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1 Introduction
Let A denote the class of functions which are analyticinU :={z€ C: |z| <1}, Ao :={f €
A:f(0)=1},andlet A, (p € N:={1,2,...}) denote the class of functions f € A of the form

fl2) =2+ Z az’ (zel). @)

n=p+1

Mocanu [1] introduced the class M(«) of functions f € A; such that f(z)# #0 (zel)
and

@) Zf”(Z)>}
Re{(l a)f(z) +a<1+f/(z) >0 (zel). (2)

In particular, §¢:= M(1), §* := M(0) are the well-known classes of convex functions and
starlike functions, respectively.

It is clear that f € S¢ if and only if f is univalent in I{ and f(I{) is a convex domain. Also,
by S§ we denote the class of functions f € Ay which are univalent in ¢/ and f({) is a convex
domain.

We say that a function f € A; is close-to-convex if there exists g € S§¢ such that

1)

ke g'(2)

>0 (zel).

We denote by CC the class of all close-to-convex functions.
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We say that f € A is subordinate to F € A, and we write f(z) < F(z) (or simply f < F), if
there exists a function

weQ:={weA:|w@)| <l zel)},

such that f(z) = F(w(2)) (z € U). In particular, if F is univalent in U/, we have the following
equivalence

fl2)<F(z) <— [f(O) =F(0) Af(U) C F(Z/l)].
Let 1 € S, i > 1, and let us define

Ku(h) = {uq + 1= wWga : qu.q2 < h}.

We note that the class P := K, (%) is the well-known class of Caratheodory functions.
Now we define generalizations of the classes M () and CC associated with functions of
bounded variation.
LetpeN,6 eR, 9,9, € A,, ® = (¢,¢). We denote by MZ(@, &, h) the class of functions
f € Ay such that

Exd)xf  of

= v oyef s

e K, (h),
where * denotes the Hadamard product (or convolution). Moreover, let us define

MZ(CD,h) = MZ(CD,él,h), Mi(%h) = Mi(((pb 901): h);
Wi ®,h) = M (®,2,1),  W,lp,h) = W,((z¢'(2)/p,¢), h),
Si(g,a) := Wi(p, (1+ (1 - 2a/p)z)/(1 - 2)),

where

z

L@ =2+ ) 52”, @) =—¢'(z),  ¢l2) = ;w{(Z) (zell).

z
n=p+1 p

Let = (11, 2), p1, 2 = 1, ho = (I, ) € S§ x S§. We say that a function f € A, belongs
to the class C/\/lft(tb, &,h) if there exists g € W, (, 1) such that

Exd)xf oxf

)
. )(S*w)*g p*g

€ Ky, ().

Moreover, let us define CW, (P, h) := CML(@,zp,h),

These general classes of functions reduce to well-known classes by judicious choices of
the parameters; see, for example, [1-38]. In particular, the class Mi((p,h) contains the
functions f € A, such that

)
Ly= 2\ @

<1 s *f)”(Z)) e )Z(w *f) (2)
p

° PN Tl ®
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It is related to the class of functions with bounded Mocanu variation defined by Coonce
and Ziegler [6] and intensively investigated by Noor et al. [24—27]. The classes

* — Q¥ i g C.,_ Qk Zp[p+(1—l9)z]
Sp(oe).—Sp(l_Z,p), Sp'_8p<7p(1—z)2 ,0)

are the classes of multivalent starlike functions of order o and multivalent convex func-
tions, respectively. Choosing parameters

z z 1+z
h1(2) = E’ a(2) = m, ho(z) = :z (zell)

we obtain the well-known class W, (¢1, ) of functions of bounded boundary rotation
(see, for example, [10, 17, 29, 31, 33]). Moreover, it is clear that

S = '51#< (0)’ S = Slc(o)’ CC= CW(O,O) ((¢2’ d’l): (hO)hO))'

The main object of this paper is to investigate convolution properties related to the
prestarlike functions and various inclusion relationships between defined classes of func-
tions. Some characterizations of the class K, (/) are also given.

2 Functions with bounded variation

By Mi (k > 2) we denote the class of real-valued functions m of bounded variation on
[0, 27r] which satisfy the conditions

2 2w
/ dm(t) =2, / |dm(t)| <k, (4)
0 0

in terms of the Riemann-Stieltjes integral. It is clear that M, is the class of nondecreasing
functions on [0, 27] satisfying (4) or, equivalently, f027T dm(t) = 2.

