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1 Introduction and preliminaries
Throughout this paper, by R+ we denote the set of all nonnegative real numbers, while N
is the set of all natural numbers. In , Mattews [] introduced the following notion of
partial metric spaces.

Definition  [] A partial metric on a nonempty set X is a function p : X ×X → R
+ such

that for all x, y, z ∈ X,

(p) x = y if and only if p(x,x) = p(x, y) = p(y, y);
(p) p(x,x)≤ p(x, y);
(p) p(x, y) = p(y,x);
(p) p(x, y) ≤ p(x, z) + p(z, y) – p(z, z).

A partial metric space is a pair (X,p) such that X is a nonempty set and p is a partial metric
on X.

Remark  It is clear that if p(x, y) = , then from (p) and (p), x = y. But if x = y, p(x, y)
may not be .

Each partial metric p onX generates a T topology τp onX which has as a base the family
of open p-balls {Bp(x,γ ) : x ∈ X,γ > }, where Bp(x,γ ) = {y ∈ X : p(x, y) < p(x,x) + γ } for all
x ∈ X and γ > . If p is a partial metric on X, then the function dp : X ×X →R

+ given by

dp(x, y) = p(x, y) – p(x,x) – p(y, y)

is a metric on X.
We recall some definitions of a partial metric space as follows.
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Definition  [] Let (X,p) be a partial metric space. Then
() a sequence {xn} in a partial metric space (X,p) converges to x ∈ X if and only if

p(x,x) = limn→∞ p(x,xn);
() a sequence {xn} in a partial metric space (X,p) is called a Cauchy sequence if and

only if limm,n→∞ p(xm,xn) exists (and is finite);
() a partial metric space (X,p) is said to be complete if every Cauchy sequence {xn} in X

converges, with respect to τp, to a point x ∈ X such that p(x,x) = limm,n→∞ p(xm,xn);
() a subset A of a partial metric space (X,p) is closed if whenever {xn} is a sequence in

A such that {xn} converges to some x ∈ X , then x ∈ A.

Remark  The limit in a partial metric space is not unique.

Lemma  [, ]
() {xn} is a Cauchy sequence in a partial metric space (X,p) if and only if it is a Cauchy

sequence in the metric space (X,dp);
() a partial metric space (X,p) is complete if and only if the metric space (X,dp) is

complete. Furthermore, limn→∞ dp(xn,x) =  if and only if
p(x,x) = limn→∞ p(xn,x) = limn→∞ p(xn,xm).

In recent years, fixed point theory has developed rapidly on partial metric spaces, see
[–].
In this study, we also recall the Meir-Keeler-type contraction [] and α-admissible one

[]. In , Meir and Keeler [] introduced the following notion of Meir-Keeler-type
contraction in a metric space (X,d).

Definition  Let (X,d) be a metric space, f : X → X. Then f is called a Meir-Keeler-type
contraction whenever, for each η > , there exists γ >  such that

η ≤ d(x, y) < η + γ �⇒ d(fx, fy) < η.

The following definition was introduced in [].

Definition  Let f : X → X be a self-mapping of a set X and α : X × X → R
+. Then f is

called α-admissible if

x, y ∈ X, α(x, y)≥  �⇒ α(fx, fy) ≥ .

The purpose of this paper is to study fixed point theorems for a mapping satisfying the
generalizedMeir-Keeler-type φ-α-contractions in complete partial metric spaces. Our re-
sults generalize or improve many recent fixed point theorems in the literature.

2 Main results
In the article, we denote by � the class of functions φ :R+ →R

+ satisfying the following
conditions:

(φ) φ is an increasing and continuous function in each coordinate;
(φ) for t ∈ R

+\{}, φ(t, t, t, t) ≤ t, φ(t, , , t) ≤ t, φ(, , t, t ) ≤ t; and φ(t, t, t, t) =  iff
t = t = t = t = .
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We now state the new notions of generalizedMeir-Keeler-type φ-contractions and gen-
eralized Meir-Keeler-type φ-α-contractions in partial metric spaces as follows.

