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Abstract
In this paper, we investigate a class of impulsive stochastic partial differential
equations with infinite delays. First, we establish two impulsive-integral inequalities.
Then, as applications, the attracting and quasi-invariant sets of impulsive stochastic
partial differential equations with infinite delays are obtained, respectively. The results
in (Chen in Stat. Probab. Lett. 80:50-56, 2010) are generalized.
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1 Introduction
Because of its wide application in various sciences such as physics, mechanical engi-
neering, control theory and economics, the theory of stochastic partial differential equa-
tions has been investigated by many authors, and some fruitful results have already been
achieved (see [–]). Particularly, the stability theory of stochastic partial differential equa-
tions with delays has been considered by many authors over the last years, for example,
[–]. Besides delay effects, impulsive effects likewise exist in a wide variety of evolution-
ary processes, in which states are changed abruptly at certain moments of time, involving
such fields as medicine and biology, economics, mechanics, electronics and telecommu-
nications, etc.Many interesting results on impulsive effects have been obtained [–].
However, under impulsive perturbation, the equilibrium point sometimes does not ex-

ist in many real physical systems, especially in nonlinear dynamical systems. Therefore,
an interesting subject is to discuss the attracting set and the invariant set of impulsive
systems. Some significant progress has been made in the techniques and methods of de-
termining the invariant set and the attracting set for impulsive differential systems includ-
ing impulsive functional differential equations, impulsive stochastic functional differen-
tial equations and so on [, ]. It should be pointed out that there are only a few works
[] about the attracting set and the invariant set of impulsive stochastic partial differen-
tial equations. Unfortunately, the corresponding problems for impulsive stochastic partial
differential equations with infinite delays have not been considered prior to this work.
Motivated by the above discussion, our objective in this paper is to determine a quasi-

invariant set and a global attracting set for a class of impulsive stochastic partial differential
equations with infinite delays. Our method is based on impulsive-integral inequalities.
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2 Model description and preliminaries
Throughout this paper, H and K denote two real separable Hilbert spaces, and we denote
by 〈·, ·〉H , 〈·, ·〉K their inner products and by ‖ · ‖H , ‖ · ‖K their vector norms, respectively.
Let (�,F , {Ft}t≥,P) be a complete probability space with a filtration {Ft}t≥ satisfying
the usual conditions (i.e., it is right continuous and F contains all P-null sets). We de-
note by L(K ,H) the set of all linear bounded operators from K into H , equipped with the
usual operator norm ‖ · ‖. In this paper, we always use the same symbol ‖ · ‖ to denote
the norms of operators regardless of the spaces potentially involved when no confusion
possibly arises. E[f ] means the mathematical expectation of f .
Let {W (t), t ≥ } denote a K-valued {Ft}t≥-Wiener process defined on (�,F , {Ft}t≥,

P) with covariance operator Q, i.e.,

E
〈
W (t),x

〉
K

〈
W (s), y

〉
K = (t ∧ s)〈Qx, y〉K for all x, y ∈ K ,

where Q is a positive, self-adjoint, trace class operator on K . In particular, we shall call
suchW (t), t ≥ , a K-valued Q-Wiener process with respect to {Ft}t≥.
In order to define stochastic integrals with respect to the Q-Wiener process W (t),

we introduce the subspace K = Q/(K) of K which, endowed with the inner product
〈u, v〉K = 〈Q–/u,Q–/v〉K , is a Hilbert space. Let L

 = L(K,H) denote the space of all
Hilbert-Schmidt operators from K into H . It turns out to be a separable Hilbert space
equipped with the norm

‖ψ‖L

= tr

((
ψQ/)(ψQ/)∗) for all ψ ∈L

.

Clearly, for any bounded operatorsψ ∈L(K ,H), this norm reduces to ‖ψ‖L

= tr(ψQψ∗).

The reader is referred to Da Prato and Zabczyk [] for a systematic theory about stochas-
tic integrals of this kind.
R+ = [,+∞). C(X,Y ) denotes the space of continuous mappings from the topological

spaceX to the topological spaceY . Let γ (t), δ(t) ∈ C(R+,R+) satisfy t–γ (t) → ∞, t–δ(t) →
∞ as t → ∞, τ (s) = inf{s – γ (s), s – δ(s), s≥ }, and τ = inf{τ (s), s≥ }.