The class M is related to the class KC\, (h) with u = g + % Therefore, for the simplicity
of notation, we define

Pelh) =K, (h) (n=k/4+1/2,k>2).
From the result of Hallenbeck and MacGregor ([18], p.50), we have the following lemma.

Lemma 1 Let [c| <1, ¢ # -1, h(z) = 11+—_CZZ (z eU). Then q < h if and only if there exists
m € My such that

2
q(z) = % /0 h(ze™)dm(t) (z€U).

Theorem 1 The class KC,,(h) is convex.

Proof Let q,r € K,,(h), a € [0,1]. Then there exist g;,r; < 4 (j = 1,2) such that

q=pq+(1- g, r=pr+ (1= pra.
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Since
ag+ 1 -a)r=p(aq + (1 -a)n) + 1 - p)(ags + (1 -a)r)

and agj + (1 - a)r; < h (j = 1,2), we conclude that ag + (1 — a)r € KC,,(h). Hence, the class
IC,.(h) is convex. O

Theorem 2 If1 < pu < A, then K,,(h) C IC,.(h).

Proof Let g € K,,(h). Then there exist 1,42 < & such that g = uq + (1 — )g2. Thus, we
have

~ ~ A—Q n-1
=g+ (1-A - — :
q=rq+(1-2)q, (qz It A_lqz)

Hence, we get ¢, < /4 and, in consequence, g € K; (h). d

Theorem 3 Let|c| <1,c# -1, h(z) = I;'TCZZ (zeU). Then q € Pr(h) ifand only if there exists
m € M such that

2
q(z) = % /0 h(ze™)dm(t) (z€lU). (5)

Proof Let q € Pi(h). Then there exist g1, g, < & such that g = (f—; + %)ql - (% - %)qz. Thus,
by Lemma 1 there exist m;, m, € M, such that

2
q(2) = %/0 h(ze™) dm(e) <m = (g + %)ml - (g - %)mz)

Since

2 k 1 2 k 1 2
/(; dm(t) = <Z + E) A dml(t) — (Z - E) /(; dWZz(t) =2

and

2 k 1 2 k 1 2

we have m € M; and consequently (5). Conversely, let g € A, satisfy (5) for some m € Mj.
If m € M, then by Lemma 1 and Theorem 2, we have g € P,(h) C Pk(h). Let now m €
My \ M,. Since m is the function with bounded variation, by the Jordan theorem there
exist real-valued functions p, o which are nondecreasing and nonconstant on [0,27]
such that

2 2w 2
mep—pn [ fam@] = [ @+ [ duae ®)
0 0 0
Thus, putting

wi(2m) — 11;(0) 1 )
o= = m; = a_,»Mj (j=1,2)
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we get my, my € M, and
m =1y — QoM. (7)

Combining (6) and (7), we obtain

2 21
200 — 20ty = dm(t) =2, 20 + 2009 = / |dm(t)| <k,
0 0

and so

2
o N

Therefore, by (5) and (7) we obtain

A1 A1
= -+ - — —_— = s
q 272 91 2 2 q2

where

,2§A§k>.

1

2
q(z) = E/o h(ze™)dm(t) (z€U,j=1,2).

Thus, by Lemma 1 and Theorem 2, we have g € P, (1) C Pi(h) and the proof is complete.
O

Let o3, denote the conformal mapping which maps 4(Uf) onto IT := {w € C : Rew > 0}
with 03,(1) = 1 and let D denote the set of analyticity of o,. Moreover, let us define

N - ~ 1
Ay ={g e Ay :qUU) C D}, Pr(h) = {616 Ao:onoqe Pk(g)}

Lemma?2 Letqge .Zo. Then q € K(h) := ICy(h) if and only if
2w )
/ [Re(oy 0 q)(re”)|dt =2 (0<r<1). (8)
0

Proof Letq e Aj. Then, by the properties of subordination, we have

qgeKh) < gq=<h <<= o,oq=<o,oh
)
< Re(op09)(2)>0 (zeld).

Moreover,

2
/ Re(o, o q)(re’) dt = Re/ widz = 2(op0q)(0) =21 (0<r<l),
0 |z|=r

Thus, condition (8) is equivalent to Re(oy, 0 g)(z) > 0 (z € U) and by (9) we have, equiva-
lently, g € K(h). O
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Let H(D), SH(D) denote the classes of harmonic and subharmonic functions in the

domain D C C, respectively.