Definition  Let (X,p) be a partial metric space, f : X → X and φ ∈ �. Then f is called
a generalized Meir-Keeler-type φ-contraction whenever, for each η > , there exists δ > 
such that

η ≤ φ

(
p(x, y),p(x, fx),p(y, fy),



[
p(x, fy) + p(y, fx)

])
< η + δ

�⇒ p(fx, fy) < η.

Definition  Let (X,p) be a partial metric space, f : X → X, φ ∈ � and α : X × X → R
+.

Then f is called a generalized Meir-Keeler-type φ-α-contraction if the following condi-
tions hold:
() f is α-admissible;
() for each η > , there exists δ >  such that

η ≤ φ

(
p(x, y),p(x, fx),p(y, fy),



[
p(x, fy) + p(y, fx)

])
< η + δ

�⇒ α(x,x)α(y, y)p(fx, fy) < η. (.)

Remark  Note that if f is a generalizedMeir-Keeler-type φ-α-contraction, then we have
that for all x, y ∈ X,

α(x,x)α(y, y)p(fx, fy)

≤ φ

(
p(x, y),p(x, fx),p(y, fy),



[
p(x, fy) + p(y, fx)

])
.

Further, if φ(p(x, y),p(x, fx),p(y, fy),  [p(x, fy) + p(y, fx)]) = , then p(fx, fy) = . On the
other hand, if φ(p(x, y),p(x, fx),p(y, fy),  [p(x, fy) +p(y, fx)]) > , then α(x,x)α(y, y)p(fx, fy) <
φ(p(x, y),p(x, fx),p(y, fy),  [p(x, fy) + p(y, fx)]).

We now state our main result for the generalized Meir-Keeler-type φ-α-contraction as
follows.

Theorem  Let (X,p) be a complete partial metric space, and φ ∈ �. If α : X × X → R
+

satisfies the following conditions:

(α) there exists x ∈ X such that α(x,x) ≥ ;
(α) if α(xn,xn) ≥  for all n ∈N, then limn→∞ α(xn,xn) ≥ ;
(α) α : X ×X →R

+ is a continuous function in each coordinate.

Suppose that f : X → X is a generalized Meir-Keeler-type φ-α-contraction. Then f has a
fixed point in X.

Proof Let x and let xn+ = fxn = f nx for n = , , , . . . . Since f is α-admissible and
α(x,x) ≥ , we have

α(fx, fx) = α(x,x) ≥ .

http://www.journalofinequalitiesandapplications.com/content/2013/1/341
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By continuing this process, we get

α(xn,xn) ≥  for all n ∈ N∪ {}. (.)

If there exists n ∈ N such that xn+ = xn , then we finished the proof. Suppose
that xn+ 
= xn for any n = , , , . . . . By the definition of the function φ, we have
φ(p(xn,xn+),p(xn, fxn),p(xn+, fxn+),  [p(xn, fxn+) + p(xn+, fxn)]) >  for all n ∈N∪ {}.
Step . We shall prove that

lim
n→∞p(xn,xn+) = , that is lim

n→∞dp(xn,xn+) = .

By Remark  and (p), using (.), we have

p(xn+,xn+)

= p(fxn, fxn+)

≤ α(xn,xn)α(xn+,xn+)p(fxn, fxn+)

< φ

(
p(xn,xn+),p(xn, fxn),p(xn+, fxn+),



[
p(xn, fxn+) + p(xn+, fxn)

])

= φ

(
p(xn,xn+),p(xn,xn+),p(xn+,xn+),



[
p(xn,xn+) + p(xn+,xn+)

])

≤ φ

(
p(xn,xn+),p(xn,xn+),p(xn+,xn+),



[
p(xn,xn+) + p(xn+,xn+)

])
. (.)

