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1 Introduction

The aim of this paper is to define a new class of functions called local Morrey-Lorentz
spaces M;,‘f;;/\ (R™) and to study the boundedness of the maximal operator in these spaces.
Local Morrey-Lorentz spaces ML?;;A(R”) are generalizations of Lorentz spaces L, ,(R").
Lorentz spaces, introduced by Lorentz in the 1950s [1, 2], are generalizations of the more
familiar L, spaces. Lorentz spaces, which are Banach spaces, appear to be useful in the
general interpolation theory by Calderdn (see [3]). Peetre [4] identified Lorentz spaces
as intermediate spaces for interpolation theory by Lions and Peetre (see [5]). Riviere and
Sagher [6] generalized the results of Calderén contained in [3] to include Lorentz spaces
having coefficients p and g greater than zero; similarly, Kree and Peetre generalized the
results of Lions and Peetre obtained in [5].

For x € R” and ¢ > 0, let B(x, t) denote the open ball centered at x of radius ¢, and let
|B(x, £)| be the Lebesgue measure of the ball B(x, t). Note that |B(x, t)| = w,t", where w,
denotes the volume of the unit ball in R”. Let f be a locally integrable function on R”. The
Hardy-Littlewood maximal function Mf of f is defined by

Mf(x) = )VU)| dy, xeR".

sup ———
t>0 |B(x’ t)| B(x,t

Maximal operators play an important role in the differentiability properties of functions,
singular integrals and partial differential equations. They often provide a deeper and more
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simplified approach to understanding problems in these areas than other methods. It is
well known that for the classical Hardy-Littlewood maximal operator the rearrangement
inequality

of () = (Mf)* (1) = Cf™ (), t€(0,00),

holds, ([7], Chapter 3, Theorem 3.8), where f*(t) is the non-increasing rearrangement of
f and

1 t
@) =- / f*(@)dt.
tJo
Mingione [8] defined the Lorentz-Morrey spaces L, 4 (R”) as follows.

Definition 1 [8] The Lorentz-Morrey spaces L, 4, (R”) is the set of all measurable func-
tions f on R": for1 <p<o0,0<g<ooand 0 <A <, f € Lz (R") iff

_A
”f”ﬁp,q;)\ = Ssup rr ”Xg(x,t)f”Lp,q <00
x€R",t>0

Here || - ||, denotes the Lorentz norm of a function (see preliminaries).

In [8], Section 4.1, Mingione studied the boundedness of the restricted fractional max-
imal operator Mg g

Mg pf(x) = sup ’B(x, t)
B(x,t)CB

éfl/ [f(y)‘dy, x e R”,
B(x,t)

in the restricted Lorentz-Morrey spaces L, 4, (B), where B is any ball. Mingione derived
a general non-linear version, extending a priori estimates and regularity results for possi-
bly degenerate non-linear elliptic problems to the various spaces of Lorentz and Lorentz-
Morrey type considered in [9-11].

Ragusa [12] defined the Lorentz-Morrey spaces L, ., (R”) and studied some embeddings
between these spaces.

Definition 2 [12] The Lorentz-Morrey spaces L, ;; (R”) is the set of all measurable func-
tions f on R": for1 <p<oo,0<g<ooand 0 <X <un, iff

_A
flle,g = sup & 7l Xpu0fllL,, <00
x€R™,t>0

Accordingly, f belongs to
Lpoon(R") = WLy, (R") it ||f Nz, 0 = I llwa,, < oo

Note that the spaces £,,4,(R") and L, ; « (R") defined by Mingione and Ragusa respec-
i L
tively coincide, thus

ﬁpvq;* (Rn) = Lp,q;k a (Rn) :
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Recall that the local Morrey-type spaces LM,y ,, were introduced and the boundedness
in these spaces of the fractional integral operators and singular integral operators defined
on homogeneous Lie groups were proved by Guliyev [13] in the doctoral thesis (see, also
[14-16]). They are given by

W20ty = WO 500 |1, 0,00

where w is a positive measurable function defined on (0, 00). Some necessary and sufficient
conditions for the boundedness of the maximal, fractional maximal, Riesz potential and
singular integral operators in the local Morrey-type space LM,,,, were given in [17-21].
We should explain that the spaces LM,,, are closely related to the B; spaces (see [22,23]).