Theorem 4 Let g € /To. Then q € ﬁk(h) if and only if

2w
/ |Re(oy 0 q)(re”)|de <km  (0<r<1). (10)
0

Proof Letq e Pi(h). Then there exist q1,q2 < }%ﬁ such that o, 0 g = (§ + %)ql - (g - %)qg.

Hence, by Lemma 2 we have

2m , kK 1\ [* ;
/0 IRe(oy 0 ) (re’) | dt < <Z + 5)/0 [Req(re”)|dt
k_1\ [ i
+<E—E)/O |Reqa(re”)|dt=kn (0<r<1).

To obtain the converse, suppose that g € Ay satisfies (10). By Lemma 2 we can assume
k> 2. If we put

F:=Re(o, 09q), F*(z):= max{F(z), 0} >0,
F(2) :=max{-F(2),0} >0 (zel),

T 1 o r’ —lgf? T (it
Vr(Z)::g \ |reit—z|2F (re")de =0 (lzl <r<1, T ef{+-}),

then the functions F*, V; (r € {+,-}) are nonconstant and

F e HU), V5LV e HU,), F*,F~ e SHU),

F=F"—F, |F|=F* +F-, Viz)=F(2) (lzl=r1e€{+-}).
Thus, we have

max{F*(z), Vi (2)} = V(@) (lzl <r,re(0,1),7 € {+,-}),

max{Vf(z) Hz] < r} = maX{F’(z) tz] = r}

<max{F*(2):|z]| <R} (r<R<Lrte{+-}).
Therefore, the functions

G| @l

(re(0,1),7 € {+,-}),
F'(z), r<jz|<1

are continuous subharmonic functions in &/ and the families {G} : r € (0,1)}, {G, : r €

(0,1)} are locally uniformly bounded. Hence, if we define

G'(z):= sup{Gf(z) :re (0, 1)} = lim G;_l(z) (z el,te {+,—}),

n—00
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G eSHWU), GG eHU,) (re(0,1),7e{+-})
and, in consequence, G*,G~ € H(U), G*, G~ > 0. Moreover, by (11) we get

F(2)=G;(2)- G, (2) (lzl <r,re(0,1),

(12)
‘F(z)’ =G (2)+ G, () (lzI=r, r€(0,1)).
Therefore, we have
F(z) = 01G1(2) — a2 Ga(2)  (ze€ld), (13)
where
1 1 _
Gl = —G+, Gg =—G (0(1 = G+(0),012 =G (0))
(241 [2%]
are positive harmonic functions in /. Moreover, by (12) we obtain
2 2w 2
. it . it . it
rlir{{ ; |F(re )| dt = rlir{[ ; G (rel ) dt + s rlir{l | G, (re ) de. (14)
Now, we consider functions ¢, g> € Ag such that
Regj(z) = Gj(z) >0 (zel,j=1,2).
Then ¢q1, 4, < i_lz and by (13) we obtain
Op0gq=0141 —A2(4>. (15)

Hence, we get oq — a3 = 1. Moreover, by (14) and Lemma 2, we have 2o + 205 = A, where
A=t Llim, - fozn |F(re'*)| dt and 2 < A < k, by (10). Thus, we get

+

, 2<Ai<k.

IS
N =

) oy =

| >
N =

o] =

Therefore, by (15) and Theorem 2, we have g € ﬁx(h) C 73k(h), which proves the theo-

rem. -

If h(z) = 20292 5, (2) = 22 (z € U, a #0), then Py(h) = Pi(h). Thus, by Theorem 4 we

1-z 1-a

get the following result.

Corollary1 [10] Let g € Ao, h(z) = “qj“)z, a #1. Then q € Pi(h) if and only if (10) holds.

Remark 1 Theorem 3 and Theorem 4 give relationships between the class Pi(#) and
classes investigated by Paatero [29], Pinchuk [33], Padmanabhan and Parvatham [31] and
Moulis [21] (for the precise relationships, see Dziok [10]).


http://www.journalofinequalitiesandapplications.com/content/2013/1/349

Dziok Journal of Inequalities and Applications 2013, 2013:349 Page 8 of 20
http://www.journalofinequalitiesandapplications.com/content/2013/1/349

The first-order differential subordination

zq'(2)

10 @ +y

< h(z) (16)

is called the Briot-Bouquet differential subordination. This particular differential subor-
dination has a surprising number of important applications in the theory of analytic func-
tions (for details, see [20]). In particular, Eenigenburg, Miller, Mocanu and Reade [14]

proved the following result.