If p(xn,xn+) ≤ p(xn+,xn+), then

p(xn+,xn+) = p(fxn, fxn+)

< φ
(
p(xn+,xn+),p(xn+,xn+),p(xn+,xn+),p(xn+,xn+)

)
≤ p(xn+,xn+),

which implies a contradiction, and hence p(xn,xn+) < p(xn–,xn). From the argument
above, we also have that for each n ∈N,

p(xn+,xn+) = p(fxn, fxn+)

< φ
(
p(xn,xn+),p(xn,xn+),p(xn,xn+),p(xn,xn+)

)
≤ p(xn,xn+). (.)

Since the sequence {p(xn,xn+)} is decreasing, it must converge to some η ≥ , that is,

lim
n→∞p(xn,xn+) = η. (.)

It follows from (.) and (.) that

lim
n→∞φ

(
p(xn,xn+),p(xn,xn+),p(xn,xn+),p(xn,xn+)

)
= η. (.)
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Notice that η = inf{p(xn,xn+) : n ∈ N}. We claim that η = . Suppose, to the contrary, that
η > . Since f is a generalized Meir-Keeler-type φ-contraction, corresponding to η use,
and taking into account the above inequality (.), there exist δ >  and a natural number
k such that

η ≤ φ
(
p(xk ,xk+),p(xk ,xk+),p(xk ,xk+),p(xk ,xk+)

)
< η + δ

�⇒ α(xk ,xk)α(xk+,xk+)p(fxk , fxk+) < η,

which implies

p(xk+,xk+) = p(fxk , fxk+) ≤ α(xk ,xk)α(xk+,xk+)p(fxk , fxk+) < η.

So, we get a contradiction since η = inf{p(xn,xn+) : n ∈N}. Thus we have that

lim
n→∞p(xn,xn+) = . (.)

By (p), we also have

lim
n→∞p(xn,xn) = . (.)

Since dp(x, y) = p(x, y) –p(x,x) –p(y, y) for all x, y ∈ X, using (.) and (.), we obtain that

lim
n→∞dp(xn,xn+) = . (.)

Step . We show that {xn} is a Cauchy sequence in the partial metric space (X,p), that
is, it is sufficient to show that {xn} is a Cauchy sequence in the metric space (X,dp).
Suppose that the above statement is false. Then there exists ε >  such that for any k ∈N,

there are nk ,mk ∈N with nk >mk ≥ k satisfying

dp(xmk ,xnk ) ≥ ε. (.)

Further, corresponding to mk ≥ k, we can choose nk in such a way that it is the smallest
integer with nk >mk ≥ k and d(xmk ,xnk ) ≥ ε. Therefore

dp(xmk ,xnk–) < ε. (.)

Now we have that for all k ∈ N,

ε ≤ dp(xmk ,xnk )

≤ dp(xmk ,xnk–) + dp(xnk–,xnk–) + dp(xnk–,xnk )

< ε + dp(xnk–,xnk–) + dp(xnk–,xnk ). (.)

Letting k → ∞ in the above inequality and using (.), we get

lim
n→∞dp(xmk ,xnk ) = ε. (.)

http://www.journalofinequalitiesandapplications.com/content/2013/1/341
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On the other hand, we have

ε ≤ dp(xmk ,xnk )

≤ dp(xmk ,xmk+ ) + dp(xmk+ ,xnk+ ) + dp(xnk+ ,xnk )

≤ dp(xmk ,xmk+ ) + dp(xmk+ ,xmk ) + dp(xmk ,xnk ) + dp(xnk ,xnk+ ) + dp(xnk+ ,xnk ).

Letting n → ∞, we obtain that

lim
n→∞dp(xmk+ ,xnk+ ) = ε. (.)

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y) and using (.) and (.), we have that

lim
n→∞p(xmk ,xnk ) =

ε


(.)

and

lim
n→∞p(xmk+ ,xnk+ ) =

ε


(.)