This paper is organized as follows. In Section 2 we give some notations and definitions
of the Morrey, Lorentz and classical Lorentz spaces. In Section 3 we define a new class
of functions called local Morrey-Lorentz spaces ML“’;;A(R”), O<pg<ocand 0 <A <1.
These spaces generalize Lorentz spaces such that M1 | (R") = L, ,(R"). We show that in

P30
thecase A <0 or A > 1, the space M;;;A (R™) is trivial, and in the limiting case A = 1, the space
Mllj"’;;l(R”) is the classical Lorentz space A 11 (R™). We also show that for 0 < g < p < 00
o0,
and 0 < A < 1%’ the local Morrey-Lorentz spaces M;;;,\(R") are equal to weak Lebesgue
spaces WL1_; (R"”). In Section 4 we prove the boundedness of the maximal operator in
rp q
Mp<, (R).

Throughout the paper, we write A < B if there exists a positive constant C, independent
of appropriate quantities such as functions, satisfying A < CB. If p € [1, 00], the conjugate

number p’ is defined by p’ = 1% and if p € (0,1), the conjugate number p’ is defined by

- P
v=:

2 Preliminaries

Let E be a measurable subset of R” and |E| = fE dx. We denote by L,(E) the class of all
measurable functions f defined on E for which

Wf L, = (fEV(y)}p dy); <00, 0<p<oo,
Ifll20ee = suple: [{y € E: |[f(y)| = «}| > 0}.
We define rearrangement of f in decreasing order by
FA@) =inf{A>0: (1) <t}, Ve (0,00),
where 117(1) denotes the distribution function of f given by
() = [{y eR": [f ()] > A},

We denote by WL,(R") the weak L, space of all measurable functions f with the quasi-

norm

Ifllwz, = sup£2f*(¢), 1<p <oo.
t>0
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Now we recall the definitions of Morrey spaces, Lorentz spaces and classical Lorentz
spaces.

Morrey spaces were introduced by Morrey [24] in 1938 in connection with certain
problems in elliptic partial differential equations and calculus of variations. Later, Morrey
spaces found important applications to Navier-Stokes and Schrédinger equations, elliptic
problems with discontinuous coefficients, and potential theory.

Definition 3 [24, 25] We denote by L, , (R") the Morrey space for 0 <A <#,1 < p < o0,
feLpy (R iff € L*(R") and

_A
Hf”Lp,)L = Sup tr ”f”Lp(B(x,t)) < 0oQ.
xeR",t>0
If X =0, then L,o(R") = L,(R"); if A = n, then L, ,(R") = Loo(R"); if A < 0 or A > n, then
L, (R") = ©, where © is the set of all functions equivalent to 0 on R”.
Also, by WL,,, (R") we denote the weak Morrey space of all functions f € WL};’C (R™) for
which

_
"f”WLp,;L = xe;glflllo e ”f”WLp(B(x,t)) < 0Q.

Lorentz spaces were introduced by Lorentz in 1950. Lorentz spaces, which are Banach
spaces and generalizations of the more familiar L, spaces, appear to be useful in the general
interpolation theory.

Definition 4 The Lorentz space L, ,(R"), 0 < p,q < 00, is the collection of all measurable

functions f on R” such the quantity

1

l*_ *
g = #7070 0 )
is finite.
Note that L, (R") = WL,(IR") (see, for example, [26]).
If p = g = 00, then the space Ly is denoted by L.

If1 <g <p orp=q= 00, then the functional ||f|,,, is a norm.