PC(J ,F) =
{
ψ(t) : J → F | ψ(t) is continuous for all but tk ∈ R

and at these points tk ∈ R,ψ
(
t+k

)
and ψ

(
t–k

)
exist,ψ

(
t+k

)
= ψ(tk)

}
,

where J ⊂ R is an interval, F is a complete metric space, ψ(s+) and ψ(s–) denote the
right-hand and left-hand limits of the function ψ(s), respectively, the fixed moments of
time tk , k = , , . . . , satisfy  < t < t < · · · < tk < · · · , and limk→∞ tk = ∞. Especially, let
PC �=PC([–τ , ],H) be equippedwith the supremumnorm ‖ϕ‖PC = sup–τ≤s≤ ‖ϕ(s)‖H . For
φ ∈ PC([–τ , ],R), we denote |φ(t)|τ = sup–τ≤s≤ |φ(t + s)|.
Denote by PCb

F
([–τ , ],H) the family of all bounded F-measurable, PC-valued ran-

dom variables φ, satisfying ‖φ‖pLp = sup–τ≤s≤ E‖φ(s)‖pH < ∞, where p ≥ .
Consider the impulsive stochastic partial differential equations with infinite delays

⎧⎪⎪⎨
⎪⎪⎩
dx(t) = (Ax(t) + g(t,x(t – γ (t))))dt + σ (t,x(t – δ(t)))dW (t), t ≥ , t = tk ,

�x(tk) = Ik(x(t–k )), t = tk ,k = , , . . . ,

x(s) = ϕ ∈ PCb
F

([–τ , ],H), s ∈ [–τ , ],

()
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where f , g : [,∞)× PC → H and σ : [,∞)× PC →L
 are jointly continuous functions.

�x(tk) = x(t+k )–x(t
–
k ) denotes the jump in the state x at time tk with Ik(·) :H → H determin-

ing the size of the jump. A : D(A) ⊂ H → H is the infinitesimal generator of a semigroup
of bounded linear operators (T(t))t≥ on a Hilbert space H satisfying

∥∥T(t)∥∥ ≤ Me–γ t , t ≥ 

for some constantsM ≥  and γ > .

Definition . [] A stochastic process {x(t), t ∈ [,T]},  ≤ T < ∞, is a mild solution of
() if

(i) x(t) is Ft-adapted, t ≥ ;
(ii) x(t) satisfies the integral equation

x(t) = T(t)x()+
∫ t


T(t – s)g(s,xs)ds +

∫ t


T(t – s)σ (s,xs)dW (s)

+
∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))
, t ∈ [,T], a.s., ()

where x(s) = ϕ ∈ PCb
F

([–τ , ],H).

Later on we shall often denote the solution of () by x(t) = x(t, ,ϕ), or xt(,ϕ) for all
ϕ ∈ PCb

F
([–τ , ],H).

Definition . [] The zero solution of system () is said to be stable in the pth moment
if, for arbitrarily given ε > , there exists a δ >  such that ‖ϕ‖pLp < δ guarantees that

E
∥∥x(t)∥∥p

H ≤ ε, t ≥ .

Of course, conditions are needed to ensure that () has a zero solution.

Definition . [] The zero solution of system () is said to be asymptotically stable in
the pth moment if it is stable in pth moment and for any ϕ ∈ PCb

F
([–τ , ],H),

lim
t→∞E

∥∥x(t)∥∥p
H → .

Of course, conditions are needed to ensure that () has a zero solution.

Definition . [] The set S ⊂ PCb
F

([–τ , ],H) is called a quasi-invariant set of () if
there exist positive constants k and b such that for any initial value ϕ ∈ S, the solution
kxt(,ϕ) + b ∈ S, t ≥ .

Definition . [] The set S ⊂ PCb
F

([–τ , ],H) is called a global attracting set of () if,
for any initial value ϕ ∈ PCb

F
([–τ , ],H), the solution xt(,ϕ) satisfies

dist
(
xt(,ϕ),S

) → , as t → ∞,

http://www.journalofinequalitiesandapplications.com/content/2013/1/338
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where

dist(ϕ,S) = inf
ψ∈Sρ

(
ϕ(s),ψ(s)

)
for ϕ ∈ PCb

F

(
[–τ , ],H

)
,

where ρ(·, ·) is any distance in PCb
F

([–τ , ],H).