Lemma3 Leth e S§, B,y € C,and Re(Bh(z) + y) > 0 (z e U). If g € Ay satisfies the Briot-
Bougquet differential subordination (16), then q < h.

For B = 0 we can extend this result.

Theorem 5 Let g € Ay, Rey >0.If

q(Z) + qu/(z) € I</L (), 17)
then q € K, (h).

Proof From (17) there exist g1, g, < h such that

q(2) + vzq'(2) = uqu(2) + A = wqa(2)  (zel). (18)

Let 41, ¢» be the solutions of the Cauchy problems

q(2) +yZq (2) = qi(z),  40)=1,

q(2) +yzq (2) = q2(2),  4(0) =1,

respectively. Then, by (18) we have g = ug; + (1 — n)g2. Moreover, by Lemma 3 we get
71, 9> < h. Therefore, g € K, (h) and the proof is completed. O

A more general problem can be formulated as the following problem.
Problem 1 Let Re(B8/4(z) + y) > 0 (z € U). To verify the following result: if g € A, satisfies

2q'(2)

q(2) + Ba)+y © K, (h),

then g € C,,(h).

Remark 2 The result from the problem was used in some papers (see, for example, [3, 23,
26] and [27]). It is clear, by Theorem 5, that the result is true for 8 = 0, but for 8 # 0 it is

the open problem.
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3 Properties of multivalent prestarlike functions
Let o < p. We say that a function f € A, belongs to the class R, («) of multivalent prestar-
like functions of order « if

2
f(2) % W € 3;(05)'

It is easy to verify that

Rt o L0200,

(1 —z)2-’ 1-z

The class R(«) := Ri(«) is the well-known class of prestarlike functions of order « intro-
duced by Ruscheweyh [35].

We denote the dual set of V C Ag by V*:={qg € Ag: (rxq)(z) #0 (r € V,z € U)}. More-
over, let us define

_ (1+xz). o
T(ﬂ).—{(“yz)ﬂ.lxl—lyl—l} (B=0),
=[TW] H =g qeH} (k=0),
F(0,1):= {quo (Zq(z)> >—% (zeu)},
{

F(k,B):={rq:re H* and g€ F(0,8-k)} (0<k<p).
It is clear that
VeV, = VycVf (19)
and
O<k=p=pp = F(kp)CFkp). (20)
In proving our main results, we need the following lemmas.

Lemma 4 [19] Let w be a nonconstant function meromorphic in U with w(0) = 0. If

| <lzol}

’w(zo)‘ = max{
for some zy € U, then there exists a real number k (k > 1) such that zow'(zo) = kw(zo).
Lemma 5 ([34], p-29) Let 8 > 0 and f € Ay. Then f € [T(B)]* if and only if

#f3(2)
Rejim >3 JorB#L,
Ref(z) > 5 forp=1

(zel),

where

fi@)=f2)x(1-2"F (zel).

Page 9 of 20
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Lemma 6 ([34], p.39) Let 8 > 1.Iff,g € [T(B)]*, then f x g € [T (B)]*.
Lemma 7 ([34], p.20 and p.33) If 8 > 1, then [F(1, B)I* = [T (B)]*.
Lemma 8 ([34], p.37) Let 8> 1,f € [T(B)]*, g€ F(0,8-1),q€ A. Then

128 1) ¢ zalquay), (21)

fxg

where co{q(U)} denotes the closed convex hull of q(U).

From Lemma 5 and definitions of the classes R,(«), S;(a) and F(«, B) we obtain the

following two results.
Lemma 9 A function f belongs to the class R,(«) if and only if

% € [T(2p +1- 201)]*.
Lemma 10 A function f belongs to the class S, («) if and only if

J% € F(0,2p - 2a).

Using Lemmas 6 and 9, we have the following theorem.
Theorem 6 Iff,g € R,(a), thenf x g € Ry(x).
Theorem 7 Ifo; <y <p, then
Rple) CRylaa). (22)
Proof By condition (20) we have
F1,2p+1-2a) C F(1,2p +1-20).
Thus, by (19) and Lemma 7, we obtain

[T@p+1-2m)]" =[FQ2p +1-2a)]" C [FL2p+1-2)]"

= [T(Zp +1- 2012)]*,
and by Lemma 9 we get the inclusion relation (22). O
Making use of Lemmas 8-10, we get the following theorem.

