p} z + l_{t^p}}{z^p} \right\} \\ &\le \max_{m \le z \le M} \left\{ \frac{k_{t^p} z + l_{t^p}}{z^p} \right\} = K(m, M, p). \end{split}$$

The third inequality in (41) follows from

$$\bar{K}(m_x, M_x, m, M, p, m_{\widetilde{x}}) = \max_{m_x \le z \le M_x} \left\{ \frac{k_{t^p} z + l_{t^p} - \delta_p m_{\widetilde{x}}}{z^p} \right\} \le \bar{K}(m_x, M_x, m, M, p, 0),$$

since  $\delta_p m_{\tilde{x}} \ge 0$  for  $p \notin (0, 1)$  and  $M_x \ge m_x \ge 0$ .



# Appendix A: A new generalization of the Kantorovich constant

**Definition 1** Let h > 0. Further generalization of Kantorovich constant K(h, p) (given in [6, Definition 2.2]) is defined by

$$\begin{split} K(h,p,c) &:= \frac{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)}{(p-1)(h-1)} \\ &\times \left(\frac{p-1}{p} \frac{h^p - 1}{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)}\right)^p \end{split}$$

for any real number  $p \in \mathbb{R}$  and any c,  $0 \le c \le 0.5$ . The constant K(h, p, c) is sometimes denoted by K(p, c) briefly. Some of those constants are depicted in Figure 2.

By inserting c = 0 in K(h, p, c), we obtain the Kantorovich constant K(h, p). The constant K(m, M, p, c) defined by (43) coincides with K(h, p, c) by putting h = M/m > 1.

**Lemma 14** Let h > 0. The generalized Kantorovich constant K(h, p, c) has the following properties:

- (i)  $K(h, p, c) = K(\frac{1}{h}, p, c)$  for all  $p \in \mathbb{R}$ ,
- (ii) K(h, 0, c) = K(h, 1, c) = 1 for all  $0 \le c \le 0.5$  and K(1, p, c) = 1 for all  $p \in \mathbb{R}$ ,
- (iii) K(h, p, c) is decreasing of c for  $p \notin (0, 1)$  and increasing of c for  $p \in (0, 1)$ ,
- (iv)  $K(h, p, c) \ge 1$  for all  $p \notin (0, 1)$  and  $0 < K(h, 0.5, 0) \le K(h, p, c) \le 1$  for all  $p \in (0, 1)$ ,
- (v)  $K(h, p, c) \le h^{p-1}$  for all  $p \ge 1$ .

*Proof* (i) We use an easy calculation:

$$\begin{split} K\left(\frac{1}{h},p,c\right) &= \frac{h^{-p} - h^{-1} + c(h^{-p} + 1 - 2^{1-p}(h^{-1} + 1)^p)(h^{-1} - 1)}{(p-1)(h^{-1} - 1)} \\ &\times \left(\frac{p-1}{p} \frac{h^{-p} - h^{-1} + c(h^{-p} + 1 - 2^{1-p}(h^{-1} + 1)^p)(h^{-1} - 1)}{h^{-p} - h^{-1} + c(h^{-p} + 1 - 2^{1-p}(h^{-1} + 1)^p)(h^{-1} - 1)}\right)^p \\ &= \frac{h - h^p + c(1 + h^p - 2^{1-p}(h + 1)^p)(1 - h)}{(p-1)(1 - h)} \\ &\times \left(\frac{p-1}{p} \frac{1 - h^p}{h - h^p + c(1 + h^p - 2^{1-p}(h + 1)^p)(1 - h)}\right)^p \\ &= K(h, p, c). \end{split}$$

(ii) Let h > 1. The logarithms calculation and l'Hospital's theorem give  $K(h, p, b) \rightarrow 1$  as  $p \rightarrow 1$ ,  $K(h, p, b) \rightarrow 1$  as  $p \rightarrow 0$  and  $K(h, p, b) \rightarrow 1$  as  $h \rightarrow 1+$ . Now using (i) we obtain (ii).