By Remark  and (p), we have

p(xmk+ ,xnk+ )

= p(fxmk , fxnk )

≤ α(xmk ,xmk )α(xnk ,xnk )p(fxmk , fxnk )

< φ

(
p(xmk ,xnk ),p(xmk , fxmk ),p(xnk , fxnk ),



[
p(xmk , fxnk ) + p(xnk , fxmk )

])

= φ

(
p(xmk ,xnk ),p(xmk ,xmk+),p(xnk ,xnk+ ),



[
p(xmk ,xnk+) + p(xnk ,xmk+)

])
. (.)

Since

p(xmk ,xnk+)≤ p(xmk ,xmk+) + p(xmk+,xnk+) – p(xmk+,xmk+) (.)

and

p(xnk ,xmk+)≤ p(xnk ,xnk+) + p(xnk+,xmk+) – p(xnk+,xnk+). (.)

Taking into account the above inequalities (.), (.), (.) and (.), letting k → ∞,
we have

ε


< φ

(
ε


, , ,

ε



)
≤ ε


,

which implies a contradiction. Thus, {xn} is a Cauchy sequence in themetric space (X,dp).

http://www.journalofinequalitiesandapplications.com/content/2013/1/341
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Step . We show that f has a fixed point ν in
⋂m

i=Ai.
Since (X,p) is complete, then from Lemma , we have that (X,dp) is complete. Thus,

there exists ν ∈ X such that

lim
n→∞dp(xn,ν) = .

Moreover, it follows from Lemma  that

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n,m→∞p(xn,xm). (.)

On the other hand, since the sequence {xn} is a Cauchy sequence in the metric space
(X,dp), we also have

lim
n→∞dp(xn,xm) = .

Since dp(x, y) = p(x, y) – p(x,x) – p(y, y), we can deduce that

lim
n→∞p(xn,xm) = . (.)

Using (.) and (.), we have

p(ν,ν) = lim
n→∞p(xn,ν) = lim

n→∞p(xnk ,ν) = .

Again, by Remark , (p), and the conditions of the mapping α, we have

p(xn+, f ν) = p(fxn, f ν)

≤ α(xn,xn)α(ν,ν)p(fxn, f ν)

< φ

(
p(xn,ν),p(xn, fxn),p(ν, f ν),



[
p(xn, f ν) + p(ν, fxn)

])

= φ

(
p(xn,ν),p(xn,xn+),p(ν, f ν),



[
p(xn, f ν) + p(ν,xn+)

])
. (.)

Letting n → ∞ in (.), we get

p(ν, f ν) < φ

(
,,p(ν, f ν),



p(ν, f ν)

)
≤ p(ν, f ν),

a contradiction. So, we have p(ν, f ν) = , that is, f ν = ν . �

We give the following example to illustrate Theorem .

Example  Let X = [, ]. We define the partial metric p on X by

p(x, y) =max{x, y}.

Let α : [, ]× [, ]→R
+ be defined as

α(x, y) =  + x + y,

http://www.journalofinequalitiesandapplications.com/content/2013/1/341
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let f : X → X be defined as

f (x) =



x,

and, let φ :R+ →R
+ denote

ψ(t, t, t, t) =



·max

{
t, t, t,



t

}
.

Then f is α-admissible.
Without loss of generality, we assume that x > y and verify the inequality (.). For all

x, y ∈ [, ] with x > y, we have

α(x,x)α(y, y)p(fx, fy)≥ 


x,

p(x, y) = x, p(x, fx) = x, p(y, fy) = y and



[
p(x, fy) + p(y, fx)

]
=


[
max

{
x, y

}
+max

{
y,x

}]

≤ 

[
max{x, y} +max{y,x}]

< x,

and hence φ(p(x, y),p(x, fx),p(y, fy),  [p(x, fy) + p(y, fx)]) = 
x. Therefore, all the conditions

of Theorem  are satisfied, and we obtained that  is a fixed point of f .

If we let

α(x, y) =  for x, y ∈ X,

then it is easy to get the following theorem.

Theorem  Let (X,p) be a complete partial metric space and φ ∈ �. Suppose that f : X →
X is a generalized Meir-Keeler-type φ-contraction. Then f has a fixed point in X.
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