Theorem 8 Letf € R,(x), g€ S;;(oz). Then (21) holds for q € A.

Page 10 of 20
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For complex parameters a, b, ¢ (¢ # 0,-1,-2,...), the hypergeometric function
oF1(a, b; ¢; z) is defined by

oFi(a, b;c;z) = Z (a),,(l:l),, 2" (zel),

where

1 (1’120),
ArA+1)---(A+n-1) (meN)

is the Pochhammer symbol. Next, we define
op(a,b;0)(2) = 25 F1(a, b;;z)  (z €U).
In particular, the function
ly(a,0)(2) := gp(a,1;0)(2)  (z€U) (23)

will be called the multivalent incomplete hypergeometric function.

Theorem 9 Ifeither

Rea <Reg, Ima=Imc and Qp+l-a-c)2<a<p (24)
or
c
O<a<c and ( —§>§a<p, (25)
then
ly(a,c) € Ry(a). (26)

Proof Let (24) hold true. By Theorem 7 it is sufficient to prove (26) for « = %(2}7 +1-a-c).

It is easy to show that
@p(a, b;c) = ly(a,c) * p(1,b;1)

and

Zp

W (ZGZ/{).

©p(1;2p — 20;1)(2) =

Thus, condition (26) is equivalent to ¢,(a, b;c) € S;(a), where b =a +¢—1> 0. Using the
notation F(z) := yF(a, b; ¢; z) (z € U), we have to show that

Re(iﬁé?) >—§ (ze U),
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or that the meromorphic function w, »(0) = 0, defined by

zF'(z)  o(2)
F@) - bi1 "o (zel) (27)

isbounded by 1in/. If this is false, we find zo € U such that |w(zo)| = 1, [w(z)| <1 (|z| < |20]).

According to Lemma 4, there exists k > 1 such that
zoW (z0) = kw(zp), w(zo) = €. (28)

Taking the logarithmic derivative of (27), we get

zF"(z) b+ o(z) -1 zw'(2)

F'(z) - 1-w(z) + [1- w(i)] o) (z e l). (29)

The hypergeometric function F satisfies the Gaussian hypergeometric differential equa-

tion
Z(1-2)F" +[c—(a+b+1)z|]F' —abF = 0.

Therefore, by (27) and (29), we obtain

ZA(z) =B(z) (ze U), (30)
where
Alz)=a+ (b —a+ z(2) )a)(z), B(z) = w(z) [zw(/z) +c-1+Mb+1- c)a)(z):|.
w(z) w(2)

Thus, by (28) we have

Azo) =a+ (k—1+¢c)e?, B(zo) =k —1+c+ae®.
Since A(zg) = e B(zy), we have |A(zo)| = |B(2o)|. Furthermore, A(zo) # 0 under restrictions
(24). Thus (30) gives |zo| = 1, a contradiction. Now let (25) hold true. It is clear that the

function

Zp
ly(a,1)(z) = 127 (zell)

belongs to the class S;(p - §) C S;(p - 5) and [y(a, ¢) * I,(c, 1) = [,(a,1). Thus, by the defi-
nition of the class R, («) and Theorem 7, we have /,(a,¢) € R,(p - 5) C Rp(a). d

Remark 3 The results related to multivalent prestarlike functions were obtained in the
submitted paper [7]. Since the paper has not been accepted for publication so far, these

results are presented with the proofs.
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4 The main inclusion relationships

From now on we make the assumptions:

Reh(z) > a, Rehi(z)>a (zell,j=1,2). (31)
Moreover, let ¥ * (¢, @) := (¥ * ¢, ¥ * ). Then we have

Wy(h) =W, (zp/(l - z),h) C S;(Ol) and W, (e, h) C S;(qo,a). (32)
Lemma 1l If0 <A<, then

M3 (@, h) C M} (o, h) C Wilg, h).
Proof Let f € Mi(p,h) and let

g0 = D@ gy

ple xf)(2)
Then we obtain

dzq'(2) _
p qz)

q(z) + Ls(f)(z) (zel),

where L; is defined by (3). Since Ls(f) < 4, by Lemma 3 we have g < 4. Moreover,

LN =51+ =g

Thus, by Theorem 1 we get L; (f) < & or, equivalently, f € M (¢, h). O
Theorem 10 If s € R,(a), then
W (@, h) "W, (@, ) C W, (Y x D, h), (33)
Wile, ) CW, (¥ % @, h). (34)
Proof Let f € W, (®,h) N W, (p, h). Then there exist w;, w, € Q2 such that