(iii) Let h > 0 and  $0 \le c \le 0.5$ .

$$\frac{\mathrm{d}K(h,p,c)}{\mathrm{d}c} = 2\left(\left(\frac{h+1}{2}\right)^p - \frac{h^p + 1}{2}\right) \\ \times \left(\frac{p-1}{p}\frac{h^p - 1}{h-h^p + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)}\right)^p.$$

Since the function  $z \to z^p$  is convex (resp. concave) on  $(0, \infty)$  if  $p \notin (0,1)$  (resp.  $p \in (0,1)$ ), then  $(\frac{h+1}{2})^p \le \frac{h^p+1}{2}$  (resp.  $(\frac{h+1}{2})^p \ge \frac{h^p+1}{2}$ ) for every h > 0. Then  $\frac{dK(h,p,c)}{dc} \le 0$  if  $p \notin (0,1)$  and  $\frac{dK(h,p,c)}{dc} \ge 0$  if  $p \in (0,1)$ , which gives that K(h,p,c) is decreasing of c if  $p \notin (0,1)$  and increasing of c if  $p \in (0,1)$ .

(iv) Let h > 1 and  $0 \le c \le 0.5$ . If p > 1 then

$$0 < \frac{(p-1)(h-1)}{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)} \\ \leq \frac{p-1}{p} \frac{h^p - 1}{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)}$$

implies

$$\begin{aligned} & \frac{(p-1)(h-1)}{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)} \\ & \leq \left(\frac{p-1}{p} \frac{h^p - 1}{h^p - h + c(h^p + 1 - 2^{1-p}(h+1)^p)(h-1)}\right)^p, \end{aligned}$$

which gives  $K(h, p, c) \ge 1$ . Similarly,  $K(h, p, c) \ge 1$  if p < 0 and  $K(h, p, c) \le 1$  if  $p \in (0, 1)$ . Next, using (iii) and [6, Theorem 2.54(iv)],  $K(h, p, c) \ge K(h, p, 0) \ge K(h, 0.5, 0)$  for  $p \in (0, 1)$ .

(v) Let 
$$p \ge 1$$
. Using (iii) and [6, Theorem 2.54(vi)],  $K(h, p, c) \le K(h, p, 0) \le h^{p-1}$ .

### **Competing interests**

The authors declare that they have no competing interests.

### Authors' contributions

All authors contributed equally and significantly in writing this paper. All authors read and approved the final manuscript.

### Author details

<sup>1</sup>Faculty of Mechanical Engineering and Naval Architecture, University of Zagreb, Ivana Lučića 5, Zagreb, 10000, Croatia.
<sup>2</sup>Faculty of Textile Technology, University of Zagreb, Prilaz baruna Filipovića 30, Zagreb, 10000, Croatia. <sup>3</sup>Faculty of Science, Department of Mathematics, University of Split, Teslina 12, Split, 21000, Croatia.

### Received: 27 November 2012 Accepted: 9 July 2013 Published: 29 July 2013

### References

- 1. Davis, C: A Schwarz inequality for convex operator functions. Proc. Am. Math. Soc. 8, 42-44 (1957)
- 2. Choi, MD: A Schwarz inequality for positive linear maps on C\*-algebras. III. J. Math. 18, 565-574 (1974)
- 3. Hansen, F, Pedersen, GK: Jensen's inequality for operators and Löwner's theorem. Math. Ann. 258, 229-241 (1982)
- 4. Hansen, F, Pedersen, GK: Jensen's operator inequality. Bull. Lond. Math. Soc. 35, 553-564 (2003)
- 5. Mond, B, Pečarić, J: On Jensen's inequality for operator convex functions. Houst. J. Math. 21, 739-754 (1995)
- 6. Furuta, T, Mićić Hot, J, Pečarić, J, Seo, Y: Mond-Pečarić Method in Operator Inequalities. Monographs in Inequalities, vol. 1. Element, Zagreb (2005)
- 7. Hansen, F, Pečarić, J, Perić, I: Jensen's operator inequality and its converses. Math. Scand. 100, 61-73 (2007)
- 8. Abramovich, S, Jameson, G, Sinnamon, G: Refining Jensen's inequality. Bull. Math. Soc. Sci. Math. Roum. 47, 3-14 (2004)
- Dragomir, SS: A new refinement of Jensen's inequality in linear spaces with applications. Math. Comput. Model. 52, 1497-1505 (2010)