Remark . In this work, the distance is induced by the norm ‖ · ‖pLp .

Lemma . [, Proposition .] For any r ≥  and for arbitrary L
-valued predictable

process ϕ(·)

sup
s∈[,t]

E
∥∥∥∥
∫ s


φ(u)dW (u)

∥∥∥∥
r

≤ Cr

(∫ t



(
E
∥∥φ(s)

∥∥r
L


) 
r ds

)r

, t ≥ ,

where Cr = (r(r – ))r .

In order to establish some sufficient conditions ensuring the existence of attracting and
quasi-invariant sets of impulsive stochastic partial differential equations with infinite de-
lays, we are in need of establishing the following impulsive-integral inequalities.

Lemma . Let y(t) ∈ PC(R+,R+) be a solution of the delay impulsive-integral inequality

y(t) ≤ η

∫ t


e–c(t–s)

∣∣y(s)∣∣
τ (s) ds +

∑
tk<t

αke–c(t–tk )y
(
t–k

)
+ η, t ≥ , ()

where c > , η, η and αk are nonnegative constants. If ϒ = η
c +

∑∞
k= αk < , then

y(t) ≤ ( –ϒ)–η, t ≥ , ()

provided that

y(t) ≤ ( –ϒ)–η, t ∈ [–τ , ]. ()

Proof In order to prove (), we first prove, for any ε > ,

y(t) < ( –ϒ)–η + ε, t ≥ . ()

If () is not true, from () and y(t) ∈ PC(R+,R+), then there must be a t∗ >  such that

y
(
t∗

) ≥ ( –ϒ)–η + ε, ()

y(t) < ( –ϒ)–η + ε, –τ ≤ t < t∗. ()

Hence, it follows from () and () that

y(t) ≤ η

∫ t


e–c(t–s)

∣∣y(s)∣∣
τ (s) ds +

∑
tk<t

αke–c(t–tk )y
(
t–k

)
+ η

≤ η

∫ t


e–c(t–s)

[
( –ϒ)–η + ε

]
ds
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+
∑
tk<t

αke–c(t–tk )
[
( –ϒ)–η + ε

]
+ η

≤
(

η

c
+

∞∑
k=

αk

)[
( –ϒ)–η + ε

]
+ η

= ϒ( –ϒ)–η + η +ϒε

< ( –ϒ)–η + ε,

which contradicts equality (). So, () holds for all t ≥ . Letting ε →  in (), we have ().
The proof is complete. �

Lemma . Let y(t) ∈ PC(R+,R+) be a solution of the delay impulsive-integral inequality

⎧⎪⎪⎨
⎪⎪⎩
y(t) ≤ ηφ()e–ct + η

∫ t
 e

–c(t–s)|y(s)|τ (s) ds
+

∑
tk<t αke–c(t–tk )y(t–k ) + η, t ≥ ,

y(t) ≤ φ(t), t ∈ [–τ , ],

()

where c > , η ≥ , η, η and αk are nonnegative constants. φ(s) ∈ PC([–τ , ],R+), s ∈
[–τ , ]. If ϒ = η

c +
∑∞

k= αk < , then S = {φ ∈ PC([–τ , ],R+) | |φ|τ ≤ z, z > } is a quasi-
invariant set of the solution of () and S = {φ ∈ PC([–τ , ],R+) | |φ|τ ≤ ( –ϒ)–η} is a
global attracting set of the solution of ().

Proof From any given φ(s) ∈ PC([–τ , ],R+), s ∈ [–τ , ], there exists a positive constant z
such that |φ()|τ < z. Then from () we get that

y(t) ≤ η

∫ t


e–c(t–s)

∣∣y(s)∣∣
τ (s) ds +

∑
tk<t

αke–c(t–tk )y
(
t–k

)
+ η + ηz, t ≥ . ()

We obtain from ϒ <  and |φ()|τ < z that

∣∣y()∣∣
τ
≤ ( –ϒ)–(ηz + η). ()

It follows from Lemma ., () and () that

y(t) ≤ ( –ϒ)–(ηz + η). ()

So, we know that S = {φ ∈ C | |φ|τ ≤ z, z > } is a quasi-invariant set of the solution of ().
It follows from () that there must be a constant σ ≥  such that

lim
t→∞ y(t) = σ ≤ ( –ϒ)–ηz + ( –ϒ)–η.