¢S _

=puhowy)+(1—p)(how)
pxf

and F = ¢ *f € W,,(h) C §;(e). Thus, applying the properties of convolution, we get

(Y x@)xf s [(how)F] +(I_M)lﬁ*[(howz)F]‘ (35)

Wrp)sf 1 UxF U AF

By Theorem 8 we conclude that

Y [(h o w))F]

-y (2) e co{h(oU))} ChUl) (z€lU,j=1,2).

qi(2) :=
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Therefore, g; < hand by (35) we have f € W, (¥ x ®, k), which proves the inclusion (33). To
prove (34), we assume that f € W, (¢, h). Then f € W, (¢, ¢), h), where ¢(z) = I%(p’(z) (ze
U). Thus, by (33) we obtain that f € W, (¢ * ¢, ¥ * @), h). Since (¥ * ¢)(z) = [57(1// * @) (2)
(z eU), we have f € W, (¥ * ¢, h), which proves (34) and completes the proof. O

Theorem 11 Let y,& € Ry(a), 0 <38 <1. Then

ME(®@,6, 1) VW, (@,h) C M2,y % @,£, h), (36)
M@, h) € M2 @, h). (37)

Proof Let MZ(QD, &,h)NW, (P, h). Then, applying Theorem 6 and Theorem 10, we obtain
feW, (¥« ®,kh) and f € W, (& x ¥ * D, h) or, equivalently,

_pry xS

_Expxy S
ww*fe/cﬂ(h), B® € Ku(h).

n TExpxyxf "

Since the class K, (/) is convex by Theorem 1, we conclude that

ExWxd)ef  (Vxg)xf

S s Sy S

€ K,u(h).

Thus, we have f € M?(y x ®,&,h) and, in consequence, we get (36). From (36) and
Lemma 11 we have (37). O

Theorem 12 Let y,& € R,(), 0 <6 <1. Then

CW,(®,h) CCW,u (¥ * @, h), (38)
CMS(®,€,h) NCW,,(®,h) C CMS, (1 * D,&,h). (39)

Proof Let f € CW,(®,h). Then there exist g € W, (¢, h2) and w1, w; € 2 such that

ox/ pahy o wr) + (1= pg)(hy o wy).
pxg

Since F = ¢ * g € S, (), applying the properties of convolution, we obtain

(Wxg)xf Y x[(how)F] +(1_M1)1/f*[(h10w2)1:]'

Wrprg T yxF U F (40)

Analysis similar to that in the proof of Theorem 10 gives

(¥ + ) «f

K, ().
W rp) wg - )

Moreover, by Theorem 10 we have g € W, (¥ * ¢, h13) and, in consequence, f € CW (¥ *
®, h). This proves (38). To prove (39) we assume that f € CM‘,SL(@,E,h) NCW (P, h).
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Then, applying (38) and Theorem 6, we obtain f € CW, (¢ * ®,h) and f € CW,((§ * ) *
®, h) or, equivalently,

_Yxoxf

. _Exyagnf
L Ykgxg

€ K:ul(hl): q2 = s % K/f I € Kul(hl)'

Since the class KCy, (/1) is convex by Theorem 1, we conclude that

Exyxdnf Urdrf

(1-9)
ExUxpxg  Yroxg

€ Ky, ().

This gives (39) and completes the proof. d
Combining Theorems 10-12 with Theorem 9, we obtain the following corollary.
Corollary 2 Ifeither (24) or (25), then
Wyle,h) C W, (ly(a, 0) * ¢, h),

CW,(®,h) C CW,(ly(a, c) * @,h),
Wy (P, h) "W, (e, h) C Wu(lp(a, C,2) * dJ,h).

Moreover, if & € Ry(a) and 0 < § <1, then
Mi(g.h) € M} (lp(ar ) + ¢, ),

M (@,6,1) N W, (®,h) C M), (Ly(a,c)  D,&, h),
CM(®,€,h) NCW,(®,h) C CM, (I,(a,¢)  @,&,h).