For 0 < g < p <r < oo, we have, with continuous embeddings, that
L,,CL,CL,, C WL,

The function f** : (0,00) — [0, o0] is defined as

sk _1 ! *
s (t)—;/Of(s)ds‘

In the case 0 < p,q < 0o, we give a functional || - by

1Z5.q

1_1
|V||Zp,q = |Lf||zp,q(0v°o) = ||tP 1 **(t) ||Lq(0,00)
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(with the usual modification if 0 < p < 00, g = 00), which is a norm on L, 4(R") for 1< p <
00,1<g=<ooorp=gqg=o00.
Ifl<p<o0,1<g=<o0othenforl<r<p (see[27]),

1/r
Wl < W15, < (ﬁ) Il ,- @)

We denote by D(R”) the set of all extended real-valued measurable functions on R” and
by 21* (0, 0o) the set of all non-negative measurable functions on (0, 00).

Definition 5 Let 0 < p < 0o and ¢ € 9M*(0,00). We denote by A, (R") the classical
Lorentz spaces, the spaces of all measurable functions with a finite quasi-norm

Apy (R") := {f e M(R") : I llapy = v ”LP(O,OO)}’

_1(R") = L, ,(R") with equality of

1 1
Therefore, for Y (¢£) =t?74,0<p,g<oo,weget A 1.1
p,tp q
‘norms.

Useful references for Lorentz spaces are, for instance, in [7, 28, 29].

Remark1 Since ||f|,, = flL,, it can be easily shown that Ly, = Ly,

3 Local Morrey-Lorentz spaces ML?;;A(R")

In this section we define the local Morrey-Lorentz spaces M;?;;X(R”), 0<p,q <00 and
0 < A <1. These spaces generalize Lorentz spaces so that M;‘,’;O(R”) =L, 4(R"). We show
that in the case A < 0 or A > 1, the space M;‘f;;A (R™) is trivial, and in the limiting case A =1,
the space ML‘,’;;I(R”) is the classical Lorentz space AOOt 1 (R™). We also show that for

0O<g<p<ooand 0 <A < [%, the local Morrey-Lorentz spaces ML?;;A(R”) are equal to

weak Lebesgue spaces WL1_ (R").
p q

Definition 6 Let 0 < p,q < oo and let 0 < A < 1. We denote by ML?;;A(R”) the local
Morrey-Lorentz spaces, the spaces of all measurable functions with a finite quasi-norm

A 1_1
. e » g £*
|[f||MIl£;A = S:)l(}))t a|spTaf (s)||Lq(w).

If . <0 or A >1, then M;?;;A(R”) = ©, where O is the set of all functions equivalent to
0 on R”. Also, MII:;;O (R") = L, 4(R"). In the case g = p, we denote the space ML?;;A(R”) by
ML‘?;(R”).

Lemmal Let0<p,q <oo. Then

loc
M il

()= A

(R")

N

1_
o0o,tP

and

1_1
_ — » " a f*
W lagoc, = ILfIIAMH = |t7 O], 000
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Proof Letf € Aooﬂ%_% (R™). Then

t o, l/q
(tlfo rp'lf*(r)"dr> <|flla

Therefore f € ML‘E;I(R") and

1. 1°
oot 4

<
llge, = 1

I
Q=

5t

Letf e ML‘?;;I(]R”). By the Lebesgue theorem, we have

t+s
nmi/ T (o) dr = £ (o)1,

5—0 28 J; s

Then
L . 1 t+s Q. 1/q
tr qf (t): lim — T? f(‘[)qdl'
s—0 28 t—s
it _Ly 11
<2 dsups q|trTaf (T)”L (t-s,t+s)
O<s ! ,

11
= ”” qf*(T)”Loo(O,oo)