Next, we prove σ ≤ ( –ϒ)–η. For any ε > , we know that there must be a T >  such
that

ηφ()e–ct <
ε


, η

∫ t–T


e–c(t–s)

(
( –ϒ)–ηz + ( –ϒ)–η

)
ds <

ε


,

∑
tk<t–T

αke–c(t–tk )
(
( –ϒ)–ηz + ( –ϒ)–η

)
<

ε


, t ≥ T.
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In addition, according to the definition of superior limit and t–γ (t) → ∞, t–δ(t) → ∞,
we know there must be a T >  such that

∣∣y(t)∣∣
τ (t) < σ + ε, t ≥ T.

Therefore, we get

y(t) ≤ ηφ()e–ct + η

∫ t


e–c(t–s)

∣∣y(s)∣∣
τ (s) ds +

∑
tk<t

αke–c(t–tk )y
(
t–k

)
+ η

≤ ε


+ η

∫ t–T


e–c(t–s)

(
( –ϒ)–ηz + ( –ϒ)–η

)
ds

+ η

∫ t

t–T
e–c(t–s)

∣∣y(s)∣∣
τ (s) ds +

∑
tk<t–T

αke–c(t–tk )
(
( –ϒ)–ηz + ( –ϒ)–η

)

+
∑

t–T<tk<t

αke–c(t–tk )y
(
t–k

)
+ η

≤ ε + η

∫ t

t–T
e–c(t–s)(σ + ε)ds +

∑
t–T<tk<t

αke–c(t–tk )(σ + ε) + η

≤ ε +ϒ(σ + ε) + η, t ≥ T + T.

Thus, with the definition of superior limit, there must be a T > T +T such that y(T) >
σ – ε. So, we get

σ – ε < ε +ϒ(σ + ε) + η.

Letting ε → , we get σ ≤ ( –ϒ)–η. The proof is complete. �

If η = , we can easily get the following corollary.

Corollary . Assume that all the conditions of Lemma . hold. Then the zero solution
of inequality () is asymptotically stable.

3 Main results
To prove our results, we always assume that the following conditions are satisfied.

(H) There exist constants Lg > , Lσ > , bg ≥  and bσ ≥  such that for any x, y ∈ PC
and t ≥ ,

∥∥g(t,x) – g(t, y)
∥∥
H ≤ Lg‖x – y‖PC ,

∥∥g(t, )∥∥H = bg ,∥∥σ (t,x) – σ (t, y)
∥∥
L

≤ Lσ ‖x – y‖PC ,

∥∥σ (t, )
∥∥
L

= bσ .

(H) There exist some positive numbers qk , bk (k = , , . . .) such that for any x, y ∈H ,

∥∥Ik(x) – Ik(y)
∥∥
H ≤ qk‖x – y‖H ,

∥∥Ik()∥∥H = bk ,
∞∑
k=

qk <∞ and
∞∑
k=

bk <∞.
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Theorem . Suppose that the conditions (H) and (H) are satisfied, then S = {ϕ ∈
PCb

F
([–τ , ],H) | ‖ϕ‖pLp ≤ ( – ϒ)–J} is a global attracting set of the mild solution of ()

and S = {ϕ ∈ PCb
F

([–τ , ],H) | ‖ϕ‖pLp ≤ r, r > } is a quasi-invariant set of the mild solu-
tion of () if the following inequality

ϒ = p–Mpγ –pLpg + p–
(
p(p – )/

)p/(((p – )
)
/(p – )

)(–p)/
γ –p/MpLpσ

+ p–Mp

( ∞∑
k=

qk

)

<  ()

holds and

J = p–Mpγ –pbpg + p–
(
p(p – )/

)p/((γ (p – )
)
/(p – )

)(–p)/Mpbpσ /γ

+ p–Mp

( ∞∑
k=

bk

)

, ()

where  = .