Since [,(a, c) * l,(c,a) * ¢ = ¢, by Theorem 2 we obtain the next result.
Corollary 3 Ifeither (24) or (25), then

W, (lp(c,a) % o, h) C Wl h),
CW, (lp(c, a) * dD,h) C CW,(P,h),
W, (lp(c,a) % @,1) "W, (Ly(c,a) x ¢, h) C W, (P, h).

Moreover, if £ € Ry(a) and 0 < § <1, then

M2 (Ly(c,a) * o, ) C Mi(p, h),
M (L(c,a) x @,&, 1) "W, (Iy(c, a) * D, h) C M2 (D, £, h),
CMfL(lP(c,a) * @,&,h) NCW,(L,(c,a) * ®,h) C CM;Z(CD,S,h).

Let us define the linear operators J; : A, — A,, J; : A, x A, — A, x A,

L@ =229 L a ),
14 (41)

(f8) = (), )1(g) (z€lU, Rer>0).

Page 15 of 20


http://www.journalofinequalitiesandapplications.com/content/2013/1/349

Dziok Journal of Inequalities and Applications 2013, 2013:349
http://www.journalofinequalitiesandapplications.com/content/2013/1/349

Since Jy(¢) = 1,(£ +1,%) x ¢, putting @ = £, ¢ = £ + 1 in Corollary 3, we have the following

corollary.

Corollary 4 Ifp—Rep/L <o <p, then

W;L (]A((/)):h) C Wﬂ(w’h)v
CW, (17 (®),h) CCW,(®,h),
W (@), ) N W, (Ti(9), B) C W, (P, h).

Moreover, if & € Ry(a) and 0 < § <1, then

M} (T(9), ) € M3 (@, h),
M, (@), 6, 1) VW, (J7 (D), h) € M3, (9,8, h),
CMS, (1 (@),&,h) NCW,, (5 (@), h) C CMS(d, £, h).

In particular, for A = 1, we get the following corollary.

Corollary 5 If0 <« <p, then

Wa(p'2¢'(2),h) C W(p, h),
CW,(p™'2®'(2),h) C CW,(®,h),
W, (p7'2®'(2), h) "W, (p 290/ (2), ) C W, (D, h).

Moreover, if& € R,(a) and 0 <8 <1, then

M (p'2¢/ (2), k) € MS(g, h),
M (p7'2®'(2),€,h) N W, (p7'2®'(2), h) C M (®,,h),
CM. (p7'2@'(2),€,h) NCW,.(p7'2®'(2),h) C C M, (D, &, h).

5 Applications to classes defined by linear operators
The classes ./\/li(d), &,h) and CM?L(CD, &,h) generalize well-known important classes,
which were investigated in earlier works. Most of these classes were defined by using linear
operators and special functions.

LetAy,...,A;and By, ..., B (q,s € N) be positive real numbers such that

q
1+in—ZAkZO.
k=1 k=1

For complex parameters ay,...,a, and by,...,b; (q,s € N) such that %, g—’; #0,-1,-2,...,

we define the Fox-Wright generalization of the hypergeometric function by

(zel). (42)

LV, |: (a1,A1),...,(agAg); :| ) i I(ay +Ain)---T(ag + Agn) i

(bl:Bl); eey (bs:Bs); - n=0 F(bl + Bln) e F(bs + le’l) n!
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IfA,=1(n=1,...,9) and B, =1 (n =1,...,s), then we obtain the generalized hypergeo-
metric function

F(a agb b z) = w, V. @ D)...... (g 1; z (zeld)
gl s\hlye.r gy ULy Usy . q Xs (bl,l),”,,(bs,l); )

where

L'(by)---T'(by)

" T Ty »

Moreover, in terms of Fox’s H-function, we have

N (al:Al):u-:(aq:Aq); z _Hl,q —Z’ (l_dlyAl),«ur(l_dq:Aq)
o (bl,Bl),...,(bs,Bs); st (011)(1_bl’Bl)wur(l_bsrBS) '

Other interesting and useful special cases of the Fox-Wright function defined by (42) in-
clude (for example) the generalized Bessel function J#* defined by

Ji@)=Y __ ew

1
— n (1 +v+ un)

which, for ; =1, corresponds essentially to the classical Bessel function J,, and the gener-
alized Mittag-Leffler function E; , defined by

Ey . (2):= Z F(z— (zelU).

v+ An)