= loc .
1 g,

Therefore f € A (R”) and

1.1
oo, t? 4

< )
£l < IIfIIMII;T;;1 0O

Q=

1
oo,tP
Corollary1 Let 0 < p < oco. Then

My (R") = Loo(R").
Lemma?2 || - || Ml is a quasi-norm on M}ljf;;)\ (R™).
Proof From the definition f* > 0. This implies that |||, c > 0. Moreover, ||f|| Mioe = 0
1 1 pgir J2L8
implies that [|s?~7f*(s)||z, (0, = O for all £ > 0. Hence, we get f* = 0 a.e. Thus, f = 0 since f

is representative of an equivalence class.
1y .
Now, let 2 # 0 be a real constant, f € M, ; (R"). Noting

(@f)(t) = lalf*(®), t>0,

the homogeneity condition follows

a =\|a .
10 g = 1l
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Letf,g € M;‘?;;A(R”) and 0 < p,q < oc. Since (f +g)*(t) <f*(§) + g*(%), for any £ > 0, we

have
¢ d ¢ 14 t 7d.
f ((f+g)*(s)sl/P)q—ssmax{lyz”"l}( f (f*(i)sl’”> i*/ (g*(i>sup> _S)
o s 0 2 s Jo 2 8
t t
t d 5 d
Y. max{l,zq—l}(/z(f*(s)sllp)q_s +/2(g*(s)31/p)q_s),
0 $ 0 §
Therefore we get
1 1-1
e <2 1,2 oc oc ).
"f+g"M}7,q;x =2f max{ ! }(Hf”M}mq;x * ”g”M}zq%)

Letf,g € Mp<, . (R"),0 < p < oo and g = 0c. Then

t t
st oz () (1))
t>0 t>0
= sug(2u)1/p (f*(u) + g*(u))
<2lp (sup u!Pf*(u) + sup ul/pg*(u)>
u>0 u>0

=2 (1 o + 1811 Lp00 )-

Therefore we get

ST

I+ @lagor, <27 (I Ny + g )- O

The following theorem states that M;j;; , (R") local Morrey-Lorentz spaces are equivalent

to WL,(R") weak Lebesgue spaces in the case é = 11; - % and 0 < A < 1%.

Theorem 1 Let0<q§p<oo,%: —ﬁandO<A§%.Then

1
p
M, () = WL (B)

and

q K 1 "
» If llwz, < IVIIMLO;AA <A fllwg,, fe€ WL,(R").

Proof Suppose f € M;?;;A (R™). Then, from the monotonicity of f* on (0, c0) for all ¢ > 0,

we get

1

AROETENIA0

(N e [
(5) (rer [ 2

o adnt ()

) (t‘l/o(f*(S)Sp)q?S> 5(%) ”f”M}ff,;A'

BN

IA
N
NS

Page 7 of 11
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Thus, f € WL,(R") and

1

Ly q\°
fllwe, :==suptrf @) < | =) Ifll\p0c -
t>0 P 2o

Let f € WL,(R"), where % = %. Then, for all £ >0,

1_
»

L) =0 < I e,
This implies that

O lwe, 777, >0,
Therefore we get

(f*(t)t'%)q <fllwz,t*, t>0.

Consequently,
¢ 1, ,ds i
_ —A £ = i
Wi, =sun(e [0

C
1
< W llwz, SUP<L‘_A/ s dS) =11 ||fllwi,-
0

t>0

Corollary 2 Let 0 < g <p<oo. Then

M;‘f;;% (R") = Lo (R").

The following embedding is valid.

Lemma3 LetO<p,g<ocoand 0 <Xt <1.Then
M;;;x (R") = Lpgm (R")
and for f € ML‘?;;A (R™),

”f”Lp,q;nk S ”.f”MIl;?;‘A

Proof For x € R” and ¢ > 0, from the monotonicity of f* on (0, 00), we get

oo 1/q
q_
If XBwo L, = ( / st ((f XB(x,t))*(S))qu)
0

o 4 1/q
< ( / srl(gfxB(x,t))**(s))qu)
0

([T (L e ds)
—(/0 s (;/O (f xB@n) (‘L')d‘[) ds) .