Proof From (), we derive

E
∥∥x(t)∥∥p

H = E
∥∥∥∥T(t)x() +

∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

+
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s) +

∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))∥∥∥∥
p

H

≤ p–E
∥∥T(t)x()∥∥p

H + p–E
∥∥∥∥
∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s)

∥∥∥∥
p

H

+ p–E
∥∥∥∥∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))∥∥∥∥
p

H

= : p–
∑
i=

Gi(t).

We first evaluate the first term of the right-hand side

G(t) = E
∥∥T(t)x()∥∥p

H ≤ Mp‖ϕ‖pLpe–γ t . ()

Secondly, (H) and the Hölder inequality yield

G(t) = E
∥∥∥∥
∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

∥∥∥∥
p

H

≤ E
(∫ t


Me–γ (t–s)(Lg∣∣∥∥x(s)∥∥H

∣∣
τ (s) + bg

)
ds

)p

≤ p–Mpγ –pLpg

(∫ t


e–γ (t–s)∣∣E∥∥x(s)∥∥p

H

∣∣
τ (s) ds

)
+ p–Mpγ –pbpg . ()

http://www.journalofinequalitiesandapplications.com/content/2013/1/338
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Thirdly, by (H), the Hölder inequality and Lemma ., we obtain

G(t) = E
∥∥∥∥
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s)

∥∥∥∥
p

H

≤ Mp(p(p – )/
)p/(∫ t



(
e–γ p(t–s)E

∥∥σ
(
s,x

(
s – δ(s)

))∥∥p
L


)/p ds)p/

= Mp(p(p – )/
)p/(∫ t


e–γ (t–s)

(
E
∥∥σ

(
s,x

(
s – δ(s)

))∥∥p
L


)/p ds)p/

≤ Mp(p(p – )/
)p/(∫ t


e–

γ (p–)
p– (t–s) ds

)p/–

×
∫ t


e–γ (t–s)E

∥∥σ
(
s,x

(
s – δ(s)

))∥∥p
L

ds

≤ p–
(
p(p – )/

)p/((γ (p – )
)
/(p – )

)(–p)/
×MpLpσ

(∫ t


e–γ (t–s)∣∣E∥∥x(s)∥∥p

H

∣∣
τ (s) ds

)

+ p–
(
p(p – )/

)p/((γ (p – )
)
/(p – )

)(–p)/Mpbpσ /γ . ()

As to the fourth term, by (H) and the Hölder inequality, we obtain

G(t) = E
∥∥∥∥∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))∥∥∥∥
p

H

≤ E
(∑

tk<t
Me–γ (t–tk )

∥∥Ik(x(t–k ))∥∥
H

)p

≤ E
(∑

tk<t
Me–γ (t–tk )

(
qk

∥∥x(t–k )∥∥
H + bk

))p

≤ p–E
(∑

tk<t
Me–γ (t–tk )qk

∥∥x(t–k )∥∥
H

)p

+ p–
(∑

tk<t
Me–γ (t–tk )bk

)p

≤ p–Mp
(∑

tk<t
qk

)p/q ∑
tk<t

e–pγ (t–tk )qkE
∥∥x(t–k )∥∥p

H

+ p–Mp
(∑

tk<t
bk

)p/q ∑
tk<t

e–pγ (t–tk )bk

≤ p–Mp
(∑

tk<t
qk

)p/q ∑
tk<t

qke–γ (t–tk )E
∥∥x(t–k )∥∥p

H

+ p–Mp
(∑

tk<t
bk

)p/q ∞∑
k=

bk . ()

It follows from ()-() that

E
∥∥x(t)∥∥p

H ≤ p–Mp‖ϕ‖pLpe–γ t + p–Mpγ –pLpg

(∫ t


e–γ (t–s)∣∣E∥∥x(s)∥∥p

H

∣∣
τ (s) ds

)

+ p–
(
p(p – )/

)p/((γ (p – )
)
/(p – )

)(–p)/

http://www.journalofinequalitiesandapplications.com/content/2013/1/338
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×MpLpσ

(∫ t


e–γ (t–s)∣∣E∥∥x(s)∥∥p

H

∣∣
τ (s) ds

)

+ p–Mp
(∑

tk<t
qk

)p/q ∑
tk<t

qke–γ (t–tk )E
∥∥x(t–k )∥∥p

H

+ p–Mpγ –pbpg + p–
(
p(p – )/

)((
γ (p – )

)
/(p – )

)(–p)/Mpbpσ /γ

+ p–Mp
(∑

tk<t
bk

)p/q ∞∑
k=

bk . ()

It follows from Lemma ., () and () that Theorem . holds. The proof is completed.
�

In particular, when bg = bσ =  in (H) and bk =  in (H), we have the following result
from Corollary ..