- 10. Fujii, Jl: An external version of the Jensen operator inequality. Sci. Math. Japon. Online 2011, 59-62 (2011)
- 11. Fujii, Jl, Pečarić, J, Seo, Y: The Jensen inequality in an external formula. J. Math. Inequal. 6, 473-480 (2012)
- 12. Ivelić, A, Matković, A, Pečarić, JE: On a Jensen-Mercer operator inequality. Banach J. Math. Anal. 5, 19-28 (2011)
- 13. Khosravi, M, Aujla, JS, Dragomir, SS, Moslehian, MS: Refinements of Choi-Davis-Jensen's inequality. Bull. Math. Anal. Appl. **3**, 127-133 (2011)
- 14. Mićić, J, Pavić, Z, Pečarić, J: Extension of Jensen's operator inequality for operators without operator convexity. Abstr. Appl. Anal. 2011, 1-14 (2011)
- Mićić, J, Pečarić, J, Perić, J: Extension of the refined Jensen's operator inequality with condition on spectra. Ann. Funct. Anal. 3, 67-85 (2012)
- 16. Moslehian, MS, Kian, M: Jensen type inequalities for Q-class functions. Bull. Aust. Math. Soc. 85, 128-142 (2011)
- 17. Rooin, J: A refinement of Jensen's inequality. J. Inequal. Pure Appl. Math. 6(2), 38 (2005)
- Srivastava, HM, Xia, ZG, Zhang, ZH: Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables. Math. Comput. Model. 54, 2709-2717 (2011)
- 19. Xiao, ZG, Srivastava, HM, Zhang, ZH: Further refinements of the Jensen inequalities based upon samples with repetitions. Math. Comput. Model. **51**, 592-600 (2010)
- Wang, LC, Ma, XF, Liu, LH: A note on some new refinements of Jensen's inequality for convex functions. J. Inequal. Pure Appl. Math. 10(2), 48 (2009)
- Mićić, J, Pavić, Z, Pečarić, J: Jensen's inequality for operators without operator convexity. Linear Algebra Appl. 434, 1228-1237 (2011)
- Mićić, J, Pečarić, J, Perić, J: Refined Jensen's operator inequality with condition on spectra. Oper. Matrices 7, 293-308 (2013)
- 23. Mond, B, Pečarić, JE: Converses of Jensen's inequality for linear maps of operators. An. Univ. Timiş., Ser. Mat.-Inform. 2, 223-228 (1993)
- Mond, B, Pečarić, J: Converses of Jensen's inequality for several operators. Rev. Anal. Numér. Théor. Approx. 23, 179-183 (1994)
- Furuta, T: Operator inequalities associated with Hölder-McCarthy and Kantorovich inequalities. J. Inequal. Appl. 2, 137-148 (1998)
- 26. Mićić, J, Seo, Y, Takahasi, SE, Tominaga, M: Inequalities of Furuta and Mond-Pečarić. Math. Inequal. Appl. 2, 83-111 (1999)
- Mićić, J, Pečarić, J, Seo, Y, Tominaga, M: Inequalities of positive linear maps on Hermitian matrices. Math. Inequal. Appl. 3, 559-591 (2000)
- 28. Mićić, J, Pečarić, J, Seo, Y: Converses of Jensen's operator inequality. Oper. Matrices 4, 385-403 (2010)
- 29. Mićić, J, Pavić, Z, Pečarić, J: Some better bounds in converses of the Jensen operator inequality. Oper. Matrices 6, 589-605 (2012)
- 30. Mitrinović, DS, Pečarić, JE, Fink, AM: Classical and New Inequalities in Analysis. Kluwer Academic, Dordrecht (1993)

### doi:10.1186/1029-242X-2013-353

Cite this article as: Mićić et al.: Refined converses of Jensen's inequality for operators. Journal of Inequalities and Applications 2013 2013:353.

# Submit your manuscript to a SpringerOpen<sup>®</sup> journal and benefit from:

- ► Convenient online submission
- ► Rigorous peer review
- Immediate publication on acceptance
- Open access: articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at > springeropen.com