For real numbers A, ¢ (A > —p), we define the function

t(an b, 0)(2) = (a)z‘;\ys[ Ezl»zl)),..., ((Zq’;‘;f) ;Z]) e fos@), (44)
1,DP1)r+++»\Usy Dg

where w is defined by (43) and

fir(2) = Z(Zii) 2" (zel).

n=p

It is easy to verify that

al(a+1,b,t) = Azt (a; b, t) + (a — pA)C (a, b, t), (45)
be(a,b,t) = Bizt'(a,b+1,) + (b — pB) (a,b + 1, 1),

(p+ M\ (a,b,t +1) = 2L (a,b,t) + AL (a, b, 0),

¢(a,b,t) =l(a,c)x¢(c,bt)  (A1=1), (46)
tact)=lb,ox*t(abt)  (Bi=1),

where /,(a, c) is defined by (23).
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Concerning the function ¢ (a, b, t), we consider the following classes of functions:
V(a,b,t) =W, ({(u, b,t), h), CV(a,b,t) :=CW, ({ (a, b, t),h).
By using the linear operator

Opla, b,tlf =¢(a,b,t)xf (f € Ap) (47)
we can define the class V(a, b, t) alternatively in the following way:

a 0, la+1,b,t]f(2z) 4 e IC,.(h).

b, t - -
feVabt) = g mbife P4

Corollary 6 Ifp—Real/A; <a<p,meN, then
V(a +m,b,t) C V(a,b,t), CV(a+m,b,t) C CV(a,b,t). (48)

Proof It is sufficient to prove the corollary for m = 1. Let J, and ¢ (a, b, ) be defined by (41)
and (44), respectively. Then by (45) we have ¢(a +1,b,t) = Jpa, (¢ (a, b, t)). Hence, by using
Corollary 4, we conclude that ’

Wy ({(a +1,b, t),h) Cc W, ({ (a, b, t),h),
CW,(¢(a+1,b,6),h) CCW,(¢(a,b, 1), h).

This clearly forces the inclusion relations (48) for m = 1. O
Analogously to Corollary 6, we prove the following corollary.
Corollary7 Let m e N. Ifp —Reb/B; < a < p, then
V(a,b,t) C V(a,b + m,t), CV(a,b,t) CCV(a,b + m,t).
If -Re X <« <p, then
V(a,b,t + m) C V(a,b,t), CV(a,b,t + m) C CV(a,b,t).

It is natural to ask about the inclusion relations in Corollaries 6 and 7 when m is positive
real. Using Theorems 10 and 12, we shall give a partial answer to this question.

Corollary 8 Ifl,(a,c) € R,(«), then

V(c,b,t) C V(a,b,t), CV(c,b,t) CCV(a,b,t) (A;=1), (49)
V(b,a,t) C V(b,c,t), CV(b,a,t) CCV(b,c,t) (B1=1). (50)

Proof Let us put ¥ = l,(a,c), ¢ = {(c,b,t). Then, by Theorem 10, Theorem 12 and rela-
tionship (46), we obtain

Wiu(¢(e,b,0),h) C W, (¢(@b,),h),  CW,u(¢(e,b,8),h) CCW,(¢(a,b,t),h).

Thus, we get the inclusions (49). Analogously, we prove the inclusions (50). O
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Combining Corollary 8 with Theorem 9, we obtain the following result.
Corollary 9 Ifeither (24) or (25), then the inclusion relations (49) and (50) hold true.

The linear operator ®,[a, b, t] defined by (47) includes (as its special cases) other linear
operators of geometric function theory which were considered in earlier works. In par-
ticular, the operator ®,[a,b,0] was introduced by Dziok and Raina [11]. It contains, as
its further special cases, such other linear operators as the Dziok-Srivastava operator, the
Carlson-Shaffer operator, the Ruscheweyh derivative operator, the generalized Bernardi-
Libera-Livingston operator (for the precise relationships, see Dziok and Srivastava ([13],
pp.3-4)). Moreover, the linear operator ®,[a, b, t] includes also the Salagean operator, the
Noor operator, the Choi-Saigo-Srivastava operator (for the precise relationships, see Cho
et al. [4]). By using these linear operators, we can consider some subclasses of the classes
V(a,b,t), CV(a,b,t), see for example [2-5, 7-9, 12, 15, 30, 32, 36—38]. Also, the obtained

results generalize several results obtained in these classes of functions.
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