Corollary . Suppose that the conditions (H) with bg = bσ =  and (H) with bk =  are
satisfied, then the trivial solution of () is asymptotically stable in the pth moment if the
following inequality

ϒ = p–Mpγ –pLpg + p–
(
p(p – )/

)p/(((p – )
)
/(p – )

)(–p)/
γ –p/MpLpσ

+ p–Mp

( ∞∑
k=

qk

)

<  ()

holds.

Proof We only sketch the proof. From (), we derive

E
∥∥x(t)∥∥p

H = E
∥∥∥∥T(t)x() +

∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

+
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s) +

∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))∥∥∥∥
p

H

≤ p–E
∥∥∥∥T(t)x() +∑

tk<t
T(t – tk)Ik

(
x
(
t–k

))∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s)

∥∥∥∥
p

H

≤ p–E
∥∥T(t)x()∥∥p

H + p–E
∥∥∥∥∑
tk<t

T(t – tk)Ik
(
x
(
t–k

))∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t


T(t – s)g

(
s,x

(
s – γ (s)

))
ds

∥∥∥∥
p

H

+ p–E
∥∥∥∥
∫ t


T(t – s)σ

(
s,x

(
s – δ(s)

))
dW (s)

∥∥∥∥
p

H
.
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The remainder of the proof is similar to that of the proof of Theorem ., so we omit it.
�

Remark . Based on the impulsive-integral inequality established in [], Chen con-
sidered a class of impulsive stochastic evolution equations with delays, i.e., γ (t), δ(t) ∈
C(R+, [, τ ]) in (), and showed that under the same conditions as those in Corollary .,
the trivial solution of () is exponentially stable in the pth moment. By Corollary ., we
have shown that the trivial solution is asymptotically stable in the pth moment no matter
whether the delays γ (t) and δ(t) are finite or infinite.

4 Example
Example We consider the following impulsive stochastic partial differential equation
with infinite delays:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(t) = [ ∂

∂z x(t) + ux(t – 
 t – ) + v]dt + [ux(t – 

 t – ) + v]dW (t),

 < z < π , t > , t = tk ,

�x(tk) = Ik(x(t–k )) =
v
k x(t

–
k ), t = tk ,

x(t, ) = x(t,π ) = , t ≥ ,

x(s) = φ(s) ∈ PCb
F

([–, ],L[,π ]), – ≤ s ≤ ,

x(t, ) = x(t,π ),

()

where ui > , i = , , vi ≥ , i = , , , are constants.W (t) denotes the standard cylindrical
Wiener process.
Let H = L[,π ] and A = ∂

∂z with the domain

D(A) =
{
u ∈H :

∂u
∂x

,
∂u
∂x

∈H ,u() = u() = 
}
,

so it is well known that

∥∥S(t)∥∥ ≤ e–πt , t ≥ .

We can easily verify the conditions (H) and (H)with Lg = u, Lσ = u, bg = v, bσ = v, qk =
v
k , bk = . Let p = , then we get ϒ ≤ π–u + π–u + v

.= ϒ̂ and J = π–v + π–v.
By using Theorem ., we may deduce that if ϒ̂ < , we know S = {ϕ ∈ PCb

F
([–, ],H) |

‖ϕ‖pLp ≤ ( – ϒ̂)–J} is a global attracting set of system ().

5 Conclusion
The aim of this paper is to study the attracting and quasi-invariant sets for a class of impul-
sive stochastic partial functional differential equations with infinite delays. By establish-
ing new impulsive-integral inequalities, we obtain the attracting and quasi-invariant sets
of systems under consideration. We should point out that the stationary solution and the
periodic solution are very much related to attracting and quasi-invariant sets []. In our
next paper, we will explore the relationship between attracting and quasi-invariant sets
and the stationary solution or the periodic solution of ().
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