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Abstract

In this paper, we estimate the order of growth of the solutions of the equation
f(kz) = kf(2)f'(z) and investigate the periodicity of the solutions in the case k=3,
which give an answer to the question proposed by Beardon (Comput. Methods
Funct. Theory 12(1):273-278, 2012).

MSC: 30D35; 30D45

Keywords: complex difference; Nevanlinna theory; growth

1 Introduction and main results
As entire functions z, sinz, sinh z are solutions of the equation f(2z) = 2f(z)f"(z), Beardon
[1] studied entire solutions of the generalized functional equation

flkz) =kf (2)f'(2),  f(0)=0, 1.1)

where k is a non-zero complex number. Obviously, two formal power series f and g are
linearly conjugate if there is a non-zero ¢ such that g(x) = ¢f(x/c), and if f satisfies (1.1).
Firstly, we define some notations as in the paper [1]. The formal series O and 7 are
defined by O :=0+ 0z +0z% + ---, Z:= 0 + 1z + 0z*> + 02> + - - - . We also introduce sets
Kp={z:Z2=p+2} (p=12,...) and K=K, UK, U--- . Thus, we have K; =3 and K, =
{—2,2}. Obviously, K, contains exactly p points which are equally spaced around the circle
|z| = Ry, where R, = (p + 2)V7 > 1 and R, € K,. Also, since x™! log(x + 2) is decreasing when
x>1,weseethat R =3>Ry=2>--->1,and R, — 1 as p — o0o. In particular, the sets
ICp are mutually disjoint, and the derived set of K is the unit circle {z: |z| = 1}. Using the
above notations, Beardon obtained the following two main results for the entire solutions

of equation (1.1).

Theorem A Any transcendental solution f of (1.1) is of the form
f@=z+z(b +---),

where p is a positive integer, b # 0 and k € KCp,. In particular, if k ¢ K then the only formal
solutions of (1.1) are O and I.

Theorem B For each positive integer p, there is a unique real entire function

EFy(@)=2(1+ 2" + boz® + b3z + -+ )
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which is a solution of (1.1) for each k in ICp,. Further, if k € K, then the only transcendental

solutions of (1.1) are the linear conjugates of F,.

Based on the above two known results, we use the value distribution theory in
q-difference (see, e.g., [2—6]), which is analogue of the classical Nevanlinna theory of mero-
morphic functions (see, e.g., [7-9]), to study the properties of solutions of (1.1). We get
the upper bound of the order of solutions (see [10]).

Theorem 1 Suppose that f is a transcendental solution of (1.1) for k € K, then the order
M) < i

In particular, when k = 3, the order of solutions of f(3z) = 3f(z)f’(z) is not more than
log2/log3. In Section 3 of the paper [1], Beardon also studied the periodicity of the solu-
tions of equation (1.1). Although the solutions of (1.1) are periodic when k = £2 (that is,
p =2), he proved that the periodicity fails when p > 3, see [1, Theorem 3.1]. But the case
p =1 (that is, k = 3) remains open. Here we shall prove that the periodicity also fails for

the remaining case.
Theorem 2 The solution f of equation (1.1) is not periodic when k = 3.

From Theorem 1, we know that the order of the transcendental solution f is not more
than 1 when & = 2. This coincides with the fact that the transcendental solutions are sinz
and sinhz, the order of which are 1. Naturally we ask: Is the order of transcendental so-
lutions of equation (1.1) exactly log2/log |k|? That means we have to estimate the lower
bound of the order of solutions. Unfortunately, we do not get the expected lower bound
since we meet difficulties when using T'(r,f") to bound T'(r,f), because for any given pos-
itive constant K, there exists an entire function f with order A for which

T(r.f)
T(r,.f")

> K

on a set E of positive lower logarithmic density; see Hayman [11, p.98]. So the above ques-

tion is open.

2 Some lemmas

In this paper we use the standard notations in the Nevanlinna theory (see, e.g., [7-9]).
So, in the following we give some well-known results, which are needed for our proof,
of the classical Nevanlinna theory without presenting proofs. Let f(z) be a meromorphic
function, and let m(r,f), N(r,f), T(r,f) denote the proximity function, the counting func-
tion and characteristic function of f(z), respectively, here r = |z|. T(r,f) = m(r,f) + N(r,f)
and for the entire function N(r,f) = 0. Moreover, the order of growth of a meromorphic
function f(z) is defined by

A(f) :=limsup M.

r—00 logr

We denote by E a set of finite linear measure in R*, not necessarily the same at each occur-

rence. For any non-constant meromorphic function f(z), we denote by S(r, f) any quantity
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satisfying S(r,f) = o(T'(r,f)) (r — oo, r ¢ E). For two meromorphic functions f(z) and g(z),
we have m(r,fg) < m(r,f) + m(r,g) and T(r,fg) < T(r,f) + T(r,g). In addition, the identity
m(r,f%) = S(r,f) is also a very important result in the Nevanlinna theory.

The first lemma on the relationship between T(r,f(gz)) and T(|q|r,f(z)) is due to
Bergweiler et al. [12, p.2].

Lemma 2.1 Oune case, see that

T(r.f(q2)) = T(IqIr.f) + O(1) 21
holds for any meromorphic function f and any constant q.

Lemma 2.2 [13] Let @ : (1,00) — (0,00) be a monotone increasing function, and let f be
a nonconstant meromorphic function. If for some real constant o € (0,1), there exist real
constants K1 > 0 and Ky > 1 such that

T(r.f) <K ®(ar) + K T(ar,f) + S(ar,f),
then the order of growth of f satisfies

logk, . log ©(r)
+ lim sup .
—loga r—oco logr

A(f) <

Lemma 2.3 [9, Lemma 5.1] Suppose that a nonconstant meromorphic function f is peri-
odic, that is, f (z + n) = f (z) for nonzero complex number 1. Then the order L(f) > 1.

3 Proof of theorems

Proof of Theorem 1 By the definition of X', we know that |k| > 1. Thus, by Lemma 2.1 we
have

T(r.f(kz)) = T(|k|r,f(2)) + O(1), 3.1)

and by (1.1), we can get

T(r,f(k2)) = T(r,kf 2)f'(2)) < T(r,f(2)) + T (r.f"(2)) + O(1). (3.2)
Combining the two inequalities above and simplifying T'(r,f(z)) by T(r,f), we have

T(\klr,f) < T(r,f) + T(r.f") + OQ). (3.3)
By Theorem B, we know that the solution f is entire. Since for the entire function f its
derivative is also entire, we have

) =me ) =g ) < mesyom(n )

=m(r,f)+S(r.f)=T(r.f) + S(r.f). (3.4)
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By (3.3) and (3.4), we have

T(|klr,f) <2T(r.f) + S(r.f).

Set o = 1/|k|, thus, we get

T(r,f) <2T(ar,f) + S(ar,f).

Applying Lemma 2.2 yields

log2
Alf) < .
(f)= log |k| O
Proof of Theorem 2 Theorem 2 follows from Theorem 1 and Lemma 2.3. O
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