Page80of 11
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From the inequality (fg)*(s) <f*(s)g*(s) and the equality (xz)*(s) = x[o,5)(s), we get

(f XBx0) " (8) =7 (8) X(0.0a2m) (5)-

For x € R” and ¢ > 0, we have

"fXB(x,t) ”Lp,q

*® g 4(1 (7 4 Vg
< ( [+ (— / f*(S)X[o,wn:")(S)dS> dr)

0 T Jo

opt” 1 f7 q l/q wpt" o 1/q
< / rr —/ f*(s)ds) dt + f*(s)ds / rr gy

0 T Jo 0 wpt"

wpt" 1 T q 1/q N . wpt” 1/q
= <f rz_1<—f f*(s)ds) dr) + <£>qa)y,” t 7 (/ f*(s)ds) .

0 T Jo q 0

From the Holder inequality we obtain

wpt" wpt" q 1/q wyt" L1 1/q
f¥(s)ds < ( / f(s)9se ™! ds) ( / s p)7 ds)
0 0 0

_1

7 1 wpt" q 1/
(o) )

Y

0, 1 min{s,wy,t"} q 1/q wpt" q 1/q
(/ sﬁ_l(—/ f*(r)dt) ds) < </ sﬁ_lf*(s)qu) .
0 S Jo 0

Therefore
1.1,
W xBeolLp, S Hsp “f*(s) ”Lq((),wnt”)'
Consequently,

_m
f 12,40 = SUP SUPE 7 ||f XB(xp)llL,,
xeR” t>0

<su t_% ||s!l7_%f*(s)H
~ t>(1)) Lq(O,wnt”)
A~ sup £ ||s1%'_%f*(s)||

t>0 Lq(0)

= it .
Vs,

4 Boundedness of the maximal operator in the local Morrey-Lorentz spaces
In this section, the boundedness of the maximal operator M in local Morrey-Lorentz

spaces M},?;;A(R”) is proved.

Theorem 2 Let0<p<00,1<g<00,0<A<lorl<p<oo,1<qg=<o00,r=0.Then the
maximal operator M is bounded on the local Morrey-Lorentz spaces M};j;;,\ (R™).

Page9of 11
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Proof By the definition of a norm in local Morrey-Lorentz spaces,

A 1.1
— —a 2" a *
14F e, = supr™e (A ONO] P

Ay 11
<Csupr 1|tz af*@)|, o)
r>0 o

tpq/f

Having applied the generalized Minkowski inequality, we get

£ /f (s)d.
q(0,1)
a r t q 7 %1
=Csupr q(/ (/f*(s)ds) tr th)
r>0 0 0
1
_A r 1 4 q4_4q q
=Csupr q(/ (/ f*(ts)ds) tp dt)
r>0 0 0
_A ! " 19 %
<Csupr q/ </ fr(ts)tp dt) ds
r>0 0 0
§C/ (supr /f*(ts)qtp t) ds
r>0
—C/ <supr / f(t)qt"l t) s Pds
r>0
-1 s
:C/ supr- /f(t)qtl’ dt sﬁ ads
r>0

L1
= If Nl C/ s rhads
- oC

Mp,q;/\ 0

1 A\
=C|—+— oc
(p/ q) llases,

since —117 + % >—1.
Therefore, the maximal operator M is bounded on M;jj;;,\ (R™). O

_A
=Csupr 4

r>0

q(0,r)

”Mf”Mloc <CSUpI" q

r>0

Corollary 3 Let 1 < p <00, 0 < A < 1. Then the maximal operator M is bounded in
MIOC(R}’I)

Corollary 4 Let 1 < p < 00,1 < g < 0o. Then the maximal operator M is bounded in
L, (R").

Corollary 5 [29] Let 1 < q < 0o. Then the maximal operator M is bounded in WL, (